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Abstract

We present a new learning machine model for classification problems, based on decompositions of
multiclass classification problems in sets of two-class subproblems, assigned to non linear dichotomizers
that learn their task independently of each other. The experimentation performed on classical data sets,
shows that this learning machine model achieves significant performance improvements over MLP, and
previous classifiers models based on decomposition of polychotomies into dichotomies. The theoretical
reasons of the good properties of generalization of the proposed learning machine model are explained in
the framework of the statistical learning theory.
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1 Introduction

Several learning methods implementing inductive principles of empirical risk minimization [4], regularization
[9], structural risk minimization [23], bayesian inference [7], minimum description length [19] have been
proposed to improve generalization capabilities of inductive learning systems.

In classification problems, an interesting approach, based on methods of decomposition of polychotomies
into dichotomies have been studied by Sejnowski and Rosenberg [20], Dietterich et al. [5, 6, 11], Friedman (8],
Mayoraz and Moreira [14, 16].

By these methods, the complexity of the original multi-class classification task (polychotomy) is reduced
trough the decomposition into a set of simpler two-classes classification tasks (dichotomies). The selected
dichotomies are implemented using learning machines able to divide data in two super-classes. In the
reconstruction stage the set od dichotomizers outputs is interpreted as codewords coding the classes, and
the class output is computed using similarity measures.

Single "monolithic" classifiers, such us multi layer perceptrons (MLP) or decision trees [18] produce
classification systems, where each implicit dichotomizer learns in a way dependent of each other [6]. On
one hand this approach limits the accuracy of the dichotomizers, on the other hand, when error correcting
output codes [3] are used, their effectiveness is limited by the dependency among codeword bits.

Systems based on decomposition of polychotomies into dichotomies, with dichotomizers independent but
linear, that we will refer to as Parallel Linear Dichotomizers(PLD) [1], fail in complex classification tasks,
and do not completely exploit the potentialities offered by the decomposition methodologies.

The approach based on Parallel Non-linear Dichotomizers (PND), proposed in this paper, tries to
overcome the problems derived from the dependency and linearity of the dichotomizers. PND learning
machine model is based on decomposition of polychotomies into dichotomies, where each dichotomizer is
independent on each other and non linear.

2  Parallel Non-linear Dichotomizers

Parallel Non-linear Dichotomizers (PND) are composed by different non linear dichotomizers learning dif-
ferent tasks: the global classification problem is decomposed in a series of dichotomic subproblems by a



suitable decomposition scheme and each learning machine learns an individual and specific dichotomic task
using a training set common to all the dichotomizers. The fundamental feature of the dichotomizers we use
is their nonlinearity, that permits a good level of classification accuracy also for complex dichotomization
tasks. The PND can be represented as a vector of learning inductive systems, each one specialized for
a specific dichotomic task. The output of the different dichotomizers is finally recomposed to rebuild the
original polychotomic problem.

The main features of the PND can be summarized in the following way:

a. Decomposition of a polychotomy using an assigned decomposition method.

b. Each dichotomizer learns a single bit of the codeword coding the class. Learning is carried out separately
for each dichotomizer.

c. The decomposition is reassembled using the outputs of the different dichotomizers and the output class
selection is performed using an assigned similarity measure.

Conceptually a PND can be built with different types of dichotomizers.In this experimentation we have
used multi layers perceptrons (MLP). The decomposition of a K classes polychotomy P : X — {C4,...,Ck},
where X is the multidimensional space of attributes and C1, ..., C}, are the labels of the classes, generates a set
of L dichotomizers fi,...., fr,. Each dichotomizer f; subdivides input patterns in two separated superclasses
C and C;, each grouping one or more classes of the K-polychotomy. A decomposition matriz D = [d;x]
of dimension L x K represents in a concise way the decomposition, connecting classes Ci,...,Ck to the
superclasses C;” and C;” identified by each dichotomizer f;:

+1 ifCyccft
dir =2 —1 ifCrCCy
0 ifCy,n(Cruc,)=0

When a polychotomy is decomposed into dichotomies, the task of each dichotomizer f: X — {-1,0,1}
consists in labeling some classes with +1 and others with —1, and in ignoring those classes not belonging to
its classification task (labeling them with 0). Each dichotomizer f; is trained to associate patterns belonging
to class Cy with values d;; of the decomposition matrix D. In the decomposition matrix, rows correspond
to dichotomizers tasks and columns to classes: Each class is univocally determined by its specific codeword.

The set of dichotomizers computes F(z) = [f1(x),. .., fi(x)]- In the reconstruction stage, if the codeword
bounded to the class C;, (1 < i < k) is a vector ¢; € {—1,0, l}l, then the polychotomizer computes the
output class ¢, using L; norm as similarity measure between vectors F(x) and ¢;:

Co = arglg%LnK |F(x) — ¢

3 Experimental results and discussion

For all our experimentations we have used NEURObjects [22], a special software library developed on this
purpose. PND, PLD, and Multi Layer Perceptron (MLP) performances are compared on both synthetic
(available by anonymous ftp at fttp://ftp.disi.unige.it/ftp/pub/person/ValentiniG/data) and real data sets
(from UCI repository of Irvine [15]), using resampling and k-fold cross validation methods [4]. Synthetic
data sets are built using NEURObjects library; each class is associated with one or more clusters of input
data points, and each cluster is sampled from a normal distribution, with assigned center and covariance
matrix.

We have also compared several decomposition schemes for PND and PLD: one per class (OPC), pairwise
coupling with correcting classifiers (CC) [16] [10], error correcting output codes (ECOC) [3] decomposition
by exhaustive algorithms [6] and by BCH algorithms [3]. Experimental results are detailed in [13]. Here we
summarize only the main conclusions.

PND classifiers show an expected error rate significantly lower than PLD and standard and ECOC
MLP classifiers over all data sets (Fig. 1). Better performances of PND are preserved no matter the kind of
decomposition methodology used, and CC and ECOC PND outperfotm OPC PND over all data sets(Fig.
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Figure 1: Minimum expected classification errors for PND, PLD and MLP over different data sets.

2). Moreover, PND classifiers maintain better performances also reducing data set size, and error correcting
output codes result more effective for PND classifiers rather than direct MLP and PLD classifiers.

PND good generalization capabilities can be interpreted from different points of view. Parallel Non-
linear Dichotomizers choose a class using a series of separated dichotomizers. As a committee of neural
networks [17], they carry out a kind of voting [11] [6] distributed over the dichotomizers subtasks. However,
PND use different classifiers working on different dichotomic problems, lowering error bias [11], in a way
similar to different classifiers working on the same problem [21]; moreover the same algorithm is repeated
many times as in homogeneous voting, leading to a reduction of variance [17] [12].

Analyzing error backpropagation during learning we can see that PND dichotomizers learn in a more
specialized way compared with MLP classifiers. Learning of each PND dichotomizer takes place indepen-
dently from other dichotomies and specifically devoted to its proper dichotomic task, while in standard MLP
classifiers, learning of each implicit dichotomizer takes place dependently from each other and not specifically
devoted to its proper dichotomic task, as delta backpropagation terms comes from all output units [2].

In a decomposition of polychotomies into dichotomies, reducing the main classification problem to a set
of two class problems, we get subproblems of lower complexity than the original one.

Vapnik’s statistical learning theory [23] can interpret the generalization capabilities of PND, using prob-
abilistic upper bounds of the expected risk R(w):

P(R(w) < Remp(w) + B(Remp(w),VC,e,n)) >1—¢

where the function interval of confidence ® is monotonic increasing respect to Vapnik-Chervonenkis dimen-
sion VC. The ® function estimates the difference between empirical risk Repmp(w) (training error) and
expected risk R(w), depending on empirical risk itself, Vapnik-Chervonenkis dimension V' C, complementary
of confidence level 1 — € and cardinality of the training set. Assuming that V' C of PND is likely lower than
that of the correspondent MLP classifier, the upper bound of expected risk R(w) for PND is also lower
(supposing equal empirical risk and cardinality of the training set).

Moreover, PND exploit the full potentialities of ECOC codes, as they join independence of dichotomizers
(that is, low correlation among codeword bits) with a good accuracy of their non linear dichotomizers. These
conditions are both necessary for the effectiveness of ECOC codes, mainly in complex classification tasks.
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Figure 2: Performance graphics of MLP compared with PND over UCI repository data sets letter (a)
and optdigits (b). Dotted lines represent graphics of MLP percent expected errors, solid lines graphics of
PND errors.

4 Conclusions

Decomposition of polychotomies into dichotomies improve generalization capabilities of learning systems.
PND, even tough implementing non linear classifiers starting from linear ones, do not show good performances
in case of complex problems, mainly for the linearity of their dichotomizers. Moreover, ECOC decomposition
methodologies are effective if dichotomizers are independent and non linear.

Our experimentation shows that PND improve in a significant way generalization capabilities, joining
decomposition methodologies with non linearity of their dichotomizers. Analysis of bias and variance error,
error backpropagation during learning, and effectiveness of ECOC codes, give the theoretical reasons of
the PND good properties of generalization. In particular, analysis of experimental results agrees with the
theoretical framework of the statistical learning theory. Upper bounds evaluation of expected risk according
to Vapnik’ s statistical theory show that PND have in probability better generalization capabilities respect
to PLD, standard MLP and ECOC MLP classifiers.
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