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Abstract Error Correcting Output Coding (ECOC)
methods for multiclass classification present several open
problems ranging from the trade-off between their error
recovering capabilities and the learnability of the induced
dichotomies to the selection of proper base learners and to
the design of well-separated codes for a given multiclass
problem. We experimentally analyse some of the main
factors affecting the effectiveness of ECOC methods. We
show that the architecture of ECOC learning machines
influences the accuracy of the ECOC classifier, high-
lighting that ensembles of parallel and independent dicho-
tomic Multi-Layer Perceptrons are well-suited to
implement ECOC methods. We quantitatively evaluate
the dependence among codeword bit errors using mutual
information based measures, experimentally showing that
a low dependence enhances the generalisation capabilities
of ECOC. Moreover we show that the proper selection of
the base learner and the decoding function of the recon-
struction stage significantly affects the performance of the
ECOC ensemble. The analysis of the relationships
between the error recovering power, the accuracy of the
base learners, and the dependence among codeword bits
show that all these factors concur to the effectiveness of
ECOC methods in a not straightforward way, very likely
dependent on the distribution and complexity of the data.
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Introduction

In the last decade several methods for constructing
ensembles of learning machines have been developed [1].
These methods encompass a wide range of technique such
as ensemble averaging [2,3], where the outputs of differ-
ent predictors are linearly combined to produce an overall
output; boosting [4,5,6] and bagging [7], where the same
learning algorithms are applied to different subsets of the
training sets; mixture of experts [8,9], where the outputs
of the different predictors are non linearly combined
through a gating network; ensemble constructed by sub-
sets of input features [10], where each predictor selects a
group of the input features.

This paper focuses on Error Correcting Output Coding
(ECOC) decomposition methods [11–15], and in parti-
cular on the factors affecting the effectiveness of these
ensemble methods.

Error correcting output codes [16], originally proposed
to enhance the reliability of the transmission of binary
signals through a noisy channel [17], have been success-
fully used in the framework of decomposition methods for
multiclass classification problems to improve the general-
isation capabilities of learning machines. By this approach
an overall classification problem is decomposed into a set
of simpler dichotomic subtasks, through a manipulation
of the output targets assigned to each class. Dietterich and
Bakiri [11,12] demonstrated that ECOC can achieve better
performances than classification methods based on distrib-
uted output codes [18]. In fact, using codewords for
coding the classes suggest the introduction of codes with
error recovering abilities. Kong and Dietterich showed
that ECOC techniques can also provide class probability
informations, through the solution of an over-constrained
system of linear equation [14]. An interesting extension
of this approach presented by Schapire, consists of the
combination of error correcting output codes with boost-
ing techniques [4]; this ensemble method shows food per-
formances on different benchmark machine learning prob-
lem [19].

From a statistical standpoint ECOC methods can be
viewed as an approximation of a Bayes classifier: James
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demonstrated that asymptotically, as the number of dicho-
tomisers approaches infinity, the ECOC classifier will
become Bayes consistent (i.e. it always classifies to the
Bayes class when the base learner is the Bayes classifier),
provided that a random coding matrix is used [20]. In the
same perspective Berger showed that randomly selected
decomposition matrices are likely to have pairwise well-
separate codewords, that is high error recovering capabili-
ties [21]. Variants of the original ECOC algorithm have
been proposed, as circular ECOC [22] to reduce the sensi-
tivity to codeword selection, or binary labelling tech-
niques [23] to reduce the correlation between the base
learners.

The good generalisation properties of ECOC methods
have been explained through the reduction of both bias
and variance [21,15] and by interpreting them as large
margin classifiers [24,6]. Application of ECOC methods
in several domains have shown improvements over stan-
dard k-way classification methods. For instance, ECOC
was successfully applied to classify cloud types [25], for
text classification [21,26], for text-to-speech synthesis
[27], to classify olive oils by means of electric noses [28],
for face verification [29], and to classify malignant and
normal tissue using gene expression DNA microarray
data [30].

ECOC methods present several open problems concern-
ing their properties and the factors affecting their effec-
tiveness. The trade-off between error recovering capabili-
ties and learnability of the dichotomies induced by the
decomposition scheme have been tackled in several works
[24,31], but an experimental evaluation of the trade-off
has to be performed to achieve a better understanding of
this phenomenon.

A related problem is the analysis of the relationship
between codeword length and performances: some pre-
liminary results seem to show that long codewords
improve performance [26]. Another problem, not suf-
ficiently investigated in literature [21,26,32], is the proper
selection of dichotomic learning machines for the
decomposition unit.

Designing codes for a given multiclass problem is
another interesting open problem. A greedy approach is
proposed in Mayoraz and Moreira [33], and a method
based on soft weight sharing to learn error correcting
codes from data is presented in Alpaydin and Mayoraz
[34]. In Crammer and Singer [35] it has been shown that
given a set of dichotomisers the problem of finding an
optimal decomposition matrix in P-complete: by introduc-
ing continuous codes and casting the design problem of
continuous codes as a constrained optimisation problem,
we can achieve an optimal continuous decomposition
using standard optimisation methods.

In this paper, we tackle some of the open problems con-
cerning ECOC methods, and we try to experimentally ana-
lyse the factors affecting the effectiveness of ECOC clas-
sifiers. In particular, we study if the architecture of ECOC
learning machine influences the dependence among code-
word bit errors and the performance of the overall multi-
classifier. Moreover we experimentally compare different

decoding functions and different base learners in order to
evaluate their influence on the generalisation error of the
ECOC ensembles. The relationships between ensemble
accuracy, base learner accuracy and the error correction
power of ECOC codes are experimentally analysed to
understand if the error recovering capabilities of ECOC
codes can by itself explain the good generalization capa-
bilities of ECOC methods, or if they are the result of com-
plex interactions between the error recovering power of
ECOC, the complexity of the induced dichotomies and
the accuracy of the base learners composing the ensemble.

In the next session an overview of the ECOC methods
is given. Then we experimentally analyse the factors
affecting the effectiveness of ECOC methods. A dis-
cussion on the results and an outline of future develop-
ments of this work concludes the paper.

ECOC for multiclass learning problems

In this section we outline the main characteristics of
ECOC methods for multiclass classification. ECOC
methods code classes through binary strings and exploit
the redundancy of the resulting coding schemes to reduce
the classification error. They are characterised by a
decomposition of a multiclass problem in a set of dicho-
tomic problems any by a successive reconstruction of the
original multiclass problem. Two main architectures are
feasible, one based on a single learning machine, and
another one based on an ensemble of classifiers.

Decomposition of a multiclass classification problem

In a classification problem based on decomposition
methods [36], usually we code classes through binary
strings, or codewords. A coding process is a mapping
�: {C1, %, Ck} → {s1, %, sk} from the set of classes to
the set of binary strings. Each string si, 1 � i � k must
univocally determine its corresponding class.

Let be P: X → {C1, %, Ck} a K classes polychotomy
(or K-polychotomy), where X is the multidimensional
space of the features and C1, …, Ck are the labels of
classes. The decomposition of the K-polychotomy gener-
ates a set of L dichotomies f1, …, fL. Each dichotomy fi

subdivides the input patterns in two complementary super-
classes C+

i and C�
i , each of them grouping one or more

classes of the K-polychotomy. Let be also D = [dik] a
decomposition matrix of dimension L � K that represents
the decomposition, connecting classes C1, …, Ck to the
superclasses C+

i and C�
i identified by each dichotomy. An

element of D is defined as:

dik = �+1 if Ck � C+
i

�1 if Ck � C�
i

(1)

A learning algorithm produces an hypothesis
f̂(x) = [f̂1(x), f̂2(x), …, f̂L(x)] of the unknown functional
f(x) = [f1(x), f2(x), …, fL(x)], where [f1(x), f2(x), …, fL(x)]
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is the codeword s associated by the coding function � to
the class of the input pattern x. When a polychotomy is
decomposed into dichotomies, the learning task for f(x) is
reduced to the learning of each fi: X → {�1, 1} through
the set of the dichotomisers: it consists in labelling some
classes with +1 and others with �1. Each dichotomiser is
trained to learn fi, that associates patterns belonging to
class Ck with values dik of the decomposition matrix D,
producing the hypothesis f̂i.

In the decomposition matrix, rows correspond to dicho-
tomisers tasks and columns to classes. In this way, each
class is univocally determined by its specific codeword.
For instance, considering a decomposition matrix for a
four class classification problem with 7-bit class coding
(Table 1), the task of the second dichotomiser, namely f2,
consists in separating the patterns belonging to classes C1

and C4 from the patterns of class C2 and C3. The third
column of the decomposition matrix represents the code-
word [�1, �1, +1, +1, �1, �1, +1] associated to the
class C3.

ECOC decomposition tries to maximise error
recovering capabilities through the maximisation of the
minimum distance between each couple of codewords
[15,36].

Several methods for generating ECOC codes have been
proposed: exhaustive codes, randomised hill climbing
[12], Hadamard and BCH codes [16,37], and random
codes [20], but open problems are still the joint maximis-
ation of distances between rows and columns of the
decomposition matrix.

Reconstruction and decoding

After the training of the dichotimisers f̂i, their outputs are
used to reconstruct the polychotomy to determine the class
Ci � {C1, …, Ck} of the input patterns, using a suitable
measure of similarity.

Learning machines constructed by ECOC are made up
by a Decomposition Unit and a Decision Unit. The
Decomposition Unit analyses the input patterns and calcu-
lates the codewords using an assigned decomposition
scheme generated by a suitable algorithm. This unit com-
putes:

f̂(x) = [f̂1(x), f̂2(x), …, f̂L(x)] (2)

Table 1 ECOC decomposition matrix example

Dichotomisers Columns: class codewords
tasks

C1 C2 C3 C4

f1 +1 �1 �1 �1
f2 +1 �1 �1 +1
f3 +1 �1 +1 �1
f4 +1 �1 +1 +1
f5 +1 +1 �1 �1
f6 +1 +1 �1 +1
f7 +1 +1 +1 �1

The Decision Unit decodes the computed codeword
ŝ= [f̂1(x), f̂2(x), …, f̂L(x)], mapping it to the associated
class. This unit computes the function �: S → C:

�(ŝ) = �[f̂1(x), f̂2(x), …, f̂L(x)] (3)

where S is the set of the computed codewords, C is the
set of the classes, f̂i(x) are the hypotheses returned by the
learning algorithm, and � is a suitable decoding function.

The Decision Unit decodes the codeword computed by
the Decomposition Unit, choosing the class whose code-
word is more similar to that computed by the set of dicho-
tomisers. So, the decoding function �(s) can be
implemented by a maximization of a similarity measure
between the computed s codeword and the effective code-
words si, 1 � i � K associated to the classes:

classout = �(ŝ) =arg max
1�i�K

Sim(ŝ,si) (4)

where classout is the class computed by the polycho-
tomiser, si is the codeword of class Ci, the vector ŝ is
the codeword computed by the set of dichotomisers, and
Sim(x,y) is a general similarity measure between two vec-
tors x and y. This similarity measure can be a Hamming
distance if the outputs of the dichotomisers
ŝ = [f̂1(x), f̂2(x), …, f̂L(x)] are discrete or the inner product,
or L1 or L2 norm distances for dichotomisers with continu-
ous outputs. For instance, using the inner product we
have:

�prod(ŝ) = arg max
1�i�K

(ŝ, ṡi) (5)

Dietterich and Bakiri [16,17] proposed the Error Cor-
recting Output Coding (ECOC) decomposition scheme
with the aim of improving the generalisation capabilities
of NETtalk classifier systems based on distributed output
codes [18]: Coding the classes by codewords suggests the
idea of adding error recovering capabilities to decompo-
sition methods to obtain classifiers less sensitive to noise
[15,32]. This goal is achieved by means of the redundancy
of the coding scheme, as shown by coding theory [38].

The error-recovering capabilities of ECOC codes
depend mainly on column separation, i.e. the distance
between codewords must be increased, according to an
assigned measure. The maximal number of error Maxerr

that can be corrected in an ECOC based decomposition
is [15]:

Maxerr = 
�D � 1

2
 (6)

where �D is the minimal Hamming distance between each
pair of columns of the decomposition matrix D.

Design of ECOC classifiers

There are two main approaches to the design of a classifier
using ECOC codes, based on the features of the
Decomposition Unit. The first approach, that we call
Monolithic Classifiers, makes use of a Decomposition
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Unit based on a multiple inputs multiple outputs (MIMO)
learning machine exploiting the decomposition in an
implicit way. Monolithic Classifiers are, for example,
MIMO MLPs or MIMO decision trees [11, 12].

The second approach, that we call Parallel Classifiers,
makes use of a Decomposition Unit leading to the distri-
bution of the learning task among separated and inde-
pendent dichotomisers that can be implemented through,
e.g. Support Vector Machines [39], multiple inputs single
output (MISO) MLP or dichotomic decision trees. We call
the resulting learning machines Parallel Linear Dichoto-
misers (PLD) if the dichotomisers used for implementing
the dichotomisers are linear (as in Alpaydin and Mayorez
[40]), or Parallel Non-linear Dichotoynisers (PND) if the
dichotomisers are non-linear [12, 41].

Parallel Non-linear Dichotomisers (PND) are multi-
classifiers based on the decomposition of polychotomies
into dichotomies, using dichotomisers solving their classi-
fication tasks independently from each other [41]. In the
decomposition unit each dichotomiser is implemented by
a separate non-linear learning machine, and learns a dif-
ferent and specific dichotomic task using a training set
common to all the dichotomisers. The decision unit can
use a L1 norm or another similarity measure between code-
words to predict classes of unlabeled patterns. PND have
been implemented with decision trees [12,15,19] or dicho-
tomic MLP [41].

Parallel Linear Dichotomisers (PLD) are also multi-
chassifiers based on decomposition of polychotomies into
dichotomies, but each dichotomiser is implemented by a
separate linear learning machine [40].

It is worth noting that classifiers based on decompo-
sition methods and classifiers based on ensemble averag-
ing methods [2,3] or bagging and boosting [7, 4] share
the idea of using a set of learning machines acting on the
same input and recombining their outputs in order to make
decisions; the main difference lies in the fact that in classi-
fiers based on decomposition methods the task of each
learning machine is specific and different from that of
the others.

Effectiveness of ECOC methods

In this section we experimentally analyse the factors
affecting the effectiveness of ECOC methods. In parti-
cular we focus on the following items:

1. Architecture of the decomposition unit.
2. Dependency among codeword bits coding the classes.
3. Decoding function selected for the decision unit.
4. Relationships between ensemble accuracy, base learner

accuracy and error correcting power.

In the following sections we address each problem separ-
ately.

Architectures

In this section we study two different architectures for
ECOC learning machines, considering decomposition
units composed by a single monolithic MLP, that learns
the codewords as a whole, and by an ensemble of dicho-
tomic MLP, each learning a different bit of the codewords
coding the classes.

We apply also the widely used One-Per-Class1 (OPC)
[42, 43] decomposition scheme as reference comparison,
both using MLP monolithic and MLP parallel classifiers
decomposition units.

PND are implemented by a set of multi-layer per-
ceptrons with a single hidden layer, acting as dichotomi-
sers, and PLD are implemented by a set of single layer
perceptrons.

Monolithic MLP are built using a single hidden layer
and sigmoidal activation functions, both in hidden and
output neurons. The number of neurons of the hidden
layer amounts from ten to one hundred according to the
complexity of the data set to be learned. The base learners
of the PND and the monolithic MLP have been trained
using the backpropagation algorithm with fixed learning
rate.

We have compared the performances of the three
ECOC learning machines using different data sets, both
real and synthetic, as shown in Table 2. The data set p6
and p9 (available by anonymous ftp at
ftp://ftp.disi.unige.it/person/ValentiniG/Data), are syn-
thetic and composed by normal distributed clusters of
data. The set p6 contains six classes with no overlapping
regions, while the regions of the nine classes of p9 hardly
overlap. Glass, letter and optdigits data sets are from the
UCI respository [44].

In the experimentation we have used exhaustive [12]
and BCH ECOC generation algorithms [16]. ECOC
exhaustive algorithms select among all possible 2K dichot-
omies the 2K�1 � 1 ones that are not equivalent and not
trivial2. ECOC obtained by exhaustive algorithms are
Bayes consistent [20], i.e. if the component dichotomisers
approximate the Bayes optimal discriminant function,
then the overall polychotomiser will produce an optimal

Table 2 Data sets general features. The glass, letter and optdigits data sets
are from the UCI repository [44]

Data set Number of Number of Number of Number of
attributes classes training testing samples

samples

p6 3 6 1200 1200
p9 5 9 1800 5-fold cross-val
glass 9 6 214 10-fold cross-val
letter 16 26 16000 4000
optdigits 64 10 3823 1797

1 In a One-Per-Class (OPC) decomposition scheme, each dicho-
tomiser fi have to separate a single class from all the others.
2 Dichotomics f’ and f such that f’ = f or f’ = �f are equivalent,
while for trivial dichotomies f�1(+1) = � or f�1(�1) = � holds.
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Fig. 1 Design of output coding learning machines: monolithic (a) and parallel ensemble (b)

Bayes classification. The shortcoming of the algorithm is
the exponential growth of the codeword lengths with the
cardinality of the classes. BCH ECOC are computed using
an algebraic method based on a polynomial representation
of finite Galois fields [16]. BCH ECOC are not Bayes
optimal, but allow to generate ECOC codewords of trac-
table length. We have modified the original algorithm
removing duplicate rows of the decomposition matrix or
trivial dichotomies, and deleting rows with a Hamming
distance equal or less than an assigned threshold. This
modified version of the algorithm has produced 7 bits
ECOC codes for the data sets p6 and glass, 15 bits codes
for p9 and optdigits and 30 bit ECOC codes for letter
data set.

The programs used in our experiments have been
developed using NEURObjects [45], a C++ library for
neural networks development. In the experimentation we
used resampling methods, using a single pair of training
and testing data set or k-fold cross validation, to estimate
the generalisation error of ECOC monolithic and ECOC
PND ensembles.

Figure 2, shows the performance of MLP, PLD and
PND over the considered data sets. ECOC MLP mono-
lithic classifiers do not outperform standard MLP (Fig.
2(a)). In Dietterich and Bakiri [12] similar results have
been obtained over the same data set letter we used.

Concerning PLD (Fig. 2(b)), over data sets p6, p9, and
optdigits there is no significant statistical difference
among OPC and ECOC decomposition, while over glass
PLD ECOC outperforms all other types of polychotomi-
sers, but with letter PLD OPC achieve better results.

Considering PND (Fig. 2(c)), for data sets p6 and optdi-
gits no significant differences among OPC and ECOC
PND can be noticed. Over the p9 data set, ECOC shows
expected errors significantly smaller than OPC. Expected
errors over glass and letter data sets are significantly
smaller for ECOC compared with OPC. So we can see
that, ECOC PND show expected error rates significantly
lower than OPC PND.

The differences in performances between OPC and
ECOC decomposition schemes are considered statistically
significant if their confidence level is less or equal to 0.05

according to McNemar test [46] or k fold cross validated
paired t test [47].

PLD show remarkable higher errors over all data sets,
and in particular they fail over p9. Summarising, the
expected errors are significantly smaller for PND com-
pared with direct monolithic MLP classifiers and PLD,
and ECOC outperforms OPC decomposition only in
PND ensembles.

Dependency among codeword bits

Several authors noted that the dependence among output
errors affect the effectiveness of ECOC methods
[15,32,48], and recently we provided a quantitative evi-
dence of this fact [49]. In the domain of the serial trans-
mission of messages coded as sequences of bits, Peterson
and Weldon [37] showed that if errors on different code-
word bits are dependent, the effectiveness of error cor-
recting code is reduced. Transferring these outcomes in
the framework of classification problems, if a decompo-
sition matrix contains very similar rows (dichotomies),
each error of an assigned dichotomiser will be likely to
appear in the most correlated dichotomisers, thus reducing
the effectiveness of ECOC.

To quantitatively evaluating the dependence among
output errors of the decomposition unit of ECOC learning
machines, we used mutual information based measures
proposed in Masulli and Velentini [50].

Mutual information, being a special case of the Kull-
back-Leibler divergence between two distributions, meas-
ures the matching between the joint probability density
distribution and the product of the marginal probability
density distribution of the output errors. If we have a com-
plete matching, the mutual information is 0 and the output
errors are independent, otherwise the higher the value of
the mutual information between output errors is, the
higher the dependence between them will be.

Figure 3 shows the compared mutual information error
index �R [50] between monolithic and PND ECOC learn-
ing machines considering 4 different data sets. It is
defined as
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Fig. 2 Performance of ECOC and OPC MLP, PLD and PND. (a)
Monolithic MLP (b) PLD (c) PND

�R = �t

i=1

�t

j=1

IE(ei, ej) (7)

where IE(ei, ej) is the mutual information between the
errors of the ith and jth output of the decomposition unit.

On the axes are represented, �R values of ECOC mono-
lithic and ECOC PND learning machines. This index mea-
sures the sum of the mutual information of the output
errors between all the output pairs of the learning
machines, giving a computable quantity to estimate the
dependence between codeword bit errors: a high value of
�R corresponds to an high dependence between output
errors, and vice versa. Each point corresponds to ECOC

learning machines implemented with MLP with different
number of hidden units and using different partitions of
the output error. On all the data sets about all the points
are above the dotted line, i.e. all the values of �R are
greater for ECOC monolithic compared with ECOC PND.
The results show that monolithic architectures are affected
by a higher dependence among codeword bit errors, con-
firming the results obtained in Masulli and Valentini [49].

Relationships between ensemble accuracy and decoding
function

In this section we experimentally study if the choice of a
particular decoding function affects the performance of
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Fig. 3 Compared mutual information specific
error matrix indices �R between ECOC
monolithic and PND learning machines on d5 (a),
glass (b), optdigits (c) and latter (d) data sets. d5
is a synthetic data set available at
http:/ftp.disi.unige.it/
person/ValentiniG/Data/
d5.tgz
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ECOC MLP ensembles. We analyse alsothe effectiveness
of the ECOC ensemble varying the minimum Hamming
distance with fixed length codewords, as the error
recovering capabilities of the ECOC ensembles depend
critically on the minimum Hamming distance between
code-words (Eq. (6)).

The decoding in Output Coding methods is performed
using similarity measures between the computed code-
word and the codeword coding the classes (Sect. 2). We
consider three commonly used decoding functions based
on Hamming distance and L1 and L2 norm distance.

Given a n � k decomposition matrix D (Eq. (1)), we
indicate with Dij the ith bit of the jth codeword coding
the classes, and with Ci(x) the output computed by the ith
dichotomiser on the input x � �d. If Ci(x) � {�l, +l},
then the decoding function based on the Hamming dis-
tance is:

�Hamm(x) = arg min
j

�n

i=1

1
2

�Dij � Ci(x)� (8)

If Ci(x) � �d, then the decoding function based on the L1

norm distance is:

�L1
(x) = arg min

j
�n

i=1

�Dij � Ci(x)� (9)

and the decoding function based on the L2 norm dis-
tance is:

�L2
(x) = arg min

j
�n

i=1

(Dij � Ci(x))2 (10)

We generated ECOC decomposition matrices with con-
strained random algorithms. The random generation have
been constrained in order to eliminate trivial dichotomies
(e.g. rows with all +1 or all �1), and equal or complemen-
tary rows to assure the absence of equal and equivalent
symmetric dichotomies, and to achieve a desired mini-
mum Hamming distance between the columns
(codewords) of the decomposition matrix3.

The generalisation error of the ECOC ensembles have
been estimated using 5-fold cross validation. We merged
the training and test sets of the optdigits and image-seg-
mentation data sets from the UCI repository to perform a
five-fold cross validation on the overall merged data set.
We used also p20, a synthetic data set generated through
the NEURObjects application dodata. It is composed by
20 3-dimensional classes, and each class is characterised

3 Thc C++ classes implementing the ECOC random algorithms are
available at http:/ftp.disi.unige.it/person/ValentiniG/SW/ECOC
random
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by three disjoint clusters of data normally distributed with
diagonal covariance matrices4.

The comparison of the estimated generalisation error of
the ECOC ensembles shows that the decoding functions
based on the L1 and L2 norm distances outperform the
decoding based on the Hamming distance (Figs 4–6).
Only on the p20 data set with 50-bit ECOC ensembles
with linear perceptrons as base learners there is no differ-
ence between L1 norm and Hamming distance based
decoding, but in this task the ECOC ensemble clearly
fails, performing a sort of random guessing. The same
figures show also that there is no significant difference
between L1 and L2 norm distance decoding, considering
the proposed data sets.

Considering the relationship between the estimated
generalisation error and the minimum Hamming distance
(MHD) between the codewords, at first glance, we could
expect a monotonic decrement with the MHD. But the
trends seem to be more complex: they are relatively
irregular (Figs 4–6), and only in a few cases (Figs 4(c),

Fig. 4 Relationships between ECOC minimum
Hamming distance among codewords and
ensemble errors using decoding functions based
on L1 and L2 norm and Hamming distance with
the optdigits data set. (a) 32 bit ECOC codewords
using MLP base learners with 4 hidden units (b)
32 bit ECOC using MLP with 10 hidden units (c)
64 bit ECOC using MLP with 3 hidden units (d)
64 bit ECOC using MLP with 10 hidden units (e)
32 bit ECOC using linear perceptrons base
learners (f) 64 bit ECOC using linear perceptrons
base learners
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4 p20 is available at http:/ftp.disi.unige.it/person/ValentiniG/Data/
p2O.tgz

(d)) we can observe a monotonic decrement of the error
with MHD.

Relationships between ensemble and base learner
accuracy and error correcting power

The previous section showed that the increment of the
MHD is not by itself sufficient to reduce the error of the
ensembles. In this section we study how the characteristics
of the base learner, and in particular its accuracy affects
the overall performance of the ECOC ensemble.

As expected, the selection of the base learner affects
the overall performance of the ensemble (Fig. 7). Indeed,
using MLP base learner with different number of hidden
units greatly influences the estimated generalisation error
of the ensemble. For instance, on the p20 data set, ECOC
ensembles having as base learners MLP with 24 hidden
units are able to halve the estimated generalisation error
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Fig. 5 Relationships between ECOC minimum
Hamming distance among codewords and
ensemble errors using decoding functions based
on L1 and L2 norm and Hamming distance with
the imoge-segmentation data set. (a) 32 bit ECOC
codewords using MLP base learners with 3
hidden units (b) 32 bit ECOC codewords using
MLP base learners with 10 hidden units (c) 32
bit ECOC codewords using MLP base learners
with 25 hidden units (d) 32 bit ECOC codewords
using linear perceptron base learners

Fig. 6 Relationship between ECOC minimum
Hamming distance among codewords and
ensemble errors using decoding functions based
on L1 and L2 norm and Hamming distance with
the p20 data set. (a) 50 bit ECOC codewords
using MLP base learners with 6 hidden units (b)
50 bit ECOC codewords using MLP base
learners with 12 hidden units (c) 50 bit ECOC
codewords using MLP base learners with 24
hidden units (d) 50 bit ECOC codewords using
linear perceptron base learners
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of ECOC ensembles with MLP with 6 hidden units (Fig.
7(d)). Also on the optdigits and image-segmentation data
set (Figs 7(a)–(c)) the selection of different MLP as base
learner has a significant impact on the performance of
the ensemble.

In order to investigate why the selection of different
base learners affects in a so significant manner the per-
formance of the ensemble, we analysed the relationship
between the overall ensemble error, the average base
learner error and the minimum Hamming distance
between the codewords.

With the optdigits data set the average base learner
error increments with the minimum Hamming distance

(Fig. 8), while the ensemble error tends to decrease with
the MHD, especially using long codewords (Figs 8(c), (d),
(f). More irregular patterns are observed in the image-
segmentation data set: the average base learner error
increases with the Hamming distance, but in an irregular
way and the ensemble error rate oscillates around 0.04
and 0.035 (Fig. 9). With the p20 synthetic data set the
base learner average error initially grows, then goes down
and hence increments with the MHD, while the ensemble
error decreases only using base learners with 6 hidden
units: using more complex base learners the ensemble
error shows an irregular trend, with minima of the error
for 11 and 17 bit MHD (Fig. 10). Note that the ensemble
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Fig. 7 Relationships between ECOC minimum
Hamming distance and ensemble error using
different base learners. (a) optdigits data set (32
bit codewords) (b) optdigits data set (64 bit
codewords) (c) image-segmentation data set (d)
p20 data set
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Fig. 8 Relationships between ECOC minimum
Hamming distance among codewords, ensemble
error and average base learner error with the
optdigits data set. (a) 32 bit ECOC codewords
using MLP base learners with 4 hidden units (b)
32 bit ECOC using MLP with 10 hidden units (c)
64 bit ECOC using MLP with 3 hidden units (d)
64 bit ECOC using MLP with 10 hidden units (e)
32 bit ECOC using linear perceptrons base
learners (f) 64 bit ECOC using linear perceptrons
base learners
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Fig. 9 Relationships between ECOC minimum
Hamming distance between codewords, ensemble
error and average base learner error with the
image-segmentation data set. (a) 32 bit ECOC
codewords using MLP base learners with 3
hidden units (b) 32 bit ECOC codewords using
MLP base learners with 10 hidden units (c) 32
bit ECOC codewords using MLP base learners
with 25 hidden units (d) 32 bit ECOC codewords
using linear perceptron base learners

Fig. 10 Relationships between ECOC minimum
Hamming distance between codewords, ensemble
error and average base learner error with the p20
data set. (a) 50 bit ECOC codewords using MLP
base learners with 6 hidden units (b) 50 bit
ECOC codewords using MLP base learners with
12 hidden units (c) 50 bit ECOC codewords
using MLP base learners with 24 hidden units (d)
50 bit ECOC codewords using linear perceptron
base learners
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error partially follows the average base learner error, with
a decrement for increasing MHD values, but sometimes
we can also observe opposite trends of the average base
learner and ensemble errors (Figs 8–10).

The graphs of Fig. 11 represent directly the ensemble
error in function of the average base learner error. Each
point in the graph corresponds to a different MD between
codewords. Considering different data sets and different
base learners we observe very different trends: with the
opt digits data set and MLP base learners we have a dec-
rement of the ensemble error even if the average base
learner error increases (Fig. 11(a)), but with the same data
set using linear perceptrons base learners we have an
increment of the error, especially with 32-bit codewords

(Fig. 11(b)). With the p20 and image-segmentation data
sets the trends seem to be more complex, without a clear
relationship between ensemble and average base learner
accuracy (Figs 11(c), (d)). Summarising, we cannot
observe simple relationships between the ensemble error
and the average base learner error with respect to the
MHD between codewords.

Discussion

The experimental results of the previous section show that
a set of different factors affect the effectiveness of the
ECOC methods. The architecture of the ECOC learning
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Fig. 11 Relationships between Average base
learner error and ensemble error. Each point
represents a different minimum Hamming
distance between codewords. (a) optdigits: 64 bit
ECOC codewords using MLP base learners (b)
optdigits: 64 bit ECOC using linear perceptron
base learners (c) p20: 50 bit ECOC using MLP
base learners (d) image-segmentation: 32 bit
ECOC using MLP base learners
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machine, the dependency among codeword bits, the type
of the decoding function, the error recovering power of
the decomposition scheme, and the accuracy of the dicho-
tomiser interact between them and contribute to the effec-
tiveness of the ECOC methods.

The design of the decomposition unit of the ECOC
learning machine affects the performances, as shown by
our experimentation. It has been stated [11,15] that ECOC
classifiers should be preferred to OPC classifiers, as they
reduce error bias and variance more than standard classi-
fiers; their experimental results confirm these hypotheses,
with the exception of some cases over complex data sets
(such us letter from UCI repository) where OPC MLP
classifiers perform better than ECOC MLP. Our exper-
imentation has pointed out that not always ECOC mono-
lithic MLP outperform OPC MLP classifiers, while we
have found a significant difference between ECOC and
OPC PND performances (Fig. 2). We suppose that the
better performances of PND can be explained considering
on one hand that their dichotomisers are less complex than
ECOC monolithic learning machines, achieving by this
way better generalisation capabilities. On the other hand,
ECOC monolithic learning machines introduce more cor-
relation among codeword bits. In fact in PND each code-
word bit is learned and computed by its own MLP,
specialised for its particular dichotomy, while in mono-
lithic classifiers each codeword bit is learned and com-
puted by a linear combination of hidden layer outputs per-
taining to one and only shared multi-layer perceptron.
Concerning PLD, we point out that the error recovering
capabilities induced by ECOC are counter-balanced by
higher error rates of linear dichotomisers (Figs 5(d) and
6(d)). Hence, interdependence among monolithic MLP
ECOC outputs lowers the effectiveness of ECOC codes
for this kind of classifiers. This is conformed also by the
quantitative evaluation of the dependence among code-

word bit errors we performed using mutual information
based measures: ECOC PND ensembles show a lower
dependence compared with monolithic ECOC MLP.

The results showed also that the decoding function
plays an important role: indeed L1 and L2 norm distance
seem to be well-suited for the decoding, while the Ham-
ming distance based decoding function achieves worse
results. This is not surprising, as L1 and L2 norms exploit
the “confidence” in the prevision of each base learner,
while Hamming decoding discards all the information
except the hard membership to a class.

The choice of proper dichotomisers, well-suited for a
given decomposition, affects also the performances of
ECOC ensembles, as shown by our experimental results
(Fig. 7): in general complex classification problems need
more complex dichotomisers, but overfitting phenomena
can also arise.

The error recovering power of ECOC methods depends
on the MHD between codewords (if the output errors of
the decomposition unit are independent). Our experiments
show that if we use fixed length codewords an increment
of the MHD does not lead necessarily to improved per-
formances of the ECOC ensemble. This can be explained
considering that different codewords induce different
dichotomies. The dichotomies can or cannot be hard
learnable depending on the structure of the data and on the
type of the base learner used. The learn ability is partially
reflected by the average base learner error. As shown by
our experiments there is not a simple relationship between
ensemble error, average base learner error and the MHD.
In some cases the effect due to the error recovering power
prevails on the increment of the base learner error (Figs
8(c), (d)); in other cases, the error recovering power is
counter-balanced by the increased average base learner
error (Fig. 8(f)); in other cases we can also have similar
trends of the ensemble error and the average base learner
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error with respect to MHD (Figs 9(b), (c)). We can also
observe in a few cases that the average base learner error
decreases and the ensemble error increases for some
values of the MHD (Figs 9(a), (c)). This seems to be
counter-intuitive, but we know that the average base
learner error does not take into account the distribution of
the error among the dichotomies: we can have very differ-
ent distributions of the error (and very different ensemble
errors) with the same average base learner error. Table 3
shows that there is a relatively large variability of the base
learner error.

Hence our results show that there is not a simple
relationship between error recovering power and accuracy
of the induced dichotomies with respect to the accuracy
of the ensemble. It is not sufficient to increase the MHD
to improve the performance: we have to take into account
the accuracy of the dichotomisers and the dependency
among the codeword bit errors.

Following the approach of Ghani [26], with some
strong assumptions, we can try to model ECOC ensemble
error through the binomial distribution. In fact if we
assume that the probability of error of each dichotomiser
has about the same value p, and assuming that the out-
comes of the n dichotomisers of the ECOC ensemble are
independent, the probability of k errors on n trials
(dichotomiser tasks) with equal probability of error p is
distributed according to a binomial distribution:

P(k, n, p) = �n
k� pk(1 � p)n�k

Considering that ECOC codes with MHD = min can cor-
rect (min � 1)/n errors (Eq. 6), then the overall probability
of error of an ECOC ensemble with average base learner

error p with kmin =
min � 1

n
+ 1, is given by

Perr = �n
k=kmin

�n
k� pk(1 � p)n�k (11)

Table 3 Average base learner error and its variation. The last two columns refer to the minimum and average diversity of the dichotomies. MHD stands
for Minimum Hamming Distance, Stdev for standard deviation, MRD for Minimum Row Distance and ARD for Average Row Distance

Data set MHD Average base Stdev base Min. base Max. base MRD ARD
leamer err. learner err. learner err. learner err.

p20 9 0.0912 0.0425 0.0358 0.2675 2 10.075
50-bit ECOC 11 0.0846 0.0299 0.0358 0.1641 4 9.984

13 0.0831 0.0260 0.0325 0.1483 4 9.969
15 0.0816 0.0327 0.0291 0.2150 3 10.030
17 0.0801 0.0276 0.0325 0.1650 1 10.048
18 0.0857 0.0255 0.0300 0.1366 3 9.958
19 0.0939 0.0323 0.0358 0.1908 3 10.018
20 0.0942 0.0321 0.0358 0.1908 3 9.994

optdigits 15 0.1094 0.1292 0.0042 0.5592 1 4.979
64 bit ECOC 17 0.1125 0.1296 0.0071 0.5368 1 4.987

19 0.1336 0.1381 0.0133 0.5386 1 4.959
21 0.1332 0.1512 0.0071 0.5699 1 4.997
23 0.1220 0.1281 0.0142 0.5686 1 5.038
25 0.1473 0.1566 0.0138 0.5919 1 4.991
27 0.1476 0.1543 0.0090 0.5238 1 4.968
28 0.1514 0.1557 0.0138 0.5339 1 5.025

Table 4 compares the experimental error of the ECOC
ensemble and the theoretical error estimated through the
binomial distribution (Eq. 11). The results show that only
in some cases the experimental and the theoretical error
agree: especially for relatively low Hamming distance
between codeword the difference is very significant. This
is not too surprising, because our assumption about the
independence of codeword bit errors and the equal prob-
ability of error for all the dichotomisers are too strong. In
fact our previous results (Sect. 3.2) showed that a corre-
lation between codeword bit errors does exist, depending
on the type of the decomposition, the base learner used
and the structure of the data, and also the probability of
errors of the different dichotomisers shows a not negli-
gible variance (Table 3). These assumptions can or cannot
hold depending on the structure of the data, the type of
decomposition and the base learner used.

An important item only indirectly studied in this work
is the relationship between the error recovering power and
the complexity of the induced dichotomies. Although the
average base leaner error can be informative about the
complexity of the dichotomies, this information is biased
by the characteristics of the base learner: the functions
implemented by a particular base learner can perform bet-
ter on certain data distributions, but can achieve worse
performances on others [51].

We need more studies to relate the accuracy of the
ECOC ensemble with the complexity of the induced
decomposition. The relationship effectiveness of ECOC
ensemble-complexity of the data is an item common to
other ensemble methods [52] and require specific studies
and experimental analysis using appropriate measures of
complexity, based on geometrical or topological charac-
teristics of data [53].

Conclusions

The effectiveness of ECOC methods depends on many
factors ranging from the architecture of the decomposition
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Table 4 Experimental ensemble error and theoretical ensemble error predicted through the binomial distribution

Data set Mi Hamm.dist. Average base learner err. Experimental err. Theoretical err.

p20 9 0.0912 0.0808 0.4846
50-bit ECOC 11 0.0846 0.0708 0.2462

13 0.0831 0.0800 0.1187
15 0.0816 0.0766 0.0483
17 0.0801 0.0633 0.0167
18 0.0857 0.0741 0.0249
19 0.0939 0.0833 0.0165
20 0.0942 0.0816 0.0168

optdigits 15 0.1094 0.0674 0.4022
64 bit ECOC 17 0.1125 0.0695 0.2910

19 0.1336 0.0750 0.3493
21 0.1332 0.0651 0.2278
23 0.1220 0.0663 0.0847
25 0.1473 0.0725 0.1401
27 0.1476 0.0660 0.0817
28 0.1514 0.0790 0.0959

unit, to the dependence among codeword bits coding the
classes, the decoding function selected for the decision
unit, the error recovering power of the ECOC codes, the
type and accuracy of the base learners of the ensemble,
the complexity of the dichotomies induced by the
ECOC decomposition.

The results of our experiments suggest that ensembles
of learning machines achieve in general better results than
single monolithic learning machines, as dedicated and
independent base learners reduce the correlation among
the codeword bits, and their learning tasks are reduced to
dichotomies in general simpler than polychotomies.

The dependence among codeword bits reduces the error
recovering power of ECOC: improving the diversity of
the dichotomies and of the dichotomisers can enhance the
performance of ECOC learning machines.

Using Minkowski norm in decoding functions of the
decision unit seems to be more reliable and robust than
using the Hamming distance.

The selection of proper base learners influences the
accuracy of the ensemble: a possible way of research
could be to experiment with different and specific dicho-
tomic learning machines well-suited for each different
dichotomic problem induced by the decomposition.

ECOC codes can recover errors committed by the base
learners, but increasing the minimum Hamming distance
between codewords does not lead by itself to better per-
formances, because we could have a contemporary
increased complexity of the induced dichotomies, or more
similar and correlated dichotomies.

Increasing the codeword length, as shown in [9,26] can
in general lead to better performances, but for fixed-length
codewords our experimentation showed that many factors
interact to determine the effectiveness of ECOC methods.
We know that the problem of finding an optimal
decomposition matrix is NP-complete , and our experi-
mental analysis showed that no straightforward solution
exists to select jointly low-correlated dichotomies, code-

words with high minimum Hamming distance and simple
induced dichotomies, and base learner well-suited for a
given decomposition. The main problem arising from our
experimental analysis consist in evaluating how the com-
plexity of the data characterising a given classification
problem affects the performance of ECOC methods with
respect to the error recovering power of the ECOC
decomposition and the accuracy of the base learner of the
ensemble. This in turn requires the definition and usage
of proper data complexity measures, such as the length of
class boundary [54] or the �-neighborhoods space cover-
ing [55] to characterise the classification problem com-
plexity on the basis of the geometrical and topological
properties of the classes.
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