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Abstract

The problem of clustering is often addressed with techniques based on a Voronoi partition
of the data space. Vector quantization is based on a similar principle, but it is a different
technical problem. We analyze some approaches to the synthesis of a vector quantization
codebook, and their similarities with corresponding clustering algorithms. We outline the
role of fuzzy concepts in these algorithms, both in data representation and in training. Then
we propose an alternative way to use fuzzy concepts as a modeling tool for physical vector
quantization systems, Neural Gas with a fuzzy rank function. We apply this method to the
problem of quality enhancement in lossy compression and reconstruction of images with
vector quantization.
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1 Introduction

The problem of clustering [1] is often addressed with the partitive, centroid-based ap-
proach of thec-Means procedure and many other derived algorithms. In thisapproach
clustering is viewed asfinding the reference vectors (centroids) which best explain the
input data distribution according to some cost criterion. This goal is best achieved with
a small or moderate number of centroids (clusters), to obtain a model for the data under
study which is as simple and understandable as possible.

Vector quantization [2,3] is a different technical problem, which can be stated as follows:
find the reference vectors (codevectors) which approximatewith the minimum error the
input data according to some distortion criterion. Usually the problem is also constrained
by some resource limits. This is the rationale for the so called Rate-Distortion theory. In
this case, the number of codevector is to be maximized withinthe allowed constraints, to
keep distortion as low as possible.
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The typical application of vector quantization is in signaland image processing, although
alternative applications have been proposed [4,5]. Vectorquantization provides a form of
lossy block coding [6], whereby blocks of samples in a sequence or blocks of pixels in
an image, represented as vectors in a suitably dimensioned space, are approximated by
replacing them with a single codevector, selected to minimize a given distortion (quanti-
zation error) measure. Block coding is more efficient than sequential coding. Due to the
higher correlation between nearby samples, in bidimensional signals (images) the tech-
nique is even more effective, and accordingly it is often used in moderate quality, very
low bit rate applications.

In this work, we analyze some approaches to the synthesis of avector quantization code-
book, and their similarities with corresponding clustering algorithms. We outline the role
of fuzzy concepts (such as membership in more than one Voronoi polyhedron) in the per-
formance of these algorithms. Then, we propose an alternative use of the fuzzy paradigm
in the vector quantization training algorithm by Martinetzet al., the “Neural Gas” [7]. The
techniques and concepts discussed will be applied in the proposed formulation of Neural
Gas vector quantizer design.

2 Clustering, vector quantization, and fuzzy concepts

2.1 The goals of clustering and vector quantization

We have outlined some differences between clustering and vector quantization, yet the
synthesis of a codebook for vector quantization is often approached with algorithms de-
rived from c-Means (a standard clustering technique). This is the approach introduced
by Linde, Buzo and Gray [8] and is therefore often referred toas the LBG approach.
One usual feature of the LBG-style techniques with respect to clustering is that, since
vector quantization is typically adopted for large-sized training sets and reference vec-
tor sets, minimization is performed by stochastic gradientdescent (online training) [9]
rather than by batch algorithms. This is because the curse oflocal minima is worsened by
the moderate-to-large dimensionality and larger codebooksize. Stochastic optimization
[10,11] helps escaping local minima by adding errors (due torandom sampling of pat-
terns) to the current estimate of the cost function. Therefore there is a nonzero probability
of taking steps in directions other than that of the “closest” local minimum.

The similarity between the clustering and quantization problems is of a geometrical na-
ture. In both cases, the input space is partitioned by aVoronoi tessellation[12], represent-
ing regions of data sharing similar properties by means of a single reference point or site
or, in the respective jargons of vector quantization and clustering,codevectoror centroid.
Furthermore, in both cases the reference points obey the principle of being the barycenter
of all points included in a given cluster or Voronoi region.

This is a necessary condition for optimality in the case of a squared error measure of
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distortion:

D =
1
n

n

∑
k=1

||xk−Q(xk)||
2 (1)

where the data pointxk is compared to reference pointsy j , j ∈ {1,c} and its nearest
reference point is denoted byQ(xk).

However, there is a distinction in the goal to be achieved. Generally speaking, in clustering
we want to define a cluster as the largest group of data that canbe reasonably gathered in
a single group: clusters should be as few as possible to enable understanding the structure
of data. However, in vector quantization, points in a regionmust be so similar that the
approximation error obtained by substituting these data with the nearest codevector is
negligible. Thus in the case of vector quantization codevectors should be as many as
possible, within the resource limits imposed by the overallsystem design.

2.2 Why fuzzy versions?

When designing a fuzzy algorithm, for instance the fuzzy version of an existing crisp
technique, the technical problems we want to address are different in the case of clustering
and vector quantization.

Several clustering algorithms have been modified in the direction of incorporating fuzzy
concepts (starting with the Fuzzyc-Means algorithm [13]). A review of fuzzy concepts in
clustering is provided in [14,15]. In the large majority of cases, fuzziness means that any
point can belong to more than one cluster, to different degrees.

The introduction of a fuzzy membership has a twofold meaningin clustering. On one
side, data can be partially belonging to more than one cluster, and this has a conceptual
interpretation: it is possible to analyze and quantify whether points are clearly clustered
or there is any ambiguity in cluster attribution. On the other side, fuzziness is a way to
fight local minima during optimization.

In vector quantization, the first aspect is irrelevant, since at the end of training a crisp
decision must always be made. The other aspect is more important, since in the typical
vector quantization application local minima are a seriousissue.

3 Codebook design methods

In the following we briefly review how typical algorithms forthe synthesis or “training” of
vector quantization codebooks introduce fuzzy concepts inthe minimization procedure,
and what is their effect. We will assume thatN training points (individually denoted with
x) of dimensionalityd are used to design a codebook{y1, . . .yc} of c reference points.
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The distorsion assumed is the squared Euclidean distanced j = ||x− y j ||
2 yielding the

squared-error distortion already introduced.

3.1 Lloyd’s and MacQueen’s methods

The classical approach is Lloyd/MacQueen’s method [16,17,8], the standardc-Means
clustering procedure. Thek-th input vector is attributed to the Voronoi polyhedron de-
fined by reference vectory j if u jk = 1, whereu jk is a membership indicator, a crisp
value which is 1 ifd jk = min{d1k, . . . ,dNk} and 0 for all other reference vectors, so that
Q(xk) = ∑c

j=1u jky j . The closest reference vectory j = Q(xk) for a data point wil be called
the “winner” for that point, The updating rule is:

y(t+1)
j =

∑N
k=1 xku jk

∑N
k=1 xk

(2)

This rule defines a minimization by Picard iterations, in which at each step a necessary
minimum condition is satisfied. This algorithm finds the minimum of a cost function
based on the mean square error as a distortion criterion. Itswell-known drawback lies in
the huge number of local minima (for practicald andN).

Note that membership indicatorsu jk obey the following normality condition:

c

∑
j=1

u jk = 1 ∀k∈ {1,n}, (3)

that is, each point can belong only to one cluster.

The on-line version ofc-Means training is due to MacQueen. It transforms the Picard
iteration of the standard version in a stochastic optimization process. Input vectors are
randomly selected, adding noise to the cost function, now optimized on the average. The
updating rule is therefore:

y j = y(t)
j +η(t)u jk

(

xk−y j
)

(4)

wheret indexes the training steps,η(t) is an updating coefficient, andk is a random func-
tion of t.

Convergence is usually much slower, although this may not betrue for very large and
redundant data sets. However, the advantage is that local minima are escaped thanks to the
“statistical” behaviour of the updating procedure, which does not necessarily reduce the
cost at each step and therefore does not necessarily get trapped into sub-optimal basins.

The law for varyingη(t) to ensure convergence (annealing schedule) has been studied
in [18] for the Gibbs sampler. MacQueen [17] adopts an individual coefficient for every
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reference vector, equal to 1/t j wheret j is the number of updates for reference vectory j so
far, thus retaining the exact equivalence between the online and batch versions ofc-means.
Ritteret al.[19] propose instead a faster exponential decay rateη(t) = ηi (ηf/ηi)

t/tmax from
ηi to ηf in tmax steps. This law has been used also in the Neural Gas algorithm.

3.2 Fuzzy c-Means

The most popular algorithm for clustering in the fuzzy framework, the “Fuzzyc-Means”
[13] or “Fuzzy ISODATA” [20], has no direct counterpart in the vector quantization prac-
tice. Here the standard (crisp)c-Means membership is replaced by a fuzzy membership
defined as a function of the point-prototype distance:

u jk =

[

c

∑
l=1

(

d jk

d jl

)1/(m−1)
]−1

(5)

In this case, it turns out that membership values are no longer 0 or 1: we have instead
u jk ∈ [0,1]⊂� ∀ j,k.

The centroids are still computed according to the barycenter principle, although in this
case we have actual weights instead of indicators (binary values):

y(t+1)
j =

∑N
k=1 xku jk

∑N
k=1 xk

(6)

and the memberships still obey the normality condition (3),which in this case it is also
termed “probabilistic constraint” since it makes membership values equivalent to a set of
probabilities for mutually exclusive events.

The parameterm∈ [1,∞] ⊂ � is a fuzziness index which has a direct influence on the
actual values obtained for the memberships. Whenm= 1, the partition is crisp, whereas
for m→∞ the memberships tend to have all the same value of 1/nc. This index may be set
to incorporate a-priori knowledge on the problem, but in theabsence of such knowledge
there is no established way to assess its value, although many approaches are possible
(e.g., by cluster validation).

3.3 Maximum Entropy approach (the Deterministic Annealingmethod)

The maximum entropy approach of the Deterministic Annealing technique by Rose [21]
builds on a different concept. Here a fuzzy membership in clusters is introduced by sub-
stituting the “min” selection criterion, by which a single reference vector is selected for
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updating on a minimum-distance basis, with a “softmin” criterion:

ui =
e−di/β

∑c
j=1e−d j/β (7)

The parameterβ governs the fuzziness of this criterion; forβ → 0 it turns back into the
crisp “min” criterion. The Deterministic Annealing approach is a sequence of minimiza-
tions (made by Picard iterations), withβ decreasing at each minimization. Therefore the
first minimizations are done with a high degree of fuzziness,that is, highβ (with few lo-
cal minima), whereas the last minimizations, withβ → 0, are potentially subject to local
minima, but they take advantage of the good initialization provided by previous steps.

Memberships are again subject to (3), and this is justified inthis case by the explicit
treatment of memberships as formal probabilities. Points are viewed as abstractions of
physical particles. The approach is based on minimization of a cost functional which in-
cludes entropy of the partitions as a cost term, and energy ofpartitions as a constraint. By
gradually lowering energy, a simulated annealing procedure is obtained. However, since
the energy is updated only at convergence of the previous optimization step, the proce-
dure is termed “deterministic annealing”. The fuzziness parameter here is interpretable as
a formal temperature, and it is the responsible for fixing theenergy level of each step.

The specific form of memberships in (7) is derived from necessary conditions for mini-
mum of the cost function just described, with the addition ofthe probabilistic constraint
(3).

3.4 Possibilistic approach

Another popular fuzzy clustering approach which is not commonly used in vector quan-
tization practice is the Possibilistic Approach by Krishnapuram and Keller [22]. We cite
it here for completeness.

In the possibilistic case, a higher level of fuzziness is introduced by relaxing the require-
ment of memberships to all prototypes for each point summingup to 1 (3), which is
enforced in all other methods. This changes considerably the principle of operation of the
method, and is not compatible with vector quantization goals. The possibilistic approach
is aimed at data understanding, featuring robustness properties with respect to outliers
[23].

The memberships in this case are subject to the following setof weak constraints:

u jk ∈ [0,1]∀ j ∀k (8)

0 <
n

∑
k=1

u jk < n ∀ j (9)

∀k ∃ j : u jk > 0 (10)
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which only imply that no cluster be empty and each pattern be assigned to at least one
cluster.

In principle, a point can now be attributed to more than one cluster with a high level of
membership, although additional penalty terms in the cost function may impose a bias
toward the normality condition. However, this is not a hard constraint, and it can be vio-
lated. Therefore it may not be possible to perform a final de-fuzzification of the resulting
memberships, and a single best approximating codevector may not be found.

3.5 The Neural Gas algorithm

The Neural Gas algorithm by Martinetzet al.[7] combines fuzzy membership in partitions
with stochastic minimization. This algorithm has the interesting feature that membership
in a Voronoi polyhedron is not defined as a direct function of the distance from the data
point to the reference vector, as in previously cited methods. Rather, it is a function of its
rank with respect to the list of distances from all referencevectors. Distancedi has the
rankρi in the set{d1, . . . ,dN} when ordered decreasingly with respect to values, and this
value can be written in an algebraic fashion as:

ρi =
c

∑
j=1

θ
(

di −d j
)

(11)

θ(x) is the Heaviside step function, taking on the values 0 forx < 0, 1 forx > 0, and 0.5
for x = 0. This extension is needed in the case of ties, very uncommonif the distances
are real numbers; however this is the standard way to deal with ties in rank tests (such as
Spearman’s rank correlation or Kendall’s rank correlationand coefficient of concordance).
Notice thatρwinner = 0 rather than 1, soρi ∈ {0, . . . ,c−1} ∀i ∈ {1, . . . ,c}.

The membership of the data point to thei-th encoding polyhedron is:

u(x) = e−ρi/λ (12)

whereλ is a parameter which is annealed (made smaller) during training, thereby pro-
gressively reducing the extent to which reference vectors,other than the nearest (the
“winner”), are included in the updating process.

The annealing of the two parameters (λ, influence of prototypes other than the “win-
ner”, and learning coefficient) can be interpreted from the standpoint of learning machine
capacity. When vectors other than the winner get updated a correlation is introduced be-
tween reference vectors, thus effectively reducing the learning capacity of the vector quan-
tizer. As the annealing proceeds, the range of the correlation shrinks gradually, and the
capacity is correspondingly increased; however, at the same time the learning coefficient
is reduced, so that it is progressively more difficult to fallinto local minima. (To relate
vector quantization, an approximation procedure, to the theory of learning capacity it is
necessary to adopt a threshold-based criterion. This analysis is introduced in [24].)
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3.6 Kohonen’s Self-Organizing Maps

In this review, we must also mention Kohonen’s Self Organizing Maps [25], in which
fuzziness is of the same nature as in the Neural Gas technique, that is, in the influence of
non-winners on the update of the winner. This method is neither a clustering algorithm
nor a vector quantization algorithm; it is rather conceivedas a multidimensional scaling
technique, but we cannot avoid mentioning it due to its importance and influence on the
subject, and particularly on many vector quantization algorithms, including Neural Gas
itself.

3.7 Interval Vector Quantization

A different way to include fuzziness into vector quantization is making thecodevectors
themselvesfuzzy. Although adopting this formulation can lead to a computationally inef-
ficient algorithm, this approach can be simplified by representing uncertainty by means
of interval values. This has been done in [26]. Uncertain codevectors can be defuzzified
by applying some additional criterion (for instance, regularity or smoothness of the over-
all reconstructed image), which acts as a constraint and helps obtaining better perceived
quality.

4 Image compression by vector quantization

When performing the specific task of image compression, the most basic procedure is as
follows. The description is for single channels of an RGB image or for gray/level images.
For images encoded according to other formats (e.g. HSV or composite video) there may
be additional processing steps to take advantage of the moremeaningful structure of pixel
representation.

First, the image is split into square blocks of a given size, usually 4, 8, or 16 pixels. Then,
each block is preprocessed to reduce inter-block variability. Usual preprocessings include
subtracting the block average (which will be stored and encoded on its own), trimming the
extreme values to predefined limits (on the basis of the consideration that details in very
light or very dark areas are not as distinguishable as those in the middle of the intensity
range), normalizing the values into a given range.

Each block is finally rasterized, and its linearized versionthus obtained is regarded as a
data vector. Therefore we may have typical vector sizes of 16, 64, or 256 (for 4, 8, and
16 pixel block sizes respectively). These data vectors are compared to codevectors in a
codebook (which is tailored on the specific signal statistics). Each data block is encoded
(approximated) with the best matching vector in the codebook. This results in vector
indexes to be transmitted in place of whole data vectors.
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At this phase, the compression ratio attained is expressed in terms of block size,N, bits
per pixelbp in the original image, and bits per codevector indexbc in the compressed
image:

RVQ =
Nbp

bc
. (13)

Note that, of course,bc = dlog2ce wherec is codebook cardinality, and on the practical
side this mandates the use of numbers of codevectors which are powers of 2 to avoid
wasting code space.

We must add for completeness that there is usually an additional step consisting of channel
encoding (e.g., Huffmann compression), and also the block averages should be transmit-
ted, so that the actual compression ratio is not given simplyby the ratio data size/codebook
index size.

Image reconstruction is performed by retrieving each indexed codevector from the code-
book, for use in place of the image blocks they approximate. Each preprocessing step
should be reversed (e.g., the respective block averages must be summed again to block
values) and the resulting blocks are then displayed.

5 A fuzzy model of the ranking function

5.1 Fuzzy ranks

The performance of the Neural Gas algorithm is remarkably good, as found in previous
research by the present and other authors. This is probably due to the combination of fuzzy
membership, stochastic optimization and robust evaluation through ranking. Therefore it
is not surprising that this algorithm has been used as the basis for improvements [27,28] as
well as hardware implementations [29]. In the case of analoghardware implementations,
other algorithms either perform worse, as we have reviewed,or imply very complex circuit
structures. The Neural Gas seems the best choice in view of this trade-off, also because
the sorting step can be simplified with little performance loss [30].

In a fuzzy perspective, it is more natural to define the relation “larger” among two (con-
ventional) numbers as a degree to which one number is larger than another. We should
mention that the problem of ranking fuzzy quantities has been reviewed for instance by
Bortolan and Degani [31], and, more recently, by Wang and Kerre [32,33]. However, we
are not dealing with fuzzy quantities, but with afuzzy evaluationof crisp quantities. This
approach is reasonable in very common situations such as presence of noise or other un-
certainties in the measure of signals. In this case, two values which are very close cannot
be reliably ranked, and a statement such as “a is larger thanb” is more naturally expressed
in fuzzy terms.
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Fig. 1. Comparing crisp and fuzzy rank functions.

As a numerical illustration, suppose that we are to compare distances in two cases: (a)
d1 = 3 with d2 = 4, and (b)d1 = 3 with d2 = 3.01. Clearly in both case (a) and case (b)
we can rightfully say thatd2 > d1, but it is also clear that in (a) this is “more true” than
in (b). With a given level of uncertainty (for instance due toa given quantity of additive
noise) it is also possible to quantify how much (a) or (b) are “true”.

Therefore, we can make the following substitution:

θ
(

d j −di
)

≈
1

1+e(d j−di)/β (14)

and

1

1+e(d j−di)/β −→
β→0

θ
(

d j −di
)

(15)

so the computation of fuzzy rank can be expressed as

ρ j =
n

∑
i=1, j,i

1

1+e(d j−di)/β (16)

The parameterβ here acts as a fuzzification parameter, such that for largeβ the ranking
function is definitely fuzzy, while forβ = 0 we obtain the original, crisp ranking function.

The two expressions (11) and (16) for the rank functionρ(·) are compared in a simple
example, illustrated in Figure 1, where the following set ofvalues is used:{d,2,3,5}.
The diagram is a plot ofρ(d) (in the two expressions, crisp and fuzzy) ford in the range
[0,7]. Two plots are shown for the fuzzy expression, one forβ = 0.05 and another for
β = 0.25 (smoother).
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Fig. 2. An analog VLSI realization of a vector quantization encoder.

5.2 Implications of fuzzy ranking

Analyzing the diagram in Figure 1, we may gain insight on the effect of fuzzy ranks, as
proposed above.

The main consequence of introducingβ > 0 consists in points which are closer (in terms
of distance) having converging rank values, with the limit for β−→0 being the average
of the two corresponding crisp ranks.

Note that this limit reproduces the usual choice of rank statistics to resolve ties by aver-
aging the ranks, so that, for instance, if we have two data points at ranks 3 and 4 with the
same value, instead of assigning arbitrarily the two points, we should use the rank 3.5 for
both. From this viewpoint, fuzzy ranking represents a generalization of the concept oftie,
whereby with growingβ points are more and more likely to be deemed equal in a fuzzy
sense.

Conversely, the fuzzy ranking scheme does not have any effect of points which are suffi-
ciently far away. When ranks are usedinstead of original valuesto exploit the robustness
inherent in the rank operator, as for instance in rank correlation analysis, the introduction
of fuzzy ranks does not influence points which are sufficiently far away, and only modifies
ranks for points which are close to each other.

The fuzziness parameterβ is related to the desired resolution, in that it establishesa soft
form of thresholding for deciding whether points are close (fuzzy ties) or distant.

5.3 A note about hardware vector quantization

Since the authors have published some works about an implementation of Neural Gas
in analog hardware, based on the VLSI chip shown in Figure 2, we comment about the
implementation of the proposed fuzzy ranking function in the case of analog circuitry.
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Fig. 3. A low-performance operational amplifier implementsan approximate step function.

In analog hardware, when the functions implemented are non-ideal there can be a vari-
able effect on training performances. In particular, the rank function (11) often uses the
Heaviside step as a crisp distance comparison.

The step function in analog hardware is simply built by meansof a saturating ampli-
fier with large gain, which means typically an open-loop operational amplifier. However,
Equation (11) has ac2 space complexity, so circuit topologies should be made veryinex-
pensive in terms of silicon area. This means very simple topologies (typically two stages).
Consequently, the operational amplifier will feature a finite gain which implies a deviation
from the ideal behavior.

The mid-frequency input-output relationship of an operational amplifier is a hyperbolic
tangent saturating (approximately) at the+ and− power voltages.

The fuzzy ranking function described is directly implemented by the op-amp-based cir-
cuitry outlined above. The fuzzification parameter is the inverse of the amplifier gain (the
crisp and fuzzy version coincide for gain→ ∞ or for β → 0). Therefore the fuzzy Neural
Gas is simply a realistic model for the hardware implementation of the algorithm, without
requiring any circuit modification.

6 Fuzzy ranks in image reconstruction

The fuzzy model for the ranking function makes it possible toenhance the reconstruction
step in the process of image compression as described in Section 4. The procedure we are
going to describe is similar to the one introduced in [34], whose main drawback was due
to its crisp nature.
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6.1 Multiple codevectors

When dealing with a limited codebook, it is often the case that blocks cannot be recon-
structed with high accuracy due to the absence of a codevector with sufficiently good
match, i.e., whose appearance is sufficiently similar to theblock to be approximated.

In principle, as done for instance in Singular Vector Decomposition image reconstruction,
this problem could be attenuated if several elementary patterns could be combined to
obtain an output block as their average.

The “Multibest” technique [34] combines a standard vector quantization procedure with
the principle of combining patterns. The outline of the technique is very simple: when
approximating an image, we do not use only the best matching codevector, but the set of
n best matching codevectors.

A combination of these patterns may then be obtained by interpolation of thesen vectors.
There are several possible techniques for performing interpolation, but those which are
more feasible for their efficiency can be simply approximated with codevector averaging.

The main strength of this technique is the ability to represent image blocks which are
considerably different from those used for training, thus making the overall procedure
both more robust with respect to the image set used for codebook training, and more
performing in terms of quality on new images (generalization). The improved quality
can be assessed by objective measures, such as MSE or RMSE, and was experimentally
observed by inspection.

A drawback of the method as originally presented is that codewords to be transmitted or
stored to encode blocks are not simply composed of a single index in the codebook, but
of all n indexes, thus compromising the compression performance ofthe technique. This
problem is related to the fact that the per-block overhead isfixed and equal to the number
of additional indexes required for reconstruction. The compression ratio in this case is

RMB =
Nbp

nbc
. (17)

6.2 Fuzzy combinations of multiple codevectors

The use of fuzzy ranks in Neural Gas codebook design providesa technique to overcome
the fixed overhead problem in the multiple codevector technique.

The procedure is as follows. Letu j(x) be the membership of pattern (image block)x to
Voronoi polyhedron (codevector)y j . As we have seen, Neural Gas defines this quantity
as

u j(x) = e−ρ j/λ. (18)
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Standard Neural Gas has fixed, integer values forρ j , so memberships have the same
values for each pattern (these values are only permuted overcodevectors). In contrast,
Neural Gas with fuzzy ranks have real values forρ j , so that different situations may be
obtained.

In particular, we define a thresholdq so thatall codevectors with membership values over
q are used in reconstruction. The value ofq is in the range [0,1]; it should usually be close
to 1, and the lower the value, the larger the number of codevectors used in reconstruction.

For blocks for which there is a clear best match, the list of codevectors includes only the
best match. However, if more than one codevector has similarmembership (when no good
match is found this will be the case), these are selected for reconstruction.

In this way, the number of codevectors in the multiple best-matching technique is variable
rather than fixed, and compression performance will be improved. The actual improve-
ment, however, cannot be estimated in advance since the number of codevectors needed
for encoding any block is variable with the nature of the image and the codebook.

7 Experimental performance

7.1 Experimental setup

The fuzzy model for the Neural Gas has been tested by comparison with the standard
version on some problems, with both artificial and real datasets:

(1) Centers-only (toy problem, very trivial): place three codevectors on three points. For
initial “consistency checks”.

(2) Centers-plus-noise (toy problem): place three codevectors on a set of points gener-
ated by a superposition of three Gaussians plus 60% random points.

(3) Lena (real dataset). Vector quantization of the standard benchmark image “Lena”,
shown in Figure 4, with codebooks of size 16 and 256.

(4) Four images (real datasets). Vector quantization of more benchmark images, shown
in Figure 5.

(5) Detail quality in reconstruction with the proposed technique, shown in Figure 7.

The training of both algorithms was performed with identical initialization parameters
(scheduling of updating coefficient and of range of influenceof non-winners) and starting
values (prototypes at first iteration).

7.2 Experimental results

The first problem was used to ensure that the training steps were not too different, to
validate the software (written in C). Forβ = 0 the two algorithms are indeed identical.
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Fig. 4. The “Lena” image.

Fig. 5. Four benchmark images (fromhttp://links.uwaterloo.ca/bragzone.base.html).

The second problem highlighted that, for low values ofβ, there are no significant differ-
ences in performance between the two algorithms. In some experiments the fuzzy version
outperformed the standard version, but this is not a typicalbehavior.

The training on the Lena image was a test of these outcomes on areal problem. In Fig-
ure 6 is shown a typical training trace (mean square error versus training steps), put on
a logarithmic scale to compensate for the (approximately) logarithmic decreasing in con-
vergence with time. This shows that the two traces are different, but converge to the same
solution. The thin trace is standard Neural Gas and the thicktrace (only slightly different
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Fig. 6. Trace of mean square error during training on the “Lena” image. (Note that, for ease of
visualization, the x-axis is logarithmic and the y-axis does not start at 0.)

in some locations) is the fuzzy modification.

The four additional images, which are greyscale and are of size 256x256, were used to
confirm the previous results. The images were obtained from the “Waterloo Repertoire”,
available online athttp://links.uwaterloo.ca/bragzone.base.html. Codevector
sizes used are 16, 64 and 256. Results on the concordance of the two methods are outlined
in Table 7.2. For each test, the maximum deviation of the fuzzy version over the standard
version (in percentage of RMS error) is indicated. The final codebooks have always been
found to be equal according to the following definition. Two codebooks A and B are
considered equal if, for any codevector in codebook A, the closest codevector in codebook
B is within a preselected distance threshold. This threshold has to be selected case by case,
taking into account codebook cardinality and making it lessthan the minimum distance
between two codevectors of any codebook.

The remarkable fact that final codebooks were always coincident is a confirmation of
the good properties of the Neural Gas algorithm, which proves to be stable under the
perturbations induced by reasonable values ofβ.

Finally, a quality verification on the “Lena” image was performed to compare the result
of vector quantization compression and multiple codevector reconstruction on a complex
detail (Figure 7, left). Neural Gas training was performed 10 times and the best cross-
validation result was picked, for both the standard and the fuzzy-rank versions of the
algorithm. A test set was obtained by extracting a small percentage of the image blocks
from the training set (these blocks were deleted from the training set and did not take part
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Table 1
Verification of convergence between crisp and fuzzy rankings in Neural Gas training

Test Max. discordance in RMS Error

goldhill 16 0.8%

goldhill 64 0.9%

goldhill 256 1.3%

bridge 16 0.0%

bridge 64 0.5%

bridge 256 0.5%

bird 16 0.2%

bird 64 1.0%

bird 256 2.1%

camera 16 1.7%

camera 64 1.7%

camera 256 1.1%

in Neural Gas training).

Since a 8×8 block size was selected, and the image is 512×512 pixels, 4096 blocks were
obtained, of which 4000 were in the training set and 96 in the test set. These blocks were
selected randomly. This very small percentage was decided because of the small dataset
size.

The value ofβ was also selected by evaluating cross-validation RMSE on this training/test
set split, whereasq was arbitrarily set at 0.9. The codebook size was set at 32, which is
a small value, to obtain lower quality images for which the improvement could be more
easily appreciated.

The result can be observed in Figure 7. The left image is the original detail, an eye from
the “Lena” image. The center image is the result of standard Neural Gas training. The
right image is the result obtained with fuzzy ranks and multiple output vectors.

The main feature appearing from this demonstration is that the proposed technique is able
to create more varied patterns with respect to standard, one-codevector version. Although
this does not imply that the reconstruction is very faithful, both RMSE and visual inspec-
tion confirm the improved quality obtained with the technique.

7.3 Choice of parametersβ and q

The acceptable value ofβ depends linearly on the difference between distances that has
to be resolved. A method to select the acceptableβ can be based on the distribution of the
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Fig. 7. Detail from the “Lena” image: left, original; center, standard VQ reconstruction; right,
multiple-codevector training and reconstruction.

distance differences in the training set. The∆i j ’s are tabulated and sorted; then a given
tolerance is selected (for instance, 1%) and the corresponding quantile is identified on
the table. This corresponds to a given value of∆ and therefore to the required acceptable
value ofβ.

However, to relate the parameter value to actual performance, in general it is probably
better to select it by cross-validation or other empirical procedures based on measuring
the actual reconstruction performance. In the image reconstruction experiments the value
of β has been assessed with this technique.

The value ofq should be left up to the user, since it represents the degree of freedom
which is always present in lossy compression techniques. Itshould be viewed as a “knob”
to be turned for tuning the quality/compression tradeoff tosuit the user’s needs.

8 Conclusion

In this paper we have reviewed some uses of fuzzy concepts in vector quantization train-
ing. We have presented the novel concept of fuzzy ranks and applied it to Neural Gas
codebook design algorithm. The experiments presented shows that, for reasonably cho-
sen uncertainty levels (β), the Neural Gas algorithm is remarkably stable.

The technique has been applied to image reconstruction witha multiple codevector strat-
egy, whereby codevectors to be used are selected according to a threshold over rank val-
ues. This produces a variable overhead strategy for which compression is not easy to
assess in advance, but quality of reconstruction is improved.
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