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Abstract

The classification of 242 measurements in 14 classes is attempted using two differ-
ent classification approaches. Measurements have been performed with a commercial
Electronic Nose comprising 11 chemical sensors on extra-virgin olive oils of 14 dif-
ferent geographical provenances. As we deal with a relatively small data set and a
big number of classes, the classification task is quite demanding. We first tackled the
global classification task using a single MultiLayer Perceptron (MLP), which gave a
misclassification rate of 25%. In order to improve the performance, we studied two
different approaches based on ensembles of learning machines, which decompose the
classification in subtasks. In the first approach, a classification tree was constructed
using a priori knowledge (geographical origin) for the formation of sensible super-
classes (union of single classes). At each classification node we both used MLPs and
SIMCA (soft independent modeling of class analogy). The second approach applies
a learning machine called Parallel Nonlinear Dichotomizers that is based on the
decomposition of a K-classes classification problem in a set of two-classes tasks. A
binary codeword is assigned to each class and each bit is learned by a dichotomizer
(implemented by a dedicated MLP). In the reconstruction stage, a pattern is as-
signed to the class whose codeword is most similar (e.g. in l1 norm) to the output of
the set of dichotomizers. We achieved the best results (misclassification error rate of
about 10%) using a decomposition based on error correcting output codes (ECOC).
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1 Introduction

In the last decade several methods for constructing ensembles (committees) of
learning machines have been developed, which improved the recognition accu-
racy with respect to single classifiers [1; 2]. For example, neural networks show
different results with different initializations due to the randomness inherent
in the training procedure. Instead of selecting the best network and discard-
ing the others, one can combine the networks. Ensemble methods encompass
a wide range of techniques such as ensemble averaging [3; 4], where the out-
puts of different predictors are linearly combined to produce an overall output;
boosting [5; 6; 7] and bagging [8], where the same learning algorithms are used
with subsets of the training examples; mixture of (local) experts [9; 10] where
the outputs of the different predictors are non linearly combined through a
gating network; ensemble constructed by subsets of input features [11], where
each predictor selects a group of the input features.

Different taxonomies have been proposed to help understanding the rationale
of these methods. E.g., Jain et al. [2] group schemes into three main categories
according to their architecture: parallel, cascading and hierarchical. In the par-
allel architecture -which is the most common one-, all individual classifiers are
invoked independently, and their results combined. In the cascading architec-
ture, individual classifiers are invoked in a linear sequence. In the hierarchical
architecture individual classifiers are combined into a structure, which is sim-
ilar to that of a decision tree. In [1], Dietterich further distinguishes between
parallel ensembles, e.g.: some ensembles are trained on different training sub-
sets, others are trained on different subsets of features, still others are trained
with different output codings (i.e. on different problems).

The two methods presented in this paper share the property of decompos-
ing the classification in subtasks assigned to different learning machines. In
engineering this is also known as divide-and-conquer strategy [12]. The first
method is a tree classifier, i.e. it establishes a hierarchy of classifiers. In this
way the space of input data is repeatedly partitioned by a sequence of splits.
The second method -classification by output coding (OC) decomposition- uses
a parallel architecture. It splits a multiclass problem (polychotomy) in a set of
independent two-classes subproblems (dichotomies) and then recomposes the
original classification problem using the outputs of the dichotomizers trained
on each different dichotomy. This is a proper machine learning approach
[13; 14; 15; 16]. In both cases we will use multilayer perceptrons (MLP) as
component classifiers.

The procedure for growing a decision tree has been studied (and automated)
in machine learning by Breiman et al. [17] and Quinlan [18] giving rise re-
spectively to the CART (classification and regression trees) and to the C4.5
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algorithms. Here we will design the tree using a more empirical procedure:
the various splits have been designed by hand using a priori information and
graphical aid. The definite advantages of trees lie in their interpretability and
in the possibility of incorporating a priori knowledge.

The (binary) output coding strategy is a form of voting among multiple hy-
potheses. The effectiveness of OC decomposition depends mainly on the cor-
relation among output errors and on the learning machine implementing the
method [19]. This permits to reduce both the bias and the variance with re-
spect to a single classifier [20].

We will apply these two methods to a dataset produced with an Electronic
Nose (EN). ENs consist of an array of sensors (based on diverse functioning
mechanisms, e.g. thin or thick film semiconductor sensors which change their
conductance when exposed to gases), electronic circuitry, a sampling system
and data analysis software [21]. While the analytical methods developed in the
last 25 years usually first perform a separation of the mixture which constitutes
the aroma in its components and then identify the components by comparing
them with a standard, ENs recognize a fingerprint, that is a global information,
of the samples to be classified. EN are still in a developmental phase, though
several ENs are already on the market.

ENs have already been successfully applied to food evaluation [22]. In particu-
lar, applications to the quality control of edible oil (degradation and rancidity
control) are reported in [23; 24; 25]. In the present contribution we classify 14
different types of virgin olive oil which differ in their geographic provenance,
some of them originating from the same region. The resolving power of the
nose is therefore thoroughly tested.

In presentations dealing with ENs quite often PCA score plots with nicely
clustered data are shown in order to demonstrate the classification ability of
the Nose. Since PCA, in itself, is an unsupervised technique [26, pp 10 and 411],
which in this case just serves to visualize the data, it is assumed that in these
easy cases any classification algorithm, such as Nearest Neighbors Clustering
or Linear Discriminant Analysis (even without preprocessing) could do the real
classification job. In the last decade various kinds of Neural Networks (NN)
have been used for classifying chemical sensor array data, the most common
being MLP [27; 28] and Self Organizing Maps (SOM) followed by a supervised
labeling stage [29; 30]. A detailed account about the use of neural networks in
chemical practice is given by reference [31].
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2 Decomposition methods

2.1 Hierarchical classification

A hierarchical structure is easily represented as a tree, where by convention
the first or root node is displayed on top, connected by successive directional
links or branches to the other nodes. These are similar connected until we
reach the terminal or leaf nodes, each of which is attributed to a different
class. As an example, the tree used for the classification of the 14 oils is shown
in Fig. 1. Each rectangle represents a node with its associated question while
the ellipses are the leaves with the associated class labels. Near to every link
between nodes we see the corresponding superclass.

In the basic implementations of classification trees binary splits are considered,
every split is executed considering the value of just one feature (therefore
decision boundaries are hyperplanes parallel to the feature axes) and the split
is performed which minimizes a cost function -usually the entropy impurity
[32].

Here we followed a more experimental path to the tree construction. We al-
lowed multi-way splits. At each node we first decided the split, i.e. the clas-
sification subtask. Then, starting from all the features, we performed feature
reduction with PCA and then trained a MLP. Regarding the choice of the
split, we propose two types of criteria. The first one makes use of a priori in-
formation about the classes and possibly expresses some ranking in the classi-
fication interest. In our example one could decide to split the classes according
to a geographical criterion: we first decoded to discriminate Italian oils from
the foreign ones. This criterion will in general not be optimal in respect to
the complete classification. A second type of criterion lets the data tell what
the best groupings are. For example one draws the PCA score and looks at
the tendencies in the groupings. A simple example of this is presented in the
next section. This doesn’t rely on a priori knowledge, that means that it is
less straightforward and will require some trial and error, in the spirit of the
supervised cost minimization technique which is normally used.

2.2 Classification by output coding decomposition

Let be a K classes polychotomy(or K-polychotomy) P : X → {C1, . . . , Ck},
where X is the multidimensional space of the features, and C1, . . . , CK are the
labels of the classes. The output coding methods for classification consist of
two parts.
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First, the decomposition of the K-polychotomy generates a set of say L di-
chotomies f1, ..., fL. Each dichotomy fi subdivides the input patterns in two
complementary superclasses C+

i and C−i (i.e., C+
i

⋂ C−i = ∅, ∀i), each of them
aggregating one or more classes of the K-polychotomy. By this approach the
K classes to be discriminated are univocally labeled through K binary strings
called codewords.

In Tab. 1 we show as example the coding scheme for a 4-polychotomy which
makes use of the minimal decomposition that generates I = dlog2 Ke di-
chotomies.

A decomposition matrix D = [dik], of dimension L × K, represents the de-
composition, and connects classes C1, . . . , Ck to the superclasses C+

i and C−i
identified by each dichotomy. An element of D is defined as:

dik =





+1 if Ck ⊆ C+
i

−1 if Ck ⊆ C−i

In a decomposition matrix, rows correspond to dichotomizers tasks and columns
to classes. In this way, each class is univocally determined by its specific code-
word. The decomposition matrix associated to the minimal decomposition
scheme for a 4-polychotomy shown in Tab. 1 is




+1 +1 −1 −1

+1 −1 +1 −1


 (1)

The second part of the method is the Decision or Recomposition that assigns
the pattern to the class whose codeword is most similar to the output of the
set of dichotomizers:

class = arg maxk(sim(f̂(x), ck)) ∀k = 1, ..., K (2)

where ck is the codeword of class Ck and sim is a similarity measure than
can be based on the Hamming distance for dichotomizers with discrete val-
ued outputs, and on inner product, L1, or L2 norms for dichotomizers with
continuous valued outputs.

For simplicity, let us think at learning machines with discrete outputs ±1. In
the case of minimal decomposition, then, the pattern is trivially assigned to
the class whose codeword is exactly equal to the output of the dichotomizers.
The drawback of this coding scheme is that as soon as a dichotomizer gives a
wrong output the class is wrongly predicted. To reduce this possibility longer
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(redundant) encodings were introduced. In fact, the error recovering ability
of a decomposition scheme is linked to the maximum column (codewords)
separation. The maximal number of errors (due to wrong dichotomies) that
can be corrected is, in the worst case (all errors on differing bits of the nearest
codewords),

MaxNE =
⌊
∆D − 1

2

⌋
(3)

where ∆D is the minimal Hamming distance between pair of columns in the
decomposition matrix D. One cannot simply add bits to the output codes:
apart from computational limitations which arise for too long codes, it is not
difficult to see that for k classes there can be at most be 2k−1 − 1 different
dichotomies [14].

There are many possibilities for decomposing a polychotomy into dichotomies
[14; 15]. The more popular is the One-Per-Class (OPC) decomposition scheme
[33]: each dichotomizer fi has to separate a single class from all the others.
As a consequence, for K classes we will use K dichotomizers. The Hamming
distance between any two codewords is two, so the the one-per-class encoding
of any number of classes cannot correct any errors. In passing, note that
this coding scheme is usually implemented with MLPs. Apart from the a
priopri bad error recovering capability of the code, in the case of MLP the
dichotomizers are not independent (parallel). Therefore one does not have the
main benefit of ensembles of learning machines.

In the experiments presented in this paper, we compared two efficient decom-
position schemes, namely the Correcting Classifiers (CC) that is a variant of
the PairWise Coupling (PWC) decomposition scheme [34] and the (ECOC)
decomposition scheme [14]. The Correcting Classifiers (CC) scheme is defined
by the decomposition matrix:

dik =





+1 if Ck ⊂ C+
i

−1 if Ck ⊂ C−i

where the superclasses C+
i are composed by pairs of classes and C−i are their

complementary superclasses, i.e. C−i = C−C+
i , where C is the set of all classes.

Hence we have K(K−1)
2

different dichotomies.

The ECOC decomposition scheme is based on the application of Error Cor-
recting Output Codes in the generation of classes codewords. ECOC decompo-
sition tries to maximize error recovering capabilities through the maximization
of the minimum distance between each couple of codewords. Dietterich and
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Bakiri [14] employed different methods to construct Error Correcting Output
Codes depending on the number of classes k.

3 Experimental

3.1 The Electronic Nose measurements

In this work a Fox3000 (Alpha M.O.S., Toulouse, France) has been employed.
This is a bench-top instrument comprising arrays of 12 MOS sensors placed
in two chambers which are connected in series. For this application seven
sensors from Alpha M.O.S. and five from Figaro have been selected. The arrays
are modular plug-in devices and can be exchanged depending on the type of
vapour to be sensed.

Samples of virgin olive oil were prepared by adsorbing 100 mL of each olive oil
on filter paper, then sealed into vials for 8 hours before headspace analysis. To
increase the volatility of the aromatic compound, samples were thermostated
at 37◦C before the measurement.

The headspace of the olive oil to be analysed is stripped from the sample vial
by the carrier gas and drawn over the sensors at a controlled rate. A flow
of 300 mL/min of saturated humidified (17± 1g/m3) chromatographic air at
25◦C was employed. The response to a step of headspace is recorded. The
injection time was set to be as short as 5 sec, in order to contaminate the
sensor the least possible, and acquisition time to 120 sec, followed by a 400
sec equilibration period before the following sample.

Virgin olive oil samples of 14 different cultivar from different geographic zone
were analysed: 7 Italian (between them 5 from Puglia and 2 from Liguria)
and 7 foreign 1 . A total of 242 measurements were performed and calibrated
against a standard to counteract drift.

3.2 Implementation of the decompositive methods

First we selected the curve features. We restricted ourselves to two choices:
the difference between maximum response and baseline value and a set of
five parameters characterizing the dynamic response of the sensor (such as
the maximum derivative obtained after smoothing the derivative). This two

1 The samples were provided by ”ISMAR Chimica Genova”
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choices resulted in comparable performances and therefore we used the dif-
ference feature. Further we didn’t notice any significant difference between
scaling to unit variance, to the interval [-1,1] or not scaling at all.

To reduce the noise and the collinearity present in 12 features we made use
of PCA [35; 36]. That is, the new variables which serve as input to the ANN
are the projections of the original data on the first PCs. The data were di-
vided in training and validation set prior to the preprocessing –consisting of
normalization and PCA– since the preprocessing itself is part of the training
procedure.

Circa 1/5 of patterns have been used for testing the classifiers. The same
division in training and test data has been used for the hierarchical and for
the output coding approach to permit the comparison of the results.

For the classification tree approach a Matlab toolbox has been developed which
permits to test the dependence of the error on the following points (and con-
sequently to minimize the error).

(1) The number of inputs, i.e. the number of principal components on which
to project the data.

(2) The learning procedure. To eliminate overfitting we tried both early stop-
ping –dividing the data set in training, validation and test– and weight
decay regularization [37]. In both cases the Levenberg-Marquardt algo-
rithm was used to minimize the error function. Results were comparable,
the early stopping training being faster. In early stopping there was no
significant difference between the validation error and the test error. This
is not obvious because the validation set is used to stop the training and
therefore the validation error could underestimate the generalization er-
ror as calculated on the test set. In this case therefore the partitioning of
the data set in three sets was too conservative.

(3) The classification criterion of the network outputs. The ”winner takes
all” criterion was adopted because there had not been any advantage in
defining a doubt class.

Ten initializations are used for every topology and the best net is held.

It can be worth noting that there does not seem to be a need to constrain the
number of weights if one is only interested in having a good misclassification
error on the test set. This despite the frequent use of heuristics constraining
the ratio between networks weights and available training data. The learning
procedures proposed in point 2 already take care of avoiding overfitting. After
an optimal minimal network complexity has been reached, for both learning
methods the test error doesn’t change by increasing the network size [38],
[39, pages 5-37ff]. Sarle [38] claims that the best way to use early stopping
–at least as far as overfitting is concerned (training times will grow)– is to
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choose a number of weights much bigger than the number of patterns; the
early stopping procedure prevents the overfitting of the training data. In fact,
in the application proposed in the next chapter it happens that the smallest
misclassification is achieved (on the test set) when the number of weights
is bigger (but not much bigger) than the number of measurements, see e.g.
second line in Table 2.

As for the output coding method, we have tackled the overall classification
problem using an ensemble of Multiple Input Single Output (MISO) MLPs
that we call Parallel Non-linear Dichotomizers (PND) [19; 16]. The decom-
position unit of the PND is implemented by a set of one hidden layer MLP,
considering two decomposition schemes, Correcting Classifiers (CC) [34], and
Error Correcting Output Coding (ECOC) [14], and the decision unit uses an
L1 norm distance for selecting the class. All the experimentation on the overall
data set has been performed using NEURObjects [40], a set of library classes
for neural networks development. The generation of ECOC codes was per-
formed using a modification of the BCH algorithm [41], in order to adapt it to
classification tasks. For this experiment, model selection has been performed
varying the number of hidden units and the learning rate of the backpropa-
gation algorithm. As stopping criteria of the learning algorithm we have used
different levels of the normalized RMS error approximating the misclassifica-
tion error and the number of iterations. For each learning machine the training
and the test stage has been repeated five times with different pseudo-random
initialization of the weights.

4 Results and discussion

In order to get a preliminary idea of the distribution of the data, a PCA score
plot of all 14 oils was drawn. As can be seen in Fig. 2 the groups are confused;
no nice spontaneous clustering is there to help in the classification.

First a ”brute force” classification method was tried: all the 14 oils were consid-
ered as distinct outputs of the MLP. That is the oils were directly partitioned
in 14 classes. This causes the network to have a big number of weights and
consequently long training times, more than 1h on a Pentium II. The classi-
fication procedure still consists in PCA + MLP. We found out the best net
incorrectly classified 12 out 49 test patterns (75,5% classification rate). With
SIMCA this worsened to 18 out of 49.

Since these results were not satisfying, the second approach was building a
classification tree leading from coarse to fine resolution as described in Fig 1.
The results are summarized in Table 2. The tree has not been optimized to be
the best possible tree (i.e the one giving smallest misclassification error); in
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fact looking at the scores distribution in Fig. 2 a different first level division
would seem more effective. We also tried to divide all the Italian oils at a
time (as for the foreign ones) but the results were indeed not good. The tree
testing does not give the overall classification rate but just the rate for the
subtasks. A (pessimistic) estimate of the classification rate for every class is
simply derived by multiplying the classification rates as the pattern descends
the tree. E.g. for an oil from Liguria we have 47/49 (Italian-foreign step) x
111/111 (Liguria-Puglia step) x 32/32 (Lig1-Lig2 step) = 96%.

Some comments to the results of Table 2 may be appropriate:

(1) PCA+ANN outperform the more simple SIMCA. This is no surprise since
the first method is more flexible. One should decide if simplicity of in-
terpretation is more important than a certain error reduction. Nothing
hinders using both methods and establishing a criterion to solve conflicts.

(2) The classification performance for Puglia oils is not as good as the others.
In cases like this, one can decide whether to accept the error or further
subdivide the problem. In Figure 3 we see that there is a certain distinc-
tion between oils 1,3,5 on the upper side and 2,4 on the lower. With these
two super-classes as output of the MLP we had a correct classification
of 17 test data out of 17 with a 3-7-2 network, both with early stopping
and a division in three set and with regularisation.

(3) Although 3 PCs usually contain more then 95% of the variance, we see
that in some cases it is better to hold more components. One possible
reason is that the first PC, in spite of accounting for a great part of
the variability in the data set is not important for classification. In fact
in Figure 3 we see that it is the second component which distinguishes
between the two super-classes; the variance in the first PC could be due
to drift with the same effect on all the classes. In this cases the first PC
could be left out from the MLP inputs. This point shows that in complex
problems PCA, being linear and not supervised, should be used only to
remove noise and redundancy (correlation).

Fig. 4 shows the performances of PND CC and PND ECOC on the considered
data set. The error bars (standard deviation) and the average refer to the
distribution over the weight initializations. PND CC achieves a predicted
average error rate of about 20%, with a lower variance and with a reduced
number of hidden units (for every PND component classifier) with respect to
MLP. PND ECOC shows the best results with only 4 hidden units with an
average misclassification error of about 12%.

We can observe that PND ECOC largely outperforms MLP and PND CC.
The error on the best classifier drops from 25% of a single MLP to 10%.
The confusion matrix obtained for the best ECOC classifier (15 bit code) is
displayed in Table 3. The error recovering capabilities of ECOC codes [14;

10



19] and the independence among the dichotomizers [16] explain the good
performances of PND ECOC ensembles of learning machines.

From Table 3 the results on specific subtasks can be extracted by adding
the number of misclassified patterns for every class contained in a certain
super-class. In Table 4 we present the results obtained for the same subtasks
performed by the classification tree, see Table 2 for comparison. On these
subtasks the two decomposition methods give similar results. Note anyway
that the PND ECOC has been trained over the complete classification task
and would have reasonably obtained even better results on the subtasks if it
were directly trained on them.

5 Conclusions

A commercially relevant problem has been tackled with an EN. This repre-
sented a hard classification problem given the big number of classes and the
relatively small number of examples. PCA and MLP are not effective in this
case. The classification rate has been enhanced using two ensemble of classi-
fiers, both based on the decomposition of the classification in subtasks. The
tree, being interpreTable and having the possibility of incorporating a pri-
ori knowledge, is more profiTable in experimental fields. The recent machine
learning literature studies ensembles of parallel classifiers which have been
shown to improve the recognition accuracy, as it was the case in this paper.
The error on the best classifier drops from 25% of a single MLP to circa 10%
with these methods.

More datasets are indeed needed to validate this classification methods. Still
other ensembles methods (e.g. boosting) can be explored to enhance the ac-
curacy of chemical data classification.
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Figure captions

Figure 1: The three level tree used for the oil classification.
Figure 2: Score plot considering all 14 oils at a time. The thickness of the marks

divides Italian from foreign oils.
Figure 3: Score plot of the Puglia oils: the second PC distinguishes between a class

formed by two oils and one formed by three. A hand drawn boundary is
shown.

Figure 4: Compared error rates among PND CC (top) and PND ECOC (bottom)
learning machines on the overall data set.
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Table captions

Table 1: Minimal decomposition scheme for a 4 classes classification problem.
Table 2: Results of the hierarchical procedure.
Table 3: Confusion matrix for the best ECOC PND classifier.
Table 4: Results on specific subtasks obtained with the best ECOC PND classifier

(for comparison with tab 2).

16



1-7 8-14

13-14

8 9 10 11 12 13 14

321

Which foreign oil?

Italian or foreign?

Puglia or Liguria?

Which Puglia oil? Which Liguria oil?

4 5 6 7

8-12

Figure 1.

17



−8 −6 −4 −2 0 2 4 6 8 10
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
PCA all classes

PC1  [87.425% ]

P
C

2 
 [7

.9
23

5%
 ]

turkey   
andalusia
borjas   
toledo   
tunisia  
creta    
kalamata 
borzon.  
lopetuso 
lecce    
gargano  
cavi     
carato   
aldino   

Figure 2.

18



−6 −4 −2 0 2 4 6 8
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
Puglia Oils

PC 1 [90.7885% ]

P
C

 2
 [6

.5
76

9%
 ]

oil 1 
oil 2 
oil 3 
oil 4 
oil 5 

Figure 3.

19



(b)

0

5

10

15

20

25

30

35

40

4 5 6

Pe
rc

en
t e

rr
or

 r
at

e

Number of hidden units

PND CC

average results

best results

(c)

0

5

10

15

20

25

30

35

40

4 5 6

Pe
rc

en
t e

rr
or

 r
at

e

Number of hidden units

PND ECOC

best results

average results

Figure 4.

20



Class codewords

Dichotomies C1 C2 C3 C4

f1 +1 +1 -1 -1

f2 +1 -1 +1 -1

Table 1
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Subtasks (To-
tal number of
patterns)

Best net Correctly vs Mis-
classified patterns
(NN)

Correctly vs Mis-
classified patterns
(SIMCA)

Italian-Foreign
(242)

7-8-2 47 - 2 42 - 7

Intra Foreign
(131)

7-10-7 26 - 3 24 - 5

Liguria-Puglia
(111)

5-8-2 23 - 0 20 - 3

Lig1-Lig2 (32) 3-4-2 7 - 0 4 - 3

Intra Puglia (79) 5-4-5 15 - 3 13 - 5

Table 2
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True class
3 0 0 0 0 0 0 0 0 0 0 0 0 0

0 4 0 0 0 0 0 0 0 1 0 0 0 0

0 0 2 0 0 0 0 0 0 0 0 0 0 0

1 0 1 3 0 0 0 0 0 0 1 0 0 0

0 0 0 0 4 0 0 0 0 0 0 0 0 0

0 0 1 0 0 5 0 0 0 0 0 0 0 0

0 0 0 0 0 0 3 0 0 0 0 0 0 0

0 0 0 0 0 0 0 2 0 0 0 0 0 0

0 0 0 0 0 0 0 0 2 0 0 0 0 0

0 0 0 0 0 0 0 0 0 2 0 0 0 0

0 0 0 0 0 0 0 0 0 0 2 0 0 0

0 0 0 0 0 0 0 0 0 0 0 4 0 0

0 0 0 0 0 0 0 0 0 0 0 0 5 0

0 0 0 0 0 0 0 0 0 0 0 0 0 3

Table 3
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Subtasks Correctly vs Mis-
classified patterns

Percentage error

Italian-Foreign 48 - 1 2.0

Intra Foreign 26 - 3 11.1

Liguria - Puglia 21 - 2 9.2

Intra Liguria 7 - 0 0.0

Intra Puglia 16 - 2 12.5

Table 4
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