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In this contribution we apply a method -called boosting- for constructing a
classifier out of a set of  (base or weak) classifiers for the discrimination of
two groups of coffees (blends and monovarieties). The main idea of boosting
is to produce a sequence of base classifiers that progressively concentrate on
the hard patterns, i.e. those which are near to the classification boundary.  
Measurement were performed with the Pico-1 Electronic Nose based on thin
films semiconductor sensors developed in Brescia. The boosting algorithm
was able to halve the classification error for the blends data and to diminish
it from 21% to 18% for the more difficult monovarieties data set.

INTRODUCTION

An Electronic Nose (EN) can be briefly schematized as consisting of an odor sampling unit,
an array of chemical sensors, electronic circuitry and data analysis software. Data analysis,
in turn, can be divided in two parts. The first part, sometimes called (data) preprocessing,
deals with signal processing (e.g. removal of spikes, noise filtering), the choice of the
features to be considered in the subsequent analysis and data visualization, for example with
PCA (Principal Component Analysis) score plots. Drift correction can be also considered as
part of this first processing of the data. This part of data analysis is crucial for the quality of
the final results and requires a constant exchange with the experimental process, mainly to
establish a sufficiently good and reliable measurement protocol.

The second part of the data analysis deals with inferring the relationship between the
EN data (patterns) and the corresponding class labels (or the continuous quantities in the
case of e.g. concentration determination of gas components in a mixture). This is the subject
of supervised learning which comprises a collection of general purpose techniques for
determining the relationship from data. The use of a single neural network (normally a
multilayer perceptron, but radial basis functions also been investigated) as a classifier is a
common solution to pattern recognition  problems in many application fields, comprising
EN odor analysis.

A direction in which research in supervised learning is making great progresses is the
study of techniques for combining the predictions of multiple classifiers (briefly called
ensembles) to produce a single classifier (1,2). The resulting classifier is generally more



accurate than any of the individual classifiers making up the ensemble. Both theoretical and
empirical research has demonstrated that a good ensemble is one where the individual
classifiers are both accurate and make errors on different parts of the input space (that is to
say when they are independent).

Two popular methods for creating accurate ensembles which emerge from the recent
machine learning literature are Bagging (1) and Boosting (3,4). These methods rely on
resampling techniques to obtain different training sets for each of the classifiers. Boosting
were  An empirical evaluation of these methods on 23 data sets using both neural networks
and decision trees as base classifiers is presented in (5).

In this paper we apply boosting to the classification of  data collected with the Pico-1
EN developed at the Gas Sensor Lab in Brescia. Experiments were performed on two groups
of coffees, consisting respectively of 7 different blends (containing the Italian Certified
Espresso (ICE)) and of 6 single varieties (SV) plus the ICE. The food manufacturing sector
is one of the two main application fields for EN together with environmental monitoring.
The goal is, in the case of coffee, to use the EN on line for coffee quality control, at least to
perform a first stage, gross differentiation of the products.

EXPERIMENTAL

Boosting
Boosting consists in an iterative application of a learning algorithm (MLP in our

case) to subsets of the training data. The subset is chosen at every step according to a
probability distribution of  the data that depends on the actual classification errors. At each
iteration the probability distribution is updated in order to improve the weights
(probabilities) of misclassified examples. The error on the training set is weighted,
depending on the probability distribution of the examples. The final hypothesis is computed
by a weighted voting of the generated hypotheses. In our implementation we have used
boosting by resampling, i.e. we have chosen a set of examples from the training set at
random with replacement, according to the current probability distribution of the data.

A pseudocode for boosting (AdaBoost) can be given as follows:
1. Start with weights wi = 1/N, i=1,…,N; yi ∈ {1,-1}
2. Repeat for m=1,…,M:

a) Estimate the base (weak) learner fm(x) from the training data with weights wi
b) Compute the weighted misclassification error em=sumj(wj); j index of misclassified
samples
c) Compute the weight of the m-th classifier fm(x): cm=log((1-em)\em)
d) Update the weights of the misclassified examples: wj = wj exp(cm) and renormalize so
that sumi(wi)=1

3. Output weighted majority classifier: C(x)=sign[summ(wm fm(x))], where sign(x)= 1 if x>0
and sign(x)= -1 if x<0

The Pico Nose
The Pico-1 EN makes use of six thin film semiconductor sensors. For this

experiment three SnO2-based (one catalyzed with gold, one with palladium and one with



platinum) and three Ti-Fe sensors were employed. All of them were grown by sputtering
with the RGTO technique.

The odor to be analyzed can be sampled either in a static way with a programmable
autosampler comprising a syringe, or in a dynamic way letting the carrier flush through the
headspace, or from stained steel canisters or nalophan bags through a pump. For this
application the possibility of easily preparing the sample suggested the adoption of the more
reproducible static headspace extraction with the autosampler.

Pico-1 precisely controls the sensor temperature via a feedback loop. Further, there
is the possibility to steer the EN remotely via the TCP\IP interface. A simple user interface
for the preliminary analysis of data (graphs of sensor responses, time development of
extracted features, PCA score and loading plots) has also been implemented in Matlab. A
newer version of the Pico Nose is currently in an advanced stage of development: the
hardware has been simplified and standardized using commercial components.

RESULTS

We have randomly split the data in a training and in a testing set and we have repeated
training of each learning machine six times using  different pseudorandom initialization
weights. In our experimentation we have used the AdaBoost.M1 algorithm introduced by
Freund and Schapire (6) for boosting Multi-Layer Perceptrons (MLP). As base learners we
have used MLP with one hidden layer and we have set the maximum number of base learner
to 250, i.e. we have fixed the maximum number of rounds of boosting to 250. All the
experimentations has been performed using NEURObjects (7), a set of library C++ classes
for neural networks development1.

Results of our experimentation are summarized in Table 1 to Table 4. The tables
represent the results on the test sets of blended and monovariety coffee data sets. The first
two tables are referred to a single MLP trained with backpropagation algorithm, the last two
to boosted MLP ensembles. Each row of the tables show results relative to MLP or boosted
MLP with a predefined number of hidden units. The first column of each table refers to the
number of hidden units of a single MLP or of a single MLP base learner of the boosted. The
next 6 columns correspond to percent error rates obtained by different pseudorandom
initialization of the weights of the MLP. The 8th column shows the minimum error achieved
(Best), while the next corresponds to the average error (Mean) and the last shows the
standard deviation of the percent error rate (Stdev).

Comparing the overall results on the blended coffee data set between MLP and
boosted MLP (Table 1 and Table 3), we can remark that the average error (Mean) is halved
using boosted MLP ensembles: The percent error rate on the test set drops down from 15.05
to 8.60, using MLP with 7 hidden units as base learners, and similar results are obtained also
using MLP with 5 and 9 hidden units. The minimum error, also, is reduced in a similar way,
passing from 11.29 to 6.45.

                                                          
1 NEURObjects software is available on-line for research and education purposes:
http://www.disi.unige.it/person/ValentiniG/NEURObjects



Hidden # Percent error rate on different runs Best Mean Stdev
5 20.97 19.35 16.13 19.35 20.97 16.13 16.13 18.82 2.01
7 11.29 14.52 14.52 11.29 19.35 19.35 11.29 15.05 3.31
9 16.13 17.74 16.13 17.74 17.74 17.74 16.13 17.20 0.76

Table 1 Single MLP results on blended coffees data set.

Hidden # Percent error rate on different runs Best Mean Stdev
20 21.43 23.21 21.43 21.43 21.43 23.21 21.43 22.02 0.84
30 23.21 23.21 21.43 23.21 21.43 23.21 21.43 22.62 0.84
40 25.00 25.00 23.21 23.21 23.21 23.21 23.21 23.81 0.84

Table 2 Single MLP results on monovariety coffees data set.

Hidden # Percent error rate on different runs Best Mean Stdev
5 9.68 11.29 9.68 11.29 11.29 11.29 9.68 10.75 0.83
7 6.45 9.68 9.68 9.68 6.45 9.68 6.45 8.60 1.67
9 11.29 9.68 6.45 9.68 6.45 11.29 6.45 9.14 2.20

Table 3 Boosted MLP results on blended coffees data set.

Hidden # Percent error rate on different runs Best Mean Stdev
20 21.43 21.43 19.64 21.43 19.64 21.43 19.64 20.83 0.92    
30 21.43 17.86 19.64 17.86 19.64 21.43 17.86 19.64 1.60    
40 23.21 17.86 19.64 19.64 23.21 17.86 17.86 20.24 2.44

Table 4  Boosted MLP results on monovariety coffees data set.

A reduction of the percent error rate, both for the average and the minimum error can be
observed also on the monovariety coffee data set (Table 2 and Table 4), but with a remarkably
lower decrement. In this case the average error decreases only from 22.02 to 19.64 and the
minimum error from 21.43 to 17.86.

Figure 1 and Figure 2 show the error rate of the boosted MLP. The error rate on the
training set drops to 0 after about 10 rounds of boosting on the blended coffee data set
(Figure 1), and after about 150 rounds on the monovariety coffee data set (Figure 2). In both
cases an exponential decrement of the error can be observed, according to Freund and
Schapire's theorem stating that the training error exponentially falls to zero incrementing the
number of base learners, given that the weighted error of each base learner is less than 0.5.
Note that the spikes in the error curves are due to the relative small number of examples in
the testing set.

The test error on the blended data set continues to decrease, even after the training
error reaches zero. A similar trend can also be noted in the monovariety data set, even if the
test error lowers more slowly. This fact has been observed also in other cases (3,4) and has



Figure 1 Error curves for boosting MLP on the blended coffees data set. The training and test error
curves of the combined classifiers are represented as a function of the number of rounds of boosting.
The base classifiers are MLP with 7 hidden units.

Figure 2 Error curves for boosting MLP on the monovariety coffees data set. The training and test
error curves of the combined classifiers are represented as a function of the number of rounds of
boosting. The base classifiers are MLP with 30  hidden units.

been explained in the framework of large margin classifiers, interpreting boosting as an
algorithm that enlarges the margins of the training examples (3): even if the training error



reaches zero the boosting algorithm continues to enhance the margins, focusing on the
hardest examples. As a consequence, the generalization capabilities of the boosted ensemble
are improved (3).

The test error error on the monovariety data set decreases slowly compared with the
blended data set and using a less complex MLP as base learner the error remains unchanged
at about 20 % . Moreover, the training error drops to zero only after more than 100 rounds
of boosting. These results on the monovariety coffee data set can be explained by the
presence of outliers. The high values of the weights registered in subsets of the data suggest
that some data are hard learnable, i.e. they are candidates for being outliers (6). In fact the
PCA plot shows that, for one class, a subset of the data is distinctly separated from the
others. This could be related to the fact that, for each class, three carousels of vials were
analyzed. It is possible that for one of these carousels the autosampler’s settings have been
changed.

Boosting enhances classification performances, but it requires training of ensembles
of learning machines, with increasing computational costs. However, we need to perform an
accurate model selection to achieve good results with a single MLP, and this requires an
accurate and time consuming planning of the experimentation, while with boosting also a
weak learner not accurately tuned for a particular problem can achieve good generalization
results. For instance, in the presented experimentation, the worst boosted MLP achieves
better result than the best single MLP, both for blended and monovariety data sets.
Moreover, we can also note that sometimes a remarkable reduction in the test error is
reached even after few iterations of the boosting algorithm (Figure 1), reducing in such a way
the computational cost.

CONCLUSIONS

Boosting improve classification performances of electronic noses, reducing in a significant
way both the minimum and the average testing error on multiple runs of the boosted
ensemble of MLP. Moreover a remarkable reduction of the error is reached even after few
iterations of boosting. Even if boosting achieves its best performances with complex
algorithms such as C4.5 or backpropagation when there is a reasonably large amount of data
available, we have halved the testing error on the blended coffee data set, with only 187
training examples. On the other hand the moderate reduction of the test error achieved on
the monovariety coffee data set can be explained considering that boosting is especially
susceptible to noise and outliers.
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