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Genova, and CNISM Genova Research Unit, Via Dodecaneso 35, I-16146 Genova, Italy

* Center for Biotechnology, Temple University, Philadelphia, USA
{hassan.mahmoud|francesco.masulli|stefano.rovetta}@unige.it

Abstract. This paper presents an approach to medical image registration using
a segmentation step segmentation based on Fuzzy C-Means (FCM) clustering
and the Scale Invariant Feature Transform (SIFT) for matching keypoints in seg-
mented regions. To obtain robust segmentation, FCM is applied on feature vec-
tors composed by local information invariant to image scaling and rotation, and
to change in illumination. SIFT is then applied to corresponding regions in ref-
erence and target images, after the application of an alpha-cut. The proposed
registration method is more robust to noise artifacts than standard SIFT. The pa-
per shows also a method for FCM clustering speeding-up based on a dynamic
pyramid approach using low resolution images of increasing size.

1 Introduction

Image registration [13] is the process of aligning images so that corresponding fea-
tures can easily be related. In medical imaging it allows us to extract complementary
information from different modalities, and to compare accurately images from the same
modality [4,10]. Recently, registration has been also applied in image guided surgery
interventions, and in serial imaging analysis for the study of diseases progression.

To achieve image registration, the computer rotates, scales and translates one im-
age (target image) to match another image (reference image). Methods to perform the
registration can be categorized as feature-based, intensity-based, and gradient-based,
although hybrid approaches are possible [13]. In feature-based methods the registration
is based on the correspondence of a small set of salient points, landmarks, or on align-
ment of segmented binary structures in images being registered (e.g., lines, curves or
points matching). These methods are relatively fast, but they are lacking in robustness
of feature extraction and accuracy of feature matching. Furthermore, extracted features
need to be invariant to image deformations. To this aim, because of the noise entailed
in medical images, some preprocessing steps are usually applied to enhance feature
appearance using image gradients and gamma corrections. In particular, the accuracy
of the registration result depends on the quality of the previous region segmentation
procedure.

Medical image segmentation methods are usually based on gray level features (e.g.,
histograms, edges, regions), texture features (e.g., first or higher order statistics, spec-
tral methods) correspondence, or also on model based or atlas based techniques [13,14].



Fig. 1. SIFT feature detection technique.

Recently, artificial neural network methods and clustering techniques have been suc-
cessfully applied [11,9].

In this paper we apply fuzzy clustering to automatically detect robust candidate re-
gions for a registration method based on the Scale Invariant Feature Transform (SIFT) [6]
that is a popular feature-based image registration method matching points using a sim-
ilarity measure.

This paper is organized as follows: The Scale Invariant Feature Transform and
Fuzzy C-Means clustering algorithm are presented in Sect.s 2 and 3; Sect. 4 presents
the proposed FCM–SIFT registration framework; results and discussion are in Sect. 5;
Sect. 6 contains the conclusions.

2 Scale Invariant Feature Transform

In Scale-Invariant Feature Transform (SIFT) [6], robust and salient reference points
(keypoints) of objects are extracted from reference image and from a target image to be
co-registered respect to it. Fig. 1 shows our implementation of SIFT to detect keypoints
from corresponding segmented regions in the reference and target images. The main
steps are:

1. Scale-space extrema detection. In this step we search over all scales and image
locations by using a Difference-of-Gaussian function (DoG) to identify potential
interest points that are invariant to scale and orientation. We compare each pixel
in the DoG images to its eight neighbors at the same scale and nine correspond-
ing neighboring pixels in each of the neighboring scales. If the pixel value is the
maximum or minimum among all compared pixels, it is selected as a candidate



key-point. Specifically, a DoG image D(x, y, σ) is given by:

D(x, y, σ) = L(x, y, kiσ)− L(x, y, kjσ), (1)

where L(x, y, kσ) is the convolution of the original image I(x, y) with the Gaus-
sian kernel

G(x, y, σ) =
1

2πσ2
e−

x2+y2

2σ2 (2)

at scale kσ , i.e.,
L(x, y, kσ) = G(x, y, kσ) ∗ I(x, y) (3)

Note that this first step produces many keypoints.
2. Key-point localization. keypoints are selected using measures of their stability, us-

ing nearby data, scale, and ratio of principal curvatures. This information allows
points to be rejected that have low contrast and are sensitive to noise or poorly
localized along an edge.

3. Orientation assignment. Orientations are then assigned on the basis of local image
gradient directions to each key-point for rotation invariance. SIFT operates on data
transformed to the assigned orientation, scale, and location for each feature, pro-
viding invariance to these transformations. For an image sample L(x, y) at scale σ,
the gradient magnitude, m(x, y), and orientation Θ(x, y), are pre-computed using
pixel differences:

m(x, y) =
√

[(L(x+ 1, y, σ)− L(x− 1, y, σ)]2 + [(L(x, y + 1, σ)− L(x, y − 1, σ)]2

(4)
and

Θ(x, y) = tan−1

(
L(x+ 1, y, σ)− L(x− 1, y, σ)

L(x, y + 1, σ)− L(x, y − 1, σ)

)
(5)

where L(x, y, σ)m is the Gaussian smoothed image.

After applying SIFT on target and reference images we obtain the set of salient
feature points. It is worth noting that the quality of SIFT results, as for other feature-
based methods for registration, is strongly affected by the quality of the previous region
segmentation procedure.

3 Fuzzy C-Means Algorithm

The determination of consistent clusters, i.e., matched segments/regions in the refer-
ence and target images is a main step in SIFT. In [6], clustering is performed by the
generalized Hough transform. In the approach we propose in this paper clustering is
obtained using the Fuzzy C-Means [1] (FCM) clustering algorithm.

The FCM algorithm is aimed to the minimization of the following functional:

Jm(U, Y ) ≡
n∑

i=1

c∑
k=1

(uik)
mEk(xi) (6)



where: X = {x1, x2, . . . , xn} is a data set containing n unlabeled sample points; Y =
{y1, y2, . . . , yc} is the set of the centers of clusters; U = [uik] is the c × n fuzzy c-
partition matrix, containing the membership values of all samples to all m ∈ (1,∞)
is the fuzziness control parameter; Ek(xi) is a dissimilarity measure (distance or cost)
between data point xi and the center yk of a specific cluster k. We use the Euclidean
distance Ek(xi) = ‖xi − yk‖2 as the dissimilarity measure.

The clustering problem can be formulated as the minimization of Jm with respect
to Y , under the normalization constraint

∑c
k=1 uik = 1.

The necessary conditions for minimization of Jm are then:

yk =

∑n
i=1(uik)

mxi∑n
i=1(uik)

m
for all k, (7)

uik =


(∑c

l=1
Ek(xi)
El(xi)

) 2
1−m

if Ek(xi) > 0 ∀k, i;

1 if Ek(xi) = 0 and uil = 0 ∀ l 6= k

(8)

The Fuzzy C-Means algorithm starts with a random initialization of the fuzzy c-
partition matrix U (or of the centroids yk) and then implements a Picard iteration of
Eq.s 7 and 8 until convergence (defined, e.g., as when the change of centroids is smaller
than an assigned threshold).

Note that if one choosesm = 1 the Fuzzy C-Means functional Jm (Eq. (6)) reduces
to the expectation of the K-Means (KM) global error< E >≡

∑n
i=1

∑c
k=1 uikEk(xi),

and the FCM becomes the crisp KM algorithm [15,5,3].

4 Fuzzy C-Means based Scale Invariant Feature Transform

As already stated, in our proposed approach for image registration SIFT operates on the
matched segments (clusters) obtained from FCM. Starting from those segments, SIFT
extracts the matching keypoints in both reference and target images and obtains the
registration parameters able to recover their correspondence.

In order to find robust and reliable clusters, FCM must be performed in a feature
space with features invariant to image scaling and rotation. In our approach, for each
pixel we consider intensity value, spatial location, and neighborhood average intensity
and deviation from the eight surrounding pixels. These features are well localized in
both the spatial and frequency domains (reducing the probability of disruption by oc-
clusion, clutter, or noise), are invariant to image scaling and rotation, and are partially
invariant to moderate changes in illumination and 3D camera viewpoint [2,12,7].

After clustering the two images, we select the minimal volume (fuzzy cardinality)
cluster, corresponding to a region in each image, and then we apply an α-cut, where
α is a threshold selected in the interval [0, 1] that selects pixels with high membership
to cluster. This approach minimizes the search space for finding the correspondence of
keypoints, as it selects the most reliable pixels of the region. Note that, if α = 0 we
get the whole pixels of the segmented region, while if α = 1 we select pixels having
stronger membership to the cluster only, but this sub-set could be empty or could lose



Table 1. The FCM–SIFT registration framework.

1. Image Preprocessing: Adjust threshold gray level enhancement in both target and
reference images and obtain image pyramid.

2. Segment Extraction: Apply FCM on target and reference images with c clusters
and obtain U fuzzy membership matrix.

3. Segment matching:
(a) Calculate cluster volumes from the fuzzy membership matrix U.
(b) Find the minimum volume clusters in both images (which represent the small-

est matched region in the two images) and and extract two reliable segments
from them withan α-cut.

4. Feature matching: Apply SIFT on both segments to extract invariant robust feature
points.

5. Registration:
(a) Infer spatial correspondence between at least two points of extracted matched

feature points in both images.
(b) Extract registration parameters.
(c) Apply spatial transformation on target image.

Table 2. Experiments. For each experiment we report: horizontal translation (Tx), vertical trans-
lation (Ty), rotation degree (R), and scaling factor (S).

Experiment Tx Ty R S

T1 20 20 252 1.0
T2 -30 -30 0 .6
T3 40 0 324 1.3
T4 0 -10 144 .8
T5 -20 -20 120 .7

good key-point candidates. Therefore, we choose the highest value of α that select a
region with a size corresponding to an assigned percentage of the full image.

The steps of the proposed FCM–SIFT registration framework are described in Tab. 1.
At the end of the FCM–SIFT registration, we obtain the registration parameters between
target and reference images (namely, horizontal translation Tx, vertical translation Ty,
rotation angle R, and scaling factor S).

5 Experimental Results and Discussion

We validated our FCM–SIFT registration framework on a sample set of Computer To-
mography (CT) images of the head. The software was developed in Matlab R2009b
under Windows 7 32 bit. The computation time (Time) was evaluated on a laptop with
2.00 GHz dual-core processor and 3.25 GB of RAM. As usual, time is given as a rough
indication only, with the additional caveat that Matlab is inefficient in specific opera-
tions, for instance loops.

The target images where obtained by transforming the original image with a com-
bination of translation, rotation, and anisotropic scaling.
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Fig. 2. Axial CT head plane. (a) From left to right: Reference image, target image, segmented
reference image, and segmented target image. (b) The five clusters obtained from the reference
image. (c) The five clusters obtained from the target image. (d) SIFT matching using the minimal
volume regions, after α-cut.



Axial plane: Tx = −1, Ty = 3, R = −1.7, S = 0.00,
T ime = 18, CC = 0.84, MSE = 31.80

Coronal plane: Tx = 0, Ty = 0, R = −2.73, S = 0.06,
T ime = 52, CC = 0.68, MSE = 35.74

Sagittal plane: Tx = −1, Ty = −1, R = −0.15, S = 0.00
T ime = 24, CC = 0.99, MSE = 7.54

Fig. 3. FCM–SIFT registration results with CT of head on axial, sagittal, and coronal planes.
From left to right: reference, moving, registered, and error images.

Fig. 2 shows the segment extraction on axial head CT slice on reference and tar-
get images using FCM clustering. In Fig. 2a, from left to right, there are the reference
image, the target image, the segmented reference image, and the segmented target im-
age. FCM is performed using a number of clusters c = 5 estimated on the basis of
a-priori experimental knowledge and a fuzzyfication parameter m = 2 . Fig.s 2b and 2c
show the five clusters obtained from reference and target images. After clustering, we
identified in the two images the segments with minimal volumes to be matched. Then
we selected the regions with points with highest memberships by applying the α-cut
thresholding. Finally, we applied the SIFT on this pair of sub-regions. Fig. 2d shows
SIFT matching of salient keypoints of the selected regions.

Fig. 3 illustrates some FCM–SIFT registration results with CT on axial, sagittal, and
coronal planes. For each projection, we report, from left to right, the reference and target



(a)
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Fig. 4. Experiments T1–T5: Running time in seconds (a) and cross correlation between registered
and reference images (b) v.s. threshold α.



Axial plane: Tx = 7, Ty = 7, R = 13.78, S = 0.43,
T ime = 84, CC = 0.05, MSE = 72.86

Coronal plane: Tx = 0, Ty = 1, R = 0.44, S = 0.00,
T ime = 54, CC = 0.42, MSE = 59.20

Sagittal plane: Tx = 1, Ty = 1, R = 3.09, S = 0.11,
T ime = 277, CC = 0.16, MSE = 4.10

Fig. 5. FCM–SIFT registration results with CT of head on axial, sagittal, and coronal planes.
From left to right: reference, target with salt and pepper noise (ν = 0.5), registered, and error
images.



images, the registered image, and the error image defined as the difference between the
reference and the registered image. We show also the values of the cross correlation
(CC), the root mean square error (MSE), the computation time (Time), the value of
threshold of the α-cut, the horizontal translation (Tx), the vertical translation (Ty), the
rotation degree (R), and the scaling factor (S).

In Fig. 4, we report the results of five experiments (T1–T5), using the axial CT of
head illustrated in Fig. 2. The target image is obtained by applying the transformations
shown in Tab. 2. Fig. 4a shows the dependence of running time of the FCM–SIFT
technique on the value of α, that is the threshold of the α-cut. Fig. 4b, in turn, shows
the dependence of the cross correlation (CC) between reference and registered images
obtained using the FCM–SIFT technique on the value of α-cut.

To study the noise robustness of our approach to segmentation, we applied the
FCM–SIFT technique on noisy orthogonal slices in axial, sagittal, and coronal planes,
by adding salt and pepper noise (impulse noise) to the target image. This kind of noise is
typically observed on advanced medical imaging equipments such as CT, MRI (Mag-
netic Resonance Imaging) and PET (Positron Emission Tomography). It appears as
randomly occurring sparse light and dark disturbances in the image (white and black
pixels). Typical sources include flecks of dust inside the camera, or, with digital cam-
eras, faulty CCD (Charge-Coupled Device) image sensors elements.

We compared the results of registration in the presence of salt and pepper noise
using our proposed approach FCM–SIFT, a modified version of our approach using
KM instead of FCM (KM–SIFT), and standard SIFT. In our experiments we notice
that the breakdown point1 for standard SIFT and KM–SIFT is a noise density value
ν = .4, as those methods cannot detect the correspondence between reference and target
images in the presence of a noise density higher than this value, while the breakdown
point of FCM–SIFT is ν = .59. Fig. 5 shows the of FCM–SIFT registration results in
the presence of salt and pepper noise (ν = .50). To increase the breakdown point of
FCM–SIFT we have to increase α; but this is possible until a critical value where the
registration results degrade as we may cut off relevant features.

As shown in Fig. 4a, the average registration time in FCM–SIFT is about 30 sec-
onds, while the average registration time in standard SIFT is about 4 seconds. For speed-
ing up the clustering phase, we have experimented also a dynamic pyramid approach for
clustering, applying FCM on low resolution images of increasing size. This pyramidal
approach to FCM can reduce the average registration time to about 10 seconds.

For speed up the clustering phase, we use a dynamic pyramid approach that allow us
to operate on reduced images instead of original images, thus reducing clustering and
registration times. Then we reconstruct the pyramid and register the original images
after calculating the registration parameters from reduced resampled images obtained
from scale resolution pyramid.

1 We use here this term, borrowed from Robust Statistics [8], as the minimum value of noise
density that makes the SIFT procedure unsuccessfully.



6 Conclusions

Medical image registration procedures allow us to extract complementary information
from different modalities, and to accurately compare images from the same modal-
ity [4,10].

This paper proposes an approach to medical image registration using a segmentation
step segmentation based on Fuzzy C-Means (FCM) clustering [1] and Scale Invariant
Feature Transform (SIFT) [6] for matching keypoints in segmented regions.

It is worth noting that the quality of SIFT results, as for other feature-based methods
for registration, is strongly affected by the quality of the previous region segmentation
procedure. To obtain robust segmentation, we applied FCM feature vectors including
local information invariant to image scaling and rotation, and to change in illumina-
tion [2,12,7].

The paper shows also how to reduce the running time of the clustering step follow-
ing a dynamic pyramid approach applying FCM on low resolution images of increasing
size. The reported speed-up is about three.

Medical images are often corrupted by noise; in particular, salt and pepper noise is
typically observed on advanced medical imaging equipments. The robustness of algo-
rithms with respect to noise is then a major request in medical imaging. From our ex-
perimental results, we can conclude that the proposed FCM–SIFT registration method
is more robust to noise artifacts than standard SIFT and a modified version of our ap-
proach using KM instead of FCM.
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