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Abstract

The problem of quantifying the concentrations of CO and NO present in a mixture starting from the electrical response of a sensors2

array is addressed. A comparison between a traditional approach based on the steady state conductance and one using a time delay neural
network is drawn. q 2000 Elsevier Science S.A. All rights reserved.
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1. Introduction

Many successful attempts of distinguishing different
single gas species and estimating their concentrations start-
ing from the conductance variations of chemical sensors

w xarrays are reported in the literature 3,6 . Much less fre-
quent is the case in which the concentration of the compo-

w xnents of a gas mixture is estimated 2 . In this contribution
data from a five-sensors array exposed to different concen-
trations steps of the mixture CO–NO were analyzed. We2

adopted two different approaches for estimating concentra-
Ž .tions with artificial neural nets ANN : a more classical

Ž . Ž .one, using the ratio Rs G r G of the steady state tof 0

the baseline conductance, and one based on the temporal
evolution of the conductance.

2. Experimental

An array of five tin oxide thin films have been de-
posited through the R.G.T.O. technique over alumina sub-

w xstrates 4 . A Pt thin film was deposited on the back of the
substrate as a heater and temperature sensor. The experi-

Žmental set-up used for the sensor characterization mea-
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. w xsurements has been described elsewhere 5 . The change
of conductance has been monitored by a volt–amperomet-
ric technique at constant bias. In order to broaden the array

Žresponse spectrum, ultra thin films of metal catalysts Au
.and Pt were deposited over the sensor surface. Before

characterization, the sensors were aged for 2 weeks by
keeping them at the operating temperature.

The array conductance response to nitrogen dioxide
Ž . Ž0.2–0.6–2–4 ppm and carbon monoxide 25–50–100–

.200 ppm mixtures was examined. These values are close
to the alarm levels for environmental protection in many
European countries. During the characterization, relative
humidity was set to rhs30% at Ts208C. Two runs of
measurements — each constituted by 24 different concen-
tration mixtures — were completed in order to verify the
reproducibility of the array performance. Moreover, since
tin oxide sensitivity to NO is enhanced at lower tempera-2

ture while CO one at higher values, the local operating
Žtemperature of two sensors was kept equal to 600 K Pt,

. Ž .Au , while others were operated at 700 K bare, Pt, Au .

3. Results and discussion

3.1. Gas responses

In Fig. 1, a typical sensor response to a concentration
step is shown. It is known that NO reduces the conduc-2
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Fig. 1. A typical sensor response. The three zones are depicted in which
the input points used in the dynamical method are taken. A particular

Ž .input is also shown full points .

tance, while CO produces the opposite effect. Moreover,
CO reacts faster with the sensor surface than NO when2

they are present as single gases. Therefore, one can inter-
pret the response shape in the following way: the fast rise
of conductance after the introduction of the mixture is
given by the reaction of CO with the surface. After a few
minutes, the absorption of NO sets in and the conductiv-2

ity decreases. Specularly, when the gas introduction is
stopped, CO desorbs rapidly followed by NO after circa 12

min.

3.2. Data analysis

We adopted two different approaches for estimating gas
concentrations which differ in the way the feature extrac-
tion step is performed. In both cases, the first run was used
for training and the second for testing.

3.2.1. Steady state approach
Ž . Ž .We used the ratio Rs G r G of the steady state tof 0

the baseline conductance. Features were extracted by com-
puting the PCA on the training set. The three first principal
components, which contain almost 100% of the total vari-
ance, were used as the inputs of the nets. We got the best
results training two separate networks for the two gases,
each with three input, three hidden and one output units.
The results are shown in Fig. 2a.

3.2.2. Dynamical approach
In this case, we considered as input of two ANN, for

every time t, the conductance G at that time and at some
past times — in order to capture the sensors memory
effects. The quantity to be estimated is the concentration
present at the same time t. The point was now how many
delayed time points and what time delay to use. We started
with the prescriptions arising from dynamical system the-

Ž w x.ory Takens–Mane theorem 1 : the number of delayed
points should be at least equal to the system’s embedding
dimension, which is two for our non-chaotic signals, and
the time delay comparable to the first zero of the autocor-

Ž .Fig. 2. Comparison between the results of the steady state approach a
Ž .and of the dynamical approach b for NO .2

relation function, which turned out to be 28 min. More-
over, we took account of the physical information con-
tained in the initial peak with which the sensor responds to
the concentration step: the peak seems to depend on the
relative concentrations of the components. Therefore, we
used a third point lying in this zone. The input patterns for
every concentration step are — setting is0 at the gas

Ž Ž . Ž . Ž ..introduction — G i y 50 , G i , G i q 250 ; i g
� 4 Ž .1,2, . . . ,50 see Fig. 1 ; i is the sample index and the
sampling rate is one sample every 6 s. The output is
Ž . Ž .C iq250 , which is constant on a concentration step for

Žthe teaching output but varies for the predicted output see
.Fig. 3 . We consequently trained two neural nets, each

Ž .Fig. 3. Dynamical method. Predicted curved segments and real concen-
Ž . Žtration horizontal segments for CO at the output of the ANN before the

.postprocessing . Only the last 50 points of every concentration step are
shown. The NO concentrations are displayed in light digits.2
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with 15 input, 20 hidden and one output units. The post-
processing consists in the time average over the 50 pre-
dicted concentrations belonging to the same concentration
step in order to have one predicted concentration value.
The results obtained with the dynamical approach are
shown in Fig. 2b. We see that in comparison to the steady
state approach, the prediction of NO is sensibly im-2

proved. The results for CO are similar for both approaches.
We now have that for NO , the relative error on 80% of2

the test patterns is under 5%.

4. Conclusions

In this contribution, a comparison was drawn between
an approach which uses steady state data as input of the
data analysis and one which uses the information present
in the dynamical evolution of the sensor conductivity when
exposed to a concentration step. We showed that the
prediction of the NO concentration is enhanced with the2

second procedure. The relative error of the resulting esti-

mation is always less than 20% and in the majority of
cases less than 10% for CO and of 5% for NO .2
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