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Monitoring reliability of sensors in an array by neural networks
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Abstract

The correlation between the responses of five semiconductor thin films sensors to CO–NO mixtures is exploited to detect a possible2

malfunctioning of one of the sensors during operation. To this end, at every time instant, the current flowing in each single sensor is
estimated as a function of the current flowing in the remaining ones. With multiple linear regression, we obtain, in the case of the worst
sensor, a regression coefficient of 0.89. The estimation is then accomplished using the regression ability of five artificial neural networks
Ž . y3 2ANN , one for each sensor, obtaining at worst a mean estimation error on the test set of 6=10 mA , the signal being of the order of

Ž .the microampere mA . In the case of a simulated transient malfunctioning, we show how it is possible to detect on-line which is the
sensor that is not working properly. Further, after a fault has been detected, the estimation replaces the damaged sensor response. In this
way, the concentration prediction — performed by other ANNs that need the responses of all the sensors — can proceed until the
damaged sensor has been replaced. q 2000 Elsevier Science S.A. All rights reserved.
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1. Introduction

Sensor arrays together with pattern recognition tech-
niques have been shown to distinguish between different

w x w xgases, both individually 1–4 and in a mixture 5–8 .
Moreover, even in the case of mixtures, it has been
possible to predict the components’ concentrations. A chief
application of this capability is to environmental monitor-
ing.

In the cited papers, it is assumed that sensors operate
correctly. For on-line application of sensor arrays in real
world problems, however, it is of great interest to be able

Žto check whether sensors do function correctly fault detec-
.tion and, in case of malfunctioning, to compensate this

malfunctioning until the damaged sensor is substituted.
w xIn Refs. 9,10 , we compared two neural network based

approaches to the estimation of NO and CO concentra-2

tions in mixtures with humid air. By studying the predic-

) Corresponding author.

tion ability of a five-sensor array, we found out that the
estimation error on the test set increased only slightly

Žusing four sensors while the increase with three sensors
.was sensible . This is due to the correlation between the

Ž .sensors see Section 3.1 .
In the present contribution, we show how the correla-

tion between different sensors can be used for fault detec-
tion and compensation. In this way, in spite of trying to
minimize the number of sensors for prediction purposes by

Ž .eliminating, e.g., sensors that have a low or equal loading
on the first principal components, we exploit the redun-
dancy present in the different responses. The technique we

Žpropose exploits the concept of a virtual sensor see e.g.,
w x.Ref. 11 with the aim of increasing the system reliability.

To our knowledge no similar approach has been proposed
in the chemical sensor field.

The structure of the paper is as follows. In the next
section, we give details on the sensors array and on its
characterization in the quantitative measurement of compo-
nent concentration in a gas mixture. In Section 3.1, we
analyze the correlation among sensors, and we show the
characteristics of neural cross-estimators of their conduc-
tance. The system for reliability control of a sensor array
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based on these cross-estimators is presented in Section 3.2.
Experimental results on our sensor array are presented and
discussed in Section 4. Conclusions are drawn in Section
5.

2. Experimental

An array of five tin oxide thin films have been de-
posited through the RGTO technique over alumina sub-

w xstrates 12 . A Pt thin film was deposited on the back of
the substrate as a heater and temperature sensor. In order
to enhance the array selectivity, ultra-thin films of metal

Ž .catalysts Au and Pt were deposited over the sensor
surface. The change of conductance has been monitored by

w xa volt–amperometric technique at constant bias 13 . The
Žarray conductance response to nitrogen dioxide 0.2, 0.6,

. Ž2, 4 ppm and carbon monoxide 0, 25, 50, 100, 200
.ppm mixtures was examined. These values are close to

the alarm levels for environmental protection in many
European countries. During the characterization relative
humidity was set to rhs30% at Ts208C. Two runs
of measurements — each constituted by 20 different con-
centration mixtures — were completed in order to verify
the reproducibility of the array performance. Moreover,
since tin oxide sensitivity to NO is enhanced at lower2

temperature while the sensitivity to CO is enhanced at
higher temperature, the local operating temperature of two

Ž .sensors was kept equal to 600 K Pt, Au , while the others
Ž .were operated at 700 K bare, Pt, Au .

3. Method

3.1. Estimation of sensors output

We would like to correlate the sensor responses by
Žestimating the functional dependencies for every time

.instant :

i s f i ,i ,i ,iŽ .A A D E G H

i s f i ,i ,i ,iŽ .D D A E G H

i s f i ,i ,i ,iŽ .E E A D G H

i s f i ,i ,i ,iŽ .G G A D E H

i s f i ,i ,i ,iŽ .H H A D E G

In order to evaluate the correlation among the sensors’
conductance, we began by assuming a linear dependence.
A multiple linear regression analysis shows that the multi-
ple linear correlation coefficients are all greater than 0.89.
We subsequently tried to estimate the real non-linear func-
tional dependence with neural networks. In this applica-
tion, we use the ability of MLPs to behave as universal

w xfunction approximators 14 .

Every neural network has four inputs, eight hidden
neurons and one output neuron; the units of the hidden and
output layers have a sigmoid-shaped activation function,
while the input units do not perform any calculation. The
training was performed by pattern using the standard
back-propagation algorithm with learning rate hs0.1 and
a momentum term as0.9. To avoid misleading effects
due to the particular sequence of measurements, the pre-
sentation order of the patterns was randomized. The net-
works were trained using the first sequence of measure-
ments as training set and the second one, which was
obtained 2 days after the first, as test set. Although the gas
mixtures are the same as in the first measurement series,
the sensors’ responses after 2 days present a temporal drift
because the sensors had not been aged previously.

As shown in Table 1, the obtained current estimation is
good for every sensor. In Fig. 1 we show in graphical form
the high quality result obtained on the test set for sensor A.
The predicted and the measured curves are very often
superimposed on each other. Similarly, in Fig. 2 the result
for sensor H is shown as the scatter plot of the pairs
Ž .predicted current, measured current : this shows that the
approximation is very good, because all the points lay very
near to the ideal case represented by the function ysx,
with a small variance and no noticeable bias.

3.2. Modular MLP system

The result in the preceding section suggests a viable
approach to monitoring the working state and to detecting
possible malfunctioning of sensors. This can be done by
using five MLP networks, each of them estimating the
current flowing in one sensor as non-linear function of the
currents flowing in the other ones at the same time. As
sketched in Fig. 3, each estimator has four inputs and one
output; e.g., Estim A has D, E, G, H as inputs and
estimates the current flowing in A.

In order to control the reliability of the array of sensors
we can continuously compare the current flowing in each

Ž .sensor Fig. 3, left and its estimate provided by the neural
Ž .networks array Fig. 3, right with appropriate testing units

Ž .Fig. 3, bottom . In these units we can implement various
criteria in order to detect different kind of faults. For
example, by simply considering the difference between

Ž .predicted output and actual output estimation error as a
signature of the correct working state of sensors, we can

Table 1
Ž 2 .Mean error of neural estimators mA

Sensor Training set Test set
y5 y4A 8=10 1=10
y3 y3D 4=10 6=10
y5 y5E 1=10 4=10
y4 y4G 6=10 4=10
y4 y4H 2=10 6=10
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Ž . Ž . Ž .Fig. 1. Sensor A: Temporal plot of measured gray and estimated currents black for the test set sensor A .

detect transient faults. Further, long time drifts can be
detected checking if the estimation errors are normal dis-
tributed.

4. Simulation and discussion

We show now the effect of a simulated transient mal-
functioning in sensor H obtained by changing the mea-

Ž .sured current at three time points see Fig. 4 .

As a first step of the fault detection algorithm, using the
already trained MLPs, we compute

ˆ ˆi s f i ,i ,i ,iŽ .A A D E G H

ˆ ˆi s f i ,i ,i ,iŽ .D D A E G H

ˆ ˆi s f i ,i ,i ,iŽ .E E A D G H

ˆ ˆi s f i ,i ,i ,iŽ .G G A D E H

ˆ ˆi s f i ,i ,i ,iŽ .H H A D E G

Ž .Fig. 2. Sensor H: Scatter of measured and estimated currents for the test set sensor H .
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Fig. 3. Scheme of the MLP-based reliability control system.

where i , i , i , i and i are the measured values of theA D G E H
ˆ ˆ ˆ ˆ ˆcurrents and i , i , i , i and i the estimated ones.A D G E H

ˆ ˆComparing i with i , i with i and so on, we findA A D D

unusual differences between the estimated and measured
Ž .values at three points Fig. 5 . This behavior has two

different sources:

Ø in cases A, D, E and G, the estimated output is incor-
rect because the input corresponding to sensor H is
wrong;

Ø on the other hand, estimation H gives a correct value,
that is a value that H would have if it worked correctly.
The estimation error is unusually high due to the tran-
sient fault in i .H

Ž .A priori all we can conclude is that at least one of the
sensors is not working as expected, but we cannot yet say
which one it is. To find out which is the malfunctioning
sensor we adopt a simple strategy. We substitute one of the
sensors in turn with its neural model: beginning with

ˆ Ž .sensor A, we compute i s f i , i , i , i and then,A A D E G H

using this value,

ˆ̂ ˆ ˆi s f i ,i ,i ,iŽ .D ,A D A E G H

ˆ̂ ˆ ˆi s f i ,i ,i ,iŽ .E ,A E A D G H

ˆ̂ ˆ ˆi s f i ,i ,i ,iŽ .G ,A G A D E H

ˆ̂ ˆ ˆi s f i ,i ,i ,iŽ .H ,A H A D E G

ˆ̂where e.g., i means the prediction for sensor D ob-D,A
ˆ ˆtained by replacing i with i as inputs of f .A A Dˆ̂The errors iy i do not change significantly with respect

ˆto iy i until we substitute H with its model. Think for
example at the prediction of the output of the sensor D: the

Ž .Fig. 4. The simulated malfunctioning of sensor H points 19, 20, 21 .
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ˆ ˆ ˆ ˆŽ . < < < < < < < <Fig. 5. Differences in nanoampere nA between the measured and estimated current. From top left clockwise: i y i , i y i , i y i , i y i ,A A D D E E H H
ˆ< <i y i .G G

prediction for the current flowing in D is wrong both if
ˆ ˆŽ .only the input i case i and if the inputs i and i areH D H Aˆ̂Ž .wrong case i .D,A

However, when we substitute H with its model the high
estimation errors for the good working sensors A, D, E and

ˆ̂Ž .G disappear Fig. 6 . This is because, e.g., i nowD,H ˆ̂correctly estimates i because the input arguments of iD D,H
ˆare all correct, including i .H

Having determined the malfunctioning sensor, the next
step is to compensate for the error until the sensor is
substituted. In fact, the neural network that had been
previously trained for the prediction of the gas compo-
nents’ concentration needs five inputs and it surely will
give wrong predictions if one input is incorrect. In our

ˆapproach, we simply use the estimate i‘ given by the other
sensors to substitute the damaged one. Because of the

sensors’ correlation, in this way the concentration predic-
tions are only slightly affected.

5. Conclusions

The proposed approach to reliability control exploits the
strong correlation of the sensors’ array conductance. It
uses five MLP networks, each of them estimating the
current flowing in one sensor as a non-linear function of
the currents flowing in the other ones. For the worst
estimated sensor we obtained a mean relative error on the
test set of the order of 10y1. In case a fault has been
detected, the estimation replaces the response of the dam-
aged sensor so that the subsequent phase of concentration
prediction does not have to be interrupted.

ˆ̂Ž . < <Fig. 6. Differences in nanoampere nA between the measured and estimated current substituting H with its model. From left to right: i y i ,A A,Hˆ ˆ ˆˆ ˆ ˆ< < < < < <i y i , i y i , i y i .D D,H E E,H H G,H
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On the basis of this neural cross-monitoring of the
sensors’ working state, various criteria can be implemented
in order to detect different kind of faults. The reported
experimental results are related to a transient fault detec-
tion by considering the actual estimated error levels as a
signature of the correct working state of sensors. As a
further application, long time drifts can be detected by
checking whether the estimation errors are normal dis-
tributed.
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