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Abstract— In this article, we present some re-
sults on the application of fuzzy methods to the
segmentation of multivariate medical images. We
report the results obtained by using the Fuzzy
C-mean (FCM) algorithm by J. Bezdek and the
method by K. Rose, E. Gurewitz and G. Fox (RGF)
based on the Maximum Entropy Principle (MEP)
that avoids any a priori assumption on the num-
ber of classes. In particular we study the effect of
using, for each new epoch of the algorithm, a Re-
duced Data Base (RDB) obtained through an uni-
form random sampling of the original data base.
From our experiments the RGF method shows the
best efficiency in term of reliability of the solutions
while the FCM results faster for big RDBs.

I. INTRODUCTION

In the clinical field, an increasing number of dif-
ferent diagnostic imaging methodologies have been
introduced in the last few years. Nowadays med-
ical images are obtained from different acquisi-
tion modalities, including X-ray tomography (CT),
magnetic resonance imaging (MRI), single photon
emission tomography (SPECT), and positron emis-
sion tomography (PET), each of them carrying
complementary information (both structural and
functional) on biological tissues. The visual in-
spection of a large set of images, as performed by
a physician, permits to exploit only partially the
global information.

It is necessary to build Medical Imaging Sup-
port Decision Systems (MISSD) able to extract the
salient information embedded in the multivariate
medical image, removing redundancies and noise.

In [1], a MISSD devoted to the segmentation

of multivariate medical images was presented. It
is made up by an interactive graphical system
supporting the full analysis sequence: feature ex-
traction, reduction of dimensionality, unsupervised
clustering, voxel classification, and post-processing
refinements. The core of the system was a segmen-
tation technique based on an unsupervised cluster-
ing neural network named ”capture effect” [2].

The limits of the Capture Effect Neural Network
(CENN) are mainly concerned with the difficulty
to obtain good results in problems with high di-
mensionality, while its main merits are the speed
and the reliability in finding the correct solution
of the clustering problem in feature spaces of low
dimensionality. To overcome those limits we are
studying potential benefits in applying fuzzy clus-
tering methods to the segmentation of multivariate
image.

In this article, we present some results obtained
by using the Fuzzy C-mean (FCM) algorithm by J.
Bezdek [3] and the method by K. Rose, E. Gurewitz
and G. Fox (RGF) [4], [5] based on the Maximum
Entropy Principle (MEP) approach [6]. Moreover,
we study the effect of data base sampling obtained
by using for each new epoch of the training algo-
rithm a new Reduced Data Base (RDB) obtained
through an uniform random sampling of the origi-
nal data base.

In the next section, the problem of segmentation
of multivariate images through segmentation in the
feature space is discussed. In Sections III and IV
we introduce the FCM and the RGF algorithms.
In Section V we present the data set. The sam-
pling technique is explained in Section VI. Section
VII presents the obtained results. Conclusions are
given in Section VIII.



II. SEGMENTATION THROUGH
CLUSTERING

Multivariate volumes can be built from a number
of different diagnostic volumes with complemen-
tary information (both structural and functional)
provided by medical imaging technology, for fully
correlating information about the same patient.

An efficient analysis of multivariate medical
imaging volumes is an inherently complex task in
which each component of the data structure, that
is the spatial distribution of the values of a single
feature, must be considered together with all the
other components. Such an analysis may be help-
ful in the clinical oncological environment to de-
lineate volumes to be treated in radiotherapy and
surgery and to assess quantitatively (in terms of
tumor mass or detection of metastases) the effect
of oncological treatments.

All these applications involve the extraction of
objects or other entities of interest from the imag-
ing data, usually by defining sets of voxels with
similar features within the entire multivariate vol-
ume. This task is a possible definition of image
segmentation and is usually accomplished, either
• by methods of edge detection (e.g. gradient

operators), or
• by methods of similarity detection (e.g.

thresholding and region growing techniques).
Actually, volumes of interest in medical imag-

ing are not strictly bounded and the application
of similarity methods to multivariate data is com-
plex and often very time consuming with complex
geometries.

Let us consider a multivariate volume resulting
from the spatial registration of a set of s different
imaging volumes. We may notice that its voxels are
associated to an array of s values, each one rep-
resenting the intensity of a single feature in that
voxel. In other words, the s different intensity val-
ues related to each voxel in such multivariate vol-
umes can be viewed as the coordinates of the voxel
within a s-dimensional feature space where multi-
variate analysis can be made.

Two different spaces have therefore to be con-
sidered for a more complete description of the seg-
mentation problem:
• an image space (usually 3D) defined by the

spatial coordinates of the data set, and
• a multidimensional feature space as described

before.
The principal steps in segmenting of multivariate

volumes is the definition of clusters within the s-
dimensional feature space and the classification of
all the voxels of the volume in the resulting classes.

These two goals can be attained both by supervised
and unsupervised methods.

Supervised methods has been largely employed
in medical imaging segmentation studies but pro-
vide for conditions hardly satisfied in the clinical
environment. First of all, they require the labeling
of prototypical samples needed by the generaliza-
tion process to be applied. Even if the number
of clusters is predefined, careful labeling of voxels
in the training set belonging with certainty to the
different clusters is not trivial especially when con-
cerning multivariate data sets. Moreover, bias can
be introduced by users due to the large inter-user
variability generally observed when manual label-
ing is performed [1].

On the contrary, unsupervised approaches self-
organize the implicit structure of data and make
clustering of the feature space independent from
the user definition of the training regions.

III. THE FUZZY C-MEAN ALGORITHM

Let us assume as a fuzzy C-Means Functional

Jm(U, Y ) =
n∑

k=1

c∑

j=1

(uj,k)mEj(xk) (1)

where
• Ω = {xk|k ∈ [1, n]} is a training set containing

n unlabeled samples;
• Y = {yj |j ∈ [1, c]} is the set of the centers of

clusters;
• Ej(xk) is a dissimilarity measure (distance or

cost) between sample xk and the center yj of
a specific cluster j;

• U = [uj,k] is the c × n fuzzy c-partition ma-
trix, containing the membership values of all
samples to all clusters;

• m ∈ (1,∞) is control parameter of fuzziness.
The clustering problem can be formulated as the

minimization of Jm with respect to Y , under the
normalization

c∑

j=1

uj,k = 1. (2)

The Fuzzy C-Mean (FCM) algorithm found by
Bezdek [3] consists in the iteration of the following
formula:

yj =
∑n

k=1(uj,k)mxk∑n
k=1(uj,k)m

for all j, (3)

with the assumptions: Ej(xk) = ‖xk − yj‖2 and

uj,k =





(∑c
l=1

Ej(xk)
El(xk)

) 2
1−m

if Ej(xk) > 0 ∀j, k;

1 if Ej(xk) = 0 and ul,k = 0 ∀ l 6= j



Fig. 1. NMR images: From the left to the right, T1-, T2- and proton density- weighted MRI data.
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Fig. 2. Three dimensional feature space (down on the right) and its projections onto the three two dimensional spaces.

It is worth to underline that if one chooses m = 1
the fuzzy C-Means Functional Jm (Eq. (1)) reduces
to the expectation of the global error (that we shall
denote as < E >):

< E >=
n∑

k=1

c∑

j=1

uj,kEj(xk), (4)

and the FCM becomes the classic crisp C-Means
algorithm [7].

IV. THE RGF CLUSTERING
ALGORITHM

Let be p(xk) the probability distribution of pat-
terns of the training set Ω, and

H(p(x1), ..., p(xn)) = −K

n∑

k=1

p(xk) ln p(xk)

be the Shannon entropy [8] of Ω. If we maximize H
under the constraints of Eq.s (4) and (2), the mem-



bership functions of samples to clusters are Gibbs
distributions[6]:

p(xk) =
e−βEj(xk)

Zk
,

with

Zk =
c∑

l=1

e−βEl(xk)

being a normalization factor named Partition Func-
tion. From a Statistical Mechanics point of view,
the Lagrange multiplier β is interpreted as the in-
verse of temperature T (β = 1/T ). Moreover, it
can be interpreted as a control parameter of fuzzi-
ness. In fact when β increases, the association of
samples to a clusters become crisper.

In the following we shall use uj,k instead of p(xk),
in order to make explicit the interpretation of β as
a control parameter of fuzziness.

The limit cases are:
• for β → 0+ we have uj,k = 1/c for all j, k,

i.e. each sample is equally associated to each
cluster;

• for β → +∞ we have uj,k = 1 if xk belongs
to the cluster j, and ui,k = 0 for all i 6= j,
i ∈ [1, c], i.e. each sample is associated to only
one cluster (hard-limit).

Let we define the Effective Error (also named the
Free Energy, in analogy with Statistical Mechanics)

F = − 1
β

ln Z, (5)

where Z =
∏

k Zk is named the Total Partition
Function. One can demonstrate that

lim
β→∞

F =< E > (6)

This limit allows us to to find the solution of the
constrained minimization of < E > by performing
a so-called Deterministic Annealing on F , as pro-
posed by Rose, Gurewitz and Fox [4], [5] (see also
[9]). This method (that we name RGF) starts by
minimizing F with a high T , for which there is one
unique solution (uj,k = 1/c for all j, k), and then
reduces T , until the hard-limit is reached.

In the algorithm used here, we assume, as pro-
posed in [4], [5] Ej(xk) = ‖xk − yj‖2, and for each
value of β we performed a minimization of F with
respect to Y , by iterating the following formula:

yj =
∑n

k=1 uj,k xk∑n
k=1 uj,k

for all j, (7)

It worth noting that, while standard clustering
algorithms (included FCM) need to specify the
number of clusters, the RGF can start with a over-
dimensioned number of clusters. For high temper-
atures all centers collapse in a unique point, and
then, during annealing, the ”natural” clusters dif-
ferentiate.

V. EXPERIMENTAL DATA SET

In this paper, the FCM and the RGF fuzzy algo-
rithms were applied to the segmentation of white
matter, gray matter, cerebrospinal fluid, and skull,
using MRI images of the head. In particular, three
volumetric data sets representing T1-, T2-, and
proton density- weighted MRI data of a healthy vol-
unteer have been used (see Fig.1). No corrections
have been made to reduce the inter-slice variability
of image intensity.

As shown in Fig.2, the fusion of data sets pro-
duces a three-variate volume that defines a three-
dimensional feature space. Each triplet of voxel
intensity in the volume is represented by a point
in a 3D feature space, whose coordinates represent
the intensity values in that voxel of each volume
belonging to the multivariate volume.

VI. SAMPLING OF DATA BASE

Our aim is to detect clusters in the feature space
and to use them for segmenting the input images.

By using the full training set originated from our
multivariate image, we obtained a training set con-
sisting of 37620 samples. On a UltraSPARC work-
station the obtained convergence times are about
158 sec for the RGF, and 35 sec for the FCM.

In order to speed-up those algorithms we bor-
rowed from the Capture Effect Neural Network
(CENN) [2] the idea of sampling the training set,
but instead of using the same subset of Ω (Re-
duced Data Base (RDB)) for the whole algorithm,
we randomly re-sample a new RDB for each epoch
of training.

VII. RESULTS AND DISCUSSION

The projections into the two dimensional feature
space (T1 versus PD) of some results of segmen-
tation performed in the 3D space, and the cor-
responding image spaces are shown in Fig.3 and
Fig.4.

Our implementation of FCM used m = 2, while
in the RGF we performed the deterministic anneal-
ing with β ranging from 5 to 245, increasing by
steps of 15 in the range [5, 95], and steps of 25 in
the range (95, 245].



Fig. 3. Segmented T1 versus PD subspace for the optimal solution (on the left) and the second most frequent one in our trials
using the FCM (on the right).

Fig. 4. Optimal segmentation (on the left) and second most frequent one in our trials using the FCM (on the right).

Note that in both method the centers of clusters
Y were initializated at random in the feature space,
while the stop criteria was:

∨

j

(‖yj(t + 1)− yj(t)‖) ≤ .01 j ∈ [1, c],

where t is the iteration index.

In Figure 5 we report some results obtained with
epochs using RDB ranging from 5% to 100% of
the original DB. Each point in the graphs is an
averaged value obtained from 10 experiments.

As shown, the data base re-sampling method
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Fig. 5. Duration and reliability versus size of the RDB. The experiments were performed on an UltraSPARC workstation.

reduces the execution times of the training algo-
rithms (durations), maintaining at the same time
a high segmentation quality of multivariate images.

Moreover, the uncorrelation of data sets used in
each training epoch, produces a regularizating ef-
fect leading to more reliable solutions. In particular
we can notice that, by using an RDB size of 20%,
the RGF shows the optimal segmentation reliabil-
ity (100%), and its durations are acceptable for real
applications.

VIII. CONCLUSIONS

In this article, some results on the application
of fuzzy methods to the segmentation of medical
multivariate images are presented.

The results obtained by using the Fuzzy C-mean
(FCM) algorithm by J. Bezdek and the method by
K. Rose, E. Gurewitz and G. Fox (RGF) are com-
pared. In particular the effect of sampling of data
base is studied.

As shown by our results, this approach reduces
the execution times of the training algorithms,
maintaining in the same time a high segmentation
reliability of multivariate images.
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