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Abstract. Multimodal medical imaging (MMI) volumes can be derived by spatial
correlating intensity distributions from a number of different diagnostic volumes
with complementary information. An unsupervised approach to MMI volumes
segmentation is recommended by many authors. Due to complexity of the data
structure, this kind of segmentation is a very challenging task, whose main step is
clustering in a multidimensional feature space. The partial volume effect
originated by the relatively low resolution of sensors produces borders not strictly
defined between tissues. Therefore memberships of voxels in boundary regions
are intrinsically fuzzy and computer assisted unsupervised fuzzy clustering
methods turns out to be particularly suited to handle the segmentation problem. In
this paper a number of clustering methods (HCM, FCM, MEP-FC, PNFCM) have
been applied to this task and results have been compared.

Keywords. Multimodal medical volumes, segmentation, fuzzy clustering, neuro-
fuzzy possibilistic c-means

1 Introduction

Nowadays, medical images are obtained by many different acquisition modalities,
including X-ray tomography (CT), magnetic resonance imaging (MRI), single
photon emission tomography (SPECT), positron emission tomography (PET),
ultrasounds (US), etc. [10].

Multimodal volumes can be derived from a set of such different diagnostic
volumes carrying complementary information (e.g., both structural and functional)
provided by medical imaging technology, for fully correlating information about
the same patient. The visual inspection of a large set of such volumetric images
permits only partially to the physician to exploit the whole global information.



Therefore, computer-assisted approaches may be helpful in the clinical
oncological environment as support to diagnosis in order to delineate volumes to
be treated by radiotherapy and surgery, and to assess quantitatively (in terms of
tumor mass or detection of metastases) the effect of oncological treatments.

The extraction of such volumes or other entities of interest from imaging data is
named segmentation and is usually performed, in the image space, by defining sets
of voxels with similar features within a whole multimodal volume.

In this paper we present and discuss some clustering algorithms that have been
proposed in the fuzzy set literature, and we apply them to the segmentation of
multimodal medical images (MMIs). In particular we consider the Fuzzy C-Means
(FCM) [2], the Maximum Entropy Principle based Fuzzy Clustering (MEP-FC)
[14], the Possibilistic C-Means (PCM) [7], and a new algorithm named
Possibilistic Neuro-Fuzzy C-Means (PNFCM).

In the next Section we will discuss the application of the fuzzy clustering to the
segmentation of MMI volumes. In Sections 3,4,5,6 we will present the FCM,
MEP-FC, PCM and PNFCM algorithms. In Sections 7 we will present the data set
whereas in Section 8 we will discuss our results. Conclusions are reported in
Section 9.

2 Fuzzy approach to segmentation of multimodal medical
volumes

The segmentation of MMI volumes can be described as the definition of clusters,
in the multimodal feature space, whose points are associated to similar sets of
intensity values in the different images. Let us consider a multimodal volume
resulting from the spatial registration of a set of s different imaging volumes. We
may notice that its voxels are associated with an array of s values, each
representing the intensity of a single feature in a voxel. In other words, the s
different intensity values related to all the voxels in such multimodal volumes can
be viewed as the coordinates of the voxels within an s-dimensional feature space
where multimodal clustering can be performed.

Two different spaces have therefore to be considered for a more complete
description of the segmentation problem: an image space (usually 3D) defined by
the spatial coordinates of the data set, and a multidimensional feature space, as
described before. The interplay between these two spaces results very important in
the task of understanding the data structure. As a consequence, an efficient
segmentation of multimodal medical imaging volumes is an inherently complex
task in which each component of the data structure, that is, the spatial distribution
of the values of a single feature, must be considered together with all the other
components. Such a task may be helpful in the clinical oncological environment to
delineate volumes to be treated by radiotherapy and surgery and to assess
quantitatively (in terms of tumor mass or detection of metastases) the effect of
oncological treatments.

Due to severe drawbacks of supervised segmentation methods, when applied in
clinical practice, an unsupervised approach has been followed in many recent



papers [3,11,12,15,16]. Unsupervised approaches self-organize the implicit
structure of data and make clustering of the feature space independent of the user's
definition of training regions [1] and, finally, the multidimensionality of data is
definitely better exploited.

It is worth noting that unsupervised methods have been shown to be more robust
to noise in discrimination of different tissues than techniques based on edge
detection due to the high noise level, or supervised approaches [3].

In a previous paper [15], we presented an interactive segmentation system
whose core was an unsupervised neural network, named Capture Effect Neural
Network (CENN) [6] (Appendix A). In order to overcome its limits in applications
with high dimensionality features spaces and a non-negligible variability of its
results for classes poorly represented in the data distribution, we have studied
potential benefits of applying fuzzy clustering methods to the segmentation of
multimodal medical images.

Fuzzy clustering methods are potentially very usefully in our case due to some
intrinsic characteristics of the problem of MMI volumes segmentation. In fact, in
medical images, uncertainty is largely embedded in data, due, besides the noise in
acquisition, to partial volume effects. This means that voxel values, especially at
the borders between volumes of interest, correspond to mixtures of different
anatomical tissues, because of the low resolution of sensors. As a consequence,
borders between tissues are not strictly defined and memberships in boundary
regions are intrinsically fuzzy. Moreover the addition of some kind of smoothness
to the voxel classification, through fuzzy clustering methods, may be very helpful
in order to better define surfaces of the anatomical objects described by
segmentation.

3 The Fuzzy C-Means Algorithm

The first algorithm we introduce was proposed by Bezdek [2] as an improvement
of the classic Hard C-Means clustering algorithm [4].

Let us assume as a fuzzy C-Means Functional
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where
[ ]{ }nkxk ,1∈=Ω  is a  training set containing  n unlabeled samples;

[ ]{ }cjyY j ,1∈=  is the set of centers of clusters;

)( kj xE  is a dissimilarity measure (distance or cost) between the sample

kx and the center yj  of a specific cluster j;
U = [ujk] is the c x n fuzzy c-partition matrix, containing the membership
values of all samples in all clusters;

),1( ∞∈m  is a control parameter of fuzziness.



The clustering problem can be defined as the minimization of mJ  with respect
to Y, under the probabilistic constraint:
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The Fuzzy C-Means (FCM) algorithm proposed by Bezdek [2] consists in the
iteration of the following formulas:
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where, in the case of the Euclidean space:
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It is worth noting that if one chooses m = 1 the fuzzy C-Means Functional mJ
(Eq. 1) reduces to the expectation of the global error (which we denote as <E>):
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and the FCM algorithm becomes the classic Hard C-Means algorithm [4].

4 The MEP-FC Algorithm

The Maximum Entropy Principle proposed by Jaynes in the fifties [9] has been
recently applied to fuzzy clustering by Rose, Gurewitz and Fox [13,14].

Let jkp  be the probability distribution of k-th pattern of the training set Ω to j-
th cluster and
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the Shannon entropy [17] of Ω.



By maximizing H under the constraints of Eqs. (6) and (2), the resulting
membership functions of samples in clusters are Gibbs distributions [9]:
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is a normalization factor named Partition Function. From a Statistical Mechanics
point of view, the Lagrange multiplier β is interpreted as the inverse of
temperature T (β=1/T). Moreover, it can be interpreted as a control parameter of
fuzziness. When β increases, the associations of samples with clusters become
crisper.

The limit cases are:
for +→ 0β  we have cu jk 1=  for all j,k, i.e., each sample is equally
associated with each cluster;
for +∞→β  we have 1=jku  if the sample belongs to the cluster j, and

0=iku for all ji ≠ , [ ]ci ,1∈ , i.e., each sample is associated with only one
cluster (hard limit).

Let us define the Effective Error (also named the Free Energy, by analogy to
Statistical Mechanics)
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where ∏=
k kZZ  is named the Total Partition Function.
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This limit allows us to find the solution of the constrained minimization of <E>
by performing a so-called Deterministic Annealing on F, as proposed by Rose,
Gurewitz and  Fox [13,14]. This method, which we name Maximum Entropy
Principle based Fuzzy Clustering (MEP-FC) method, starts by minimizing F at a
high T, for which there is a unique solution cu jk 1= for all j,k, and then reduces
T, until the hard limit  is reached.



In the algorithm used here, we assume, as proposed in [13,14],
2

)( jkkj yxxE −= and for each value of β we perform a minimization of F

with respect to Y by iterating the following formula:
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It is worth noting that, whereas standard clustering algorithms (included the
FCM one) need to specify the number of clusters, the MEP-FC algorithm can start
with an over-dimensioned number of clusters. At high temperatures, all centers
collapse at a unique point, and then, during annealing, "natural" clusters
differentiate.

5 The Possibilistic C-Means algorithm

In the possibilistic approach to clustering proposed by Keller and Krishnapuram
[7,8], the membership function or the degree of typicality of a point in a fuzzy set
(or cluster) is assumed to be absolute. In other words, the degree of typicality does
not depend on the membership values of the same point in other clusters contained
in the problem domain.

By contrast, many clustering approaches impose a probabilistic constraint,
according to which the sum of the membership values of a point in all the clusters
must be equal to one. As a consequence, HCM [4], FCM [2], MEP-FC [13], and
many other clustering methods assuming the probabilistic constraint cannot
generate membership functions whose values can be interpreted as degrees of
typicality.

In [7,8], Krishnapuram and Keller presented two versions of a Possibilistic C-
Means (PCM) algorithm that avoids the assumption of the probabilistic constraint.

The PCM is based on the relaxation of the probabilistic constraint in order to
interpret in a possibilistic sense the membership function or degree of typicality.

Let [ ]{ }nkxk ,1∈=Ω  be the set of unlabeled samples; [ ]{ }cjyY j ,1∈=
be the set of cluster centers (or prototypes); and ][ jkuU = be the fuzzy
membership matrix.

In the PCM, the elements of U  fulfil the following conditions:
[ ] kju jk ,1,0 ∀∈ (14)
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The first Possibilistic C-Means algorithm (PCM-I) proposed by Krishnapuram
and Keller [7] is based on a modification of the objective function of FCM [2]. In
this case, one must supply the values of some parameters such as the fuzzifier
parameter, and others regulating the weight of the spread of membership
functions [7].

In [8], Krishnapuram and Keller proposed a new formulation of Possibilistic C-
Means (PCM-II) based on modification the cost function of the HCM [4] (instead
of the FCM) in order to avoid, in this way, the determination of the fuzzifier
parameter.

The objective function of the PCM-II contains two terms, the first one is the
objective function of the HCM [4], while the second is a regularizing term,
forcing the values ujk to be greatest as possible, in order that  points with a high
degree of typicality with respect to a cluster may have  high ujk values, and  points
not very representative may have low ujk values in all clusters:
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where 
2

)( jkkj yxxE −= is the square of the Euclidean distance, and the

parameter ρj  depends on the distribution  of point in  the j-th cluster.

It is worth noting that if the second term of ),( YUJ  is omitted, the elimination
of the probabilistic constraint leads to a trivial solution of the minimization of the
remaining cost function, that is [ ] kju jk ,1,0 ∀∈ .

If one searches for clusters with similar distribution, ρj could be set to the same
value for each cluster. In general, it is assumed that ρj depends on the average size
and on the shape of the j-th cluster.

As demonstrated by Krishnapuram and Keller [8], the couple ),( YU minimizes
J  under the constraints (14), (15) and (16) only if:
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This theorem provides the conditions needed in order to minimize the cost
function ),( YUJ . Eq.s (18) and (19) can be interpreted as formulas for
recalculating the membership functions and the cluster centers.



A bootstrap clustering algorithm is anyway needed before starting PCM in order
to obtain an initial distribution of prototypes in the feature space and to estimate
some parameters used in the algorithm.

By considering an FCM bootstrap for the PCM, the following definition of ρj  is
initially  used  [7,8]:
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where ),1( +∞∈m  is the fuzzifier parameter used by the FCM, and K is a
proportional parameter. This definition makes ρj proportional to the mean value of
the intracluster distance, and critically depends on the choice of K (in [7] it has
been suggested K = 1).

In a following optional refinement step a second definition of ρj is used:
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where α)( j∏ is the set of points of the j-th cluster whose membership function is

above a given threshold α (α-cut).
This second definition makes ρj as a more robust estimator of the mean value of

the intracluster distance calculated by using points belonging to the α-cut.
The PCM starts from the solutions of the bootstrap clustering algorithm and is

based on two Lloyd-Picard iterations, the first one using Eq. (20), and the second
using Eq. (21) [7].

The use of FCM as a boostrap for the PCM, involves the problem of the
estimation of the K parameter, the fuzzifier parameter m and of the number of
clusters c.  However, sometimes, even if c has been over-dimensioned in FCM,
the following PCM step aggregates close clusters from FCM, characterized by
large distributions of points, in one unique cluster, thus giving rise to a bias if the
FCM is used as a bootstrap for the PCM. We suggest this is due to the fact that
intracluster distances from an algorithm with a probabilistic constraint are used to
calculate membership values for a possibilistic algorithm and this may produce a
misdefinition of the ρjs.

For these reasons we studied a bootstrap for the PCM based on the Capture
Effect Neural Network (CENN) [5] that can find automatically a robust estimation
of the number of natural clusters, and of their centers and radii (see Appendix). In
particular the estimation of radii is a very helpful information that is strictly
related with the intracluster distance [12].



Possibilistic Neuro-Fuzzy C-Means (PNFCM) algorithm

CENN Bootstrap

• train and label the Capture Effect Neural Network;

• obtain c, jρ , and yj0;

• compute U(0) using Eq. (19);

• set the iteration counter to l=0  and the stop parameter ε .

PCM-II Basic Iteration

Repeat

• update the prototypes yj(l+1) using Eq. (18);

• compute U(l+1) using Eq. (19);

• increment l;

Until

ε≤−∨ + l
j

l
jj

yy )1( ;

Merging redundant clusters

• group clusters with distance less than ε10 .

Fig.1 Description of the PNFCM algorithm

In the following Section we describe the application of CENN as a bootstrap for
the PCM in order to obtain a newly defined Possibilistic Neuro-Fuzzy C-Means
algorithm (PNFCM).

6 The Possibilistic Neuro-Fuzzy C-Means algorithm

In our use of CENN as an unsupervised clustering algorithm for the segmentation
problem of multimodal medical images [15] we found some limits of this neural
network in problems with high dimensionality. On the contrary, especially when
the feature space has few dimensions, CENN shows the capability of obtain
automatically a robust extimation of the number of natural clusters c, and of   their



(a) (b) (c)

Fig.2 T1 (a), T2 (b) and PD (c) MRI images with meningioma

centers yj and radii rj, that are related with ρj  (i.e., ρj = f(rj)). This makes CENN
a robust and un-biased bootstrap procedure to be used in conjunction with the
PCM, overcoming the defects of FCM, pointed out in the previous Section.

The description of the application of CENN as a bootstrap algorithm for PCM-II
is presented in Fig.1.

It is worth pointing out that in the PNFCM algorithm the number of clusters c is
not a constraint, but is automatically found in three main steps: the CENN
Bootstrap step is initialized with a very  high-dimensioned value of c and obtains a
first evaluation of the number of natural clusters, the following PCM-II Basic
Iteration draws redundant cluster centers and the last Merging Rule step unifies
clusters with close centers.

7 Data set and feature space

The data set (Fig. 2) consists of a multimodal transverse slice of the head
composed by three different (T1-weighted, T2-weighted, Proton Density) MRI
images of the head of an individual with meningioma. The images are 256 x 256
with 255 gray levels. The tumor is located in the right frontal lobe and appears
bright on the T2-weighted image and dark on the T1-weighted image. A large
amount of edema is surrounding the tumor and appears very bright on the T2-
weighted image. The fusion of the data sets produced a three-variate volume.

Each triplet of voxel intensity in the volume was represented by a point in a 3D
feature space, whose coordinates represented the intensity values in that voxel of
each volume belonging to the multivariate volume. In Fig. 2 the three-dimensional
feature space resulting from this data set is shown. It is worth noting that the
usefulness of segmentation in medical imaging is related to the balance of two
conflicting actions performed during the processing sequence, namely, the
elimination of noise and redundancy from original images and the preservation of
significant information in the segmented image.



Fig.3 Three-dimensional feature space

8 Results and discussion

Starting from previous considerations, let us compare the results produced by the
different clustering algorithms. In order to obtain a more quantitative comparison
between results from the different algorithms, we made an indirect comparison of
the image segmented by each algorithm, with a segmented image accepted by a
pool of skilled clinicians, considered as a reference image.

A quantitative evaluation of the similarity ( testjσ ) of the result of a
segmentation algorithm with the reference segmentation is given by:

refjtestj

refjtestj
testj AA

AA
∪
∩

≡σ  (22)

where Atestj is the area of the j-th class calculated in some test situation and Arefj
is the area of the same j-th class calculated in a reference situation. The similarity
evaluation  for each algorithm and for each class are shown in Table 1.

The number of classes has been imposed to 8 (eight) for the HCM and the FCM
algorithms as it results from the accepted supervised  segmentation.  The MEP-FC
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Fig.4 Segmentation images by HCM (a), FCM (b), MEP-FC (c) and PNFCM (d)
algorithms

Table 1 Similarity evaluations of results by HCM, FCM, MEP-FC and PNFCM
with a supervised reference segmentation performed by skilled experts. Each
value is the average of three independent runs of clustering algorithms

testjσ HCM FCM MEP-FC PNFCM

Tumor .09 .59 .44 .74

Edema .76 .79 .79 .95

Gray matter .53 .69 .68 .76

White matter .77 .50 .83 .94



and the PNFCM algorithms have been supposed to autonomously find the right
number of classes.

Besides quantitative results shown in Table 1 some more clinical considerations
may be helpful in evaluating the different algorithms. With the HCM algorithm
(Fig. 4a) we may notice that edema is correctly evidenced but tumor and gray
matter result as an unique class. Moreover white matter results overestimated. If
the FCM segmentation is performed, results (Fig. 4b) show that tumor is separated
from edema but the separation between tumor and gray matter is partially lost.
Moreover white matter is very noisy defined and results confused with skull. The
MEP-FC algorithm (Fig. 4c) not always finds the right number of classes an
produces an unsatisfactory separation between tumor and gray matter.

As regards the PNFCM algorithm, the application of the CENN neural network
to the data set gives as a result the number c of centroids, their coordinates yj and

their radii rj. In our experiments we found a good evaluation of ρj as D
jj r=ρ

where D is the dimensionality of the feature space. After the neural bootstrap with
CENN, the PCM-II step was performed, using ε = 0.01 as stop parameter and then
the merging method was applied in order to find the final cluster centers. The
CENN algorithm has autonomously found ten classes with some redundancy.  By
applying the PCM-II algorithm to the results of CENN, better results with only
eight classes have been obtained (Fig. 4d) that improve the segmentation of tumor
and edema, while retaining the good performances about gray matter and skull.

In general we may say that the PCM-II algorithm in sequence to CENN
(PNFCM) is able to keep separate in the feature space classes with higher
probability density and therefore with greater degree of typicality and in the
meantime to merge noisy classes in order to obtain a better homogeneity.

We must notice that the convergence times of our fuzzy clustering algorithms
when applied to real multimodal medical volumes result too long to be accepted in
the clinical practice, due to the huge amount of data. Therefore, we studied
possible solutions able to reduce the data set in order to speed up calculation. With
this aim we randomly sampled the training set Ω, but instead of using the same
Reduced Data Base (RDB) for the whole algorithm, we randomly resampled a
new RDB for each training epoch. In Fig. 5 a quantitative comparison is presented
of gray matter segmentation results obtained by HCM, FCM, MEP-FC, and
PNFCM algorithms, with different subsampling percentages, when applied to slice
80 of a healthy patient. The best results are obtained using the PNFCM for wich

refjσ  is above 95% until sampling of 20%, and above 90% until sampling of 10%.

9 Conclusions

In this paper we have presented some fuzzy clustering algorithms, including
HCM, FCM, MEP-FC, PNFCM, and we have compared them in the application to
multimodal medical volumes segmentation.



Fig.5 Quantitative comparison of clustering algorithms with different subsampling
percentages. Each similarity value (%) is the average of three independent runs of
clustering algorithms

The higher performances in the MMI segmentation task obtained by the
PNFCM algorithm with respect to the other clustering techniques studied can be
related to the consistency of the PCM's theoretical basis with the specific features
of medical images. In fact, membership values (degrees of typicality) of voxels in
a particular anatomical tissue (cluster) are characteristic of the tissue and they
should not depend on voxel membership values in other tissues.
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Appendix A: The Capture Effect Neural Network

The Capture Effect Neural Network (CENN) is a self-organizing neural network
able to take into account the local characteristic of the point-distribution (adaptive
resolution clustering). CENN combines standard competitive self-organization of
the weight-vectors with a non-linear mechanism of adaptive local modulation of



receptive fields (RF) of neurons (Capture Effect). The learning of CENN is
composed by two steps:
• Training step where an abundant number of prototypes is used (defined by

their weight vectors and RF dimension) for vector quantization of data;
• Clustering step where prototypes are grouped in order to represent the cluster

distributions.
After learning:

• The distribution of the prototypes in the feature space approaches the optimal
vector quantization scheme of the distribution of input data, i.e. approximates
the mixture probability density function;

• The radial size of the RF of each neuron reaches a stable value which is
strongly related to the spatial density of input data locally around the center of
the RF itself, that is the weight-vector of the neuron.

It is worth noting that the clustering step of CENN gives automatically a robust
estimation of the number c of centroids and of their coordinates yj and radii rj.

 Moreover we can assume that )( jj rf=ρ . As a consequence it seems useful
to use the CENN instead of the FCM as a bootstrap for the PCM.
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