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1 Introduction

The treatment of huge amounts of data delivered by high-throughput bio-

technologies requires on one hand advanced data management procedures for

an efficient storage and retrieval of biological information [1], and on the other

hand refined methods to extract and model biological knowledge from the

data [2].

Computational intelligence (CI) and machine learning (ML) methods are widely

applied to the extraction of biological knowledge from bio-molecular data [3,4],

in order to obtain models to both represent biological knowledge and to predict

the characteristics of biological systems.
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It is worth noting that a well-known machine learning algorithm (namely, the

perceptron, inspired to the behaviour of a neuronal cell [5]), has just been

applied to bioinformatics in the eighties to distinguish translation initiation

sites in prokaryotic organisms [6], and starting from this early application, a

growing number of computational intelligence and machine learning methods

has been applied and often developed to deal with a wide range of bioinfor-

matics problems in genomics, proteomics, gene expression analysis, biological

evolution, systems biology, and other relevant bioinformatics domains.

Genomics studies biological sequences at genome level. CI and ML methods

have been applied to the reconstruction and sequencing of entire genomes [7,8],

to the extraction and identification of the structure of genes [9,10], to the

identification and analysis of regulatory non coding DNA elements [11,12],

to the genome-wide identification of genes involved in genetic diseases [13],

to the prediction of phenotypic effects of non synonymous single nucleotide

polymorphisms [14], to identify RNA structural elements [15], to model hap-

lotype blocks [16], to splice site prediction [17], to the detection of gene to

gene interactions in studies of human diseases [18], to multiple alignment of

bio-sequences in phylogenomics [31], and to many other relevant genomics

problems.

In proteomics the main problem of the prediction of the secondary and ter-

tiary structure of proteins represent one of the main challenges for CI and ML

methods in bioinformatics [19]. Another key problem in proteomics (and in

genomics too) is the prediction of the functions of the proteins and genes: the

large scale sequencing programs make available sequences of entire genomes

of several organisms, but besides the identification of genes, we need to under-

stand their properties and the functions of the corresponding proteins [20,21].

Many other problems in proteomics have been formalized as machine learning

problems, such as fold recognition [22], the prediction of contact maps [23],

and protein subcellular localization [24].

Gene expression data analysis and in particular transcriptomics is another

well-established bioinformatics domain where CI and ML methods have been

widely applied, providing significant results in several fields of molecular biol-
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ogy and medicine [25,26]. Three kinds of problems have been mainly studied

within the community of bioinformaticians for answering three basic ques-

tions [27]: a) Class prediction, that is the determination of the functional

state of a cell or tissue through the expression level of its genes [28,29]; b)

Gene selection: the identification of genes correlated to the functional state

under investigation [4]; c) Class discovery: analysis of the groups (clusters) of

co-expressed and functionally correlated genes/examples [30].

Systems biology is an emerging bioinformatics area [32] where ML and CI tech-

niques play a central role. Indeed modeling biological processes inside cells,

and more in general biological systems, require the development of mathe-

matical models and learning methods to fit the models to biological data. In

particular, probabilistic graphical models have been widely applied to model

biological networks [33], ranging from genetic [34] to metabolic [35] and signal

transduction networks [36].

In other relevant bioinformatics and bioinformatics-related areas, such as biomed-

ical image analysis, ML and CI methods have been successfully developed and

applied, but of course a thorough overview of this so wide and growing research

area is far beyond the scope of this editorial.

2 Special issue contents

The special issue presents 13 papers with contributions coming from diverse

areas of machine learning and computational intelligence methods for bioin-

formatics. The papers have been selected after extensive reviews and revisions,

starting from about 50 papers submitted to the Fourth International Meeting

on Computational Intelligence methods for Bioinformatics and Biostatistics

(CIBB 2007) that was held in Portofino Vetta, Ruta di Camogli (Italy) in

July 2007 in the framework of the activities of the Special Interest Group in

Bioinformatics of the International Neural Network Society. The main goal of

CIBB meetings is to provide a forum open to researchers from different dis-

ciplines to present and discuss problems relative to computational techniques

in bioinformatics and medical informatics with a particular focus on machine
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learning and computational intelligence methods.

The papers of this special issue embrace a wide range of bioinformatics areas.

In a glance, the papers are subdivided in three main groups, according to three

of the main general bioinformatics domains: genomics, transcriptomics and

proteomics. Even if for some papers this subdivision is quite schematic (indeed

several research areas embrace different bioinformatics domains), we follow

this broad taxonomy according to the main subdivisions of bioinformatics

research areas adopted by machine learning and computational intelligence

communities [3,4].

The opening paper is the extended version of the Joaquin Dopazo invited talk

at CIBB 2007 and provides a general overview of a new research line in func-

tional genomics. Dopazo’s paper is included in the genomics section, but con-

sidering its wide-ranging domain, it could be included in the transcriptomics

section as well.

2.1 Genomics

Joaquin Dopazo [37] provides a thorough critical dissertation on the hypothe-

sis formulation and testing in functional genomics, introducing new perspec-

tives for the development of computational methods that relate the available

genomic information with the hypotheses that originated the experiments.

In this paper the author reviews the main characteristics of functional en-

richment methods, by which we can find if gene modules, that is groups of

genes related by some related biological property (e.g. Gene Ontology func-

tional modules [38] or KEGG pathways [39]), are significantly overrepresented

among the relevant genes selected in the experiment. The inconsistencies in

the way functional hypotheses are tested by functional enrichment methods

are analyzed, and new methods, generally known as gene sets analysis meth-

ods, inspired by systems biology criteria, are critically discussed and reviewed.

These methods recently proposed in the domain of functional genomics, are

based on the biological fact that modules, and not single genes constitute the

ultimate functional ”bricks” which act cooperatively to carry out functions
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in the cell. In particular new supervised and unsupervised methods that at-

tempt to exploit ”a priori” biological knowledge of functional relationships

between sets of genes (modules) are discussed, as well as applications of gene

sets analysis in transcriptomics, large scale genotyping and phylogenomics.

Michele Ceccarelli and Alessandro Maratea [40] address the problem of the

alternative splicing prediction, a key mechanism to understand the multiplic-

ity of proteins raising from a relatively low number of genes in eukaryotic

organisms. The authors present a supervised machine learning approach us-

ing support vector machines with data obtained from a virtual genetic coding

scheme to numerically modeling the information content of sequences, and

using time series analysis to extract fixed-length set of features from each se-

quence. Machine Learning recognition of alternatively spliced Exons reaches

an AUC of over 96% on tested C. Elegans data, confirming to be an effective

procedure especially when no ”a priori” biological knowledge is available. As

a byproduct of this study the virtual genetic code based on Shannon informa-

tion content proposed in this paper could be an attractive option whenever

a numerical translation of a biological sequence is needed, and could be in

principle applied in other areas of genomics and transcriptomics.

Matteo Rè and Giulio Pavesi [48] address the problem of the detection of

the conserved coding genomic regions through signal processing techniques

applied to the analysis of the alignment of nucleotide sequences of different

organisms at the level of the entire genome. The authors analyze the DFT

(Discrete Fourier Transform) spectrum of the signal of the mismatches between

two human/mouse aligned sequences of length N. The main idea behind this

approach consists in the biological fact that coding regions mismatches occur

predominantly in the third codon position, while they should appear almost

randomly in non-coding regions, thus resulting in a higher N/3 frequency

component in coding regions. The authors propose measures based on this

analysis to unravel the coding potential of genomic regions. This method,

that applies signal processing methods in a comparative genomics framework,

can be in principle extended to the analysis of the genome of other organisms,

because of the universality of the genetic code and the selective pressure acting

on protein coding regions.
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Luca Nicotra and Alessio Micheli [47] tackle the problem of gene function pre-

diction using phylogenetic data. To this end they propose supervised learning

methods based on a a class of kernels for structured data leveraging on a

hierarchical probabilistic modeling of phylogeny among species: a sufficient

statistics kernel, a Fisher kernel, and a probability product kernel. The au-

thors introduce kernel adaptivity to the data through the estimation of the

parameters of a tree structured model of evolution, showing an improvement

in the classification of functional classes of genes in S. Cerevisiae w.r.t. to

standard vector based kernel and non-adaptive tree kernel functions.

Alessandro Perina, Matteo Cristani, Luciano Xumerle, Vittorio Murino, Pier

Franco Pignatti and Giovanni Malerba [51] address two central problems in

medical genetics, related to the localization of genetic regions containing sus-

ceptibility genes for genetic diseases: the haplotype reconstruction and haplo-

type block discovery. To this end they propose a new Hidden Markov model

(HMM) and an inference strategy for learning. The estimation of haplotypes

from genetic patterns in unrelated individuals is performed by applying vari-

ational learning strategies, thus avoiding local minima solutions that affect

other HMM methods based on the classical Expectation-Maximization algo-

rithm. Moreover the proposed Fully Non Homogeneous HMM is able to seg-

ment genotypes into linkage disequilibrium blocks, using the Gini index, a

classical statistical measure, to determine the segmentation of block bound-

aries. The results are competitive with state-of-the-art systems for haplotype

reconstruction and block discovery.

2.2 Transcriptomics

Oleg Okun and Helen Priisalu [41] present a paper that opens a new approach

to computer-aided bio-molecular diagnosis of malignancies, explicitly taking

into account the complexity that characterizes high-dimensional gene expres-

sion and other types of bio-molecular data. The authors propose a supervised

ensemble method based on the complexity of the data obtained by randomly

choosing subsets of features (gene expression levels associated to specific genes)

and then selecting only the least complex data through a proper measure of
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complexity. The authors show also through an extensive statistical analysis

that there is a direct relationship between the accuracy of the base learn-

ers (estimated through a low biased bolstered error) and the complexity of

data (estimated through an adaptation of the Wilcoxon rank sum test). The

proposed new scheme for generating ensembles of classifiers is applied to the

analysis of several gene expression data sets, showing that the selection of

features/genes leading to less complex data ensures a better performance of

the resulting ensemble.

Weightless connectionist models in which each neuron performs basically boolean

operations and analog to digital conversions are proposed by Massimiliano

Costacurta, Marco Muselli and Francesca Ruffino [42], in conjunction with

Recursive Feature Addition (RFA) techniques to properly select genes related

to a specific phenotype. By this technique the authors are able to assign a

relevance value to the variables associated to the expression level of each gene

and to select the most relevant through the RFA approach. The effectiveness

of the method is demonstrated by using a recently proposed mathematical

model based on the biological concepts of expression signature and expression

profile on both real and artificial gene expression data.

In the paper presented by Roberto Avogadri and Giorgio Valentini [44], the

authors address the problem of the uncertainty underlying the assignments of

examples/patients to clusters in the context on unsupervised gene expression

data analysis. This problem is relevant to discover subclasses of pathologies

based on the bio-molecular characteristics of patients. To deal with this prob-

lem, a fuzzy approach is adopted by applying a fuzzy-k-means algorithm to

different instances of the data and by using a fuzzy t-norm to combine the mul-

tiple clusterings. The multiple instances of the data are obtained by Bernoulli

random projections that reduce the high dimensionality of gene expression

data, without introducing relevant distortions into the data, thus improving

both the accuracy and the diversity of the obtained base clusterings. The ad-

vantages and limitations of the proposed approach are shown by comparing its

accuracy and robustness w.r.t. state-of-the-art clustering ensemble algorithms.

Finally, an empirical analysis of the relationships between the accuracy and

diversity of the base fuzzy-clusterings is provided.
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The paper of Paola Campadelli, Elena Casiraghi and Andrea Esposito [50] is

included in this section only for organizational reasons, but its research do-

main is within bio-medical image analysis, an important research area related

to bioinformatics, especially in the perspective of the integration of multi-

source biological data for the diagnosis and outcome prediction of diseases.

The paper provides a description and a critical analysis of the state of the art

of semi-automatic and automatic liver segmentation techniques and of a new

algorithm to deal with most of the problems and drawbacks of the computa-

tional methods discussed in the review. Live wire segmentation approaches,

gray level based methods, neural networks, Bayesian and model fitting based

methods are reviewed, in order to analyze the pros and cons of different im-

age processing methods that constitute the first step for the automatic liver

disease diagnosis and three-dimensional liver rendering. The authors propose

a three-steps gray level based technique to cope with the high inter and in-

tra patient gray level and shape variability, achieving a high accuracy in the

liver segmentation obtained from 40 abdominal contrast enhanced computed

tomography images.

2.3 Proteomics

Gennady Verkhivker’s paper [43] focuses on the problem of the analysis of

binding mechanisms and molecular signatures of the HIV-1 protease drugs.

HIV-1 PR represents an important target for the design of antiviral agents,

and in this work the molecular basis of the HIV-1 PR inhibition are studied.

To this end Monte-Carlo simulations with the conformational ensembles of the

HIV-1 PR dimer and monomer structures have been performed, thus enabling

a molecular analysis of the active site and dimerization modes of inhibition.

The author shows that an acetylated tetrapetide Ac-SYEL-OH can act as both

a dimerization inhibitor and a competitive active site inhibitor, and unravels

the way that the peptide NIIGRNLLTQI acts as folding inhibitor of HIV-1

PR, thus enabling the design of novel inhibitors of HIV-1 protease.

The classification of protein samples w.r.t. a given phenotype is one of the

major goals in quantitative proteomics. When comparing two biological sam-
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ples measured with liquid chromatography coupled to mass spectrometry

(LC/MS), one often observes a nonlinear time deformation between consecu-

tive experiments which introduces a severe alignment problem.

Bernd Fischer, Volker Roth and Joachim M. Buhmann [45] address this prob-

lem by applying a method based on Generalized Canonical Correlation Analy-

sis, in order to improve the estimation of differential protein expression values.

In particular they introduce an adaptive scale space estimation for complexity

tuning of the time-warping functions, and a local model selection procedure

for each time axis instead of the usual global model selection procedure. With

this novel technique the authors overcome two severe problems of the previ-

ous approaches: non-symmetry of the time prediction function and a potential

violation of the monotonicity constraint in temporal alignments.

The classification of high-dimensional mass-spectrometry measurements rep-

resents a challenging CI and ML problem, with significant applications in

cancer research.

Frank-Michael Schleif, Thomas Villmann, Markus Kostrzewa, Barbara Ham-

mer and Alexander Gammerman [46] propose a supervised prototype based

classifier applied to mass spectrometric data preprocessed with wavelets tech-

niques that uses a functional norm that takes into account the specific nature

of mass-spectra. The authors propose as prototype based classifier the Su-

pervised Relevance Neural Gas (SRNG) whose accuracy, in this context, is

comparable with state-of-the-art supervised learning algorithms. Moreover,

considering that SRNG generates models which consist of typical points of

the data, prototypes for the classes under investigation, the solution represen-

tation allows also a more natural interpretation of data from a bio-medical

standpoint.

Marco Vassura, Luciano Margara, Piero Fariselli and Rita Casadio [49] ad-

dress the problem of Protein Structure Selection (PSS), that is the assignment

of a given protein to one of 3D structures (named decoys) according to a given

distance measure. In literature, existing methods for solving PSS usually rely

on primary structure of the protein and on protein chemistry, making use of

specific energy functions that need to be minimized through suitable optimiza-
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tion methods. On the contrary, the authors propose an original approach to

the selection of decoys which are closer to the original (unknown) structures,

based solely on geometric and graph-based information. Indeed, they show

that graph properties can be used to assess the quality of a prediction of the

native state structure of a protein, identifying important connections between

properties of decoys and graphs. The results show that, based on simple ge-

ometrical properties, graph-based predictions can be as robust as seemingly

more sophisticated energy-based scoring of best decoys, opening new perspec-

tives for solving PSS problems.
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