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Abstract

In previous work, we have proposed a constructive methodology for temporal data learning supported by results and prescriptions related

to the embedding theorem, and using the singular spectrum analysis both in order tso reduce the effects of the possible discontinuity of the

signal and to implement an efficient ensemble method. In this paper we present new results concerning the application of this approach to the

forecasting of the individual rain-fall intensities series collected by 135 stations distributed in the Tiber basin. The average RMS error of the

obtained forecasting is less than 3 mm of rain.
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1. Introduction

Learning a mapping on the basis of a (possibly small)

data set of examples is an ill-posed inverse problem

(Haykin, 1999). Concerning temporal time series learning,

noise, ambiguity of the mapping, and discontinuity of the

signal affect the generalization performance of the learning

machines.

A popular way to reduce ill-posedness in temporal data

learning consists in assuming an input scale (Dietterich,

2000) suitable to alleviate the mapping ambiguity problem.

To this aim we should find the optimal dimension of the

input vector and the time lag between its elements. After the

setting of the mapping input vector and of other design

issues, the temporal data can be learned by a machine. In

particular, accurate learning of a continuous mapping is

supported by the Universal Function Approximation

property holding for some classes of learning machines

including, e.g. Multi Layer Perceptrons (MLP), Radial Basis

Functions Nets, and Fuzzy Basis Functions Nets (Cybenko,

1989; Poggio & Girosi, 1990; Wang & Mendel, 1992).

However, for small data set, simple learning machines

exhibit better generalization capabilities (Vapnik, 1995).

A constructive framework for the design of time series

learning machines has been proposed by Studer and Masulli,

(1995) and Masulli, Parenti, and Studer (1999). In

particular, it has been suggested to apply results and

prescriptions related to the delay-embedding theorem

(Mañé, 1981; Takens, 1981) to the design of learning

machines of continuous mappings of temporal data. A

decompositive ensemble method based on the Singular-

Spectrum Analysis (SSA) (Vautard, You, & Ghil, 1992) has

been applied by Masulli, Cicioni, and Studer (2000) and

Cicioni and Masulli (in press) in order to extend the

constructive approach to the learning of discontinuous and/

or intermittent signals.

The proposed toolbox has been successfully applied to

the design of MLP and Neuro-Fuzzy systems for simulated

non-linear and chaotic signal forecasting (Studer & Masulli,

1995), system identification (Masulli et al., 1999), and daily

rainfall forecasting (Masulli et al., 2000; Cicioni & Masulli,

in press).

The latter application has a strong implication in water

quantity and quality management. Our study concerns the

learning of the data set of the daily rainfall intensities series

collected by 135 stations located in the Tiber river basin

(Fig. 1) in the period 01/01/1958–12/31/1967. Using
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the decompositive ensemble method based on the SSA, we

obtained a Root Mean Square (RMS) error of 0.95 mm of

rain on the daily forecasting of the series of the Mean Station

(MS), defined as the average of all 135 rainfall intensity

series (Masulli et al., 2000; Cicioni & Masulli, in press). In

this paper we extend the experimentation to the daily rainfall

forecasting of the individual stations, testing four alternative

approaches.

The paper is structured as follows. In Section 2, we

discuss the principal approaches to Quantitative Rainfall

Fig. 1. (a) Height map (in meters on the sea level) of the 135 stations on the Tiber river basin. The Geographic Center (GC) of the 135 stations, the two stations

more correlated to MS, and the two stations less correlated to it (Table 3) are shown on the map; (b) histogram of station’s height.
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Forecasting (QRF) and the meaning of the application

presented in this paper. In Section 3, we summarize the

main aspects of the constructive approach to temporal data

learning and we present the main experimental results

already obtained for the MS. Section 4 presents the four

methods to the forecasting of the series of individual

stations. In Section 5 the principal experimental results are

shown, together with their discussion. The section of

conclusions summarizes the results presented in the work.

2. Quantitative rainfall forecasting

The incorporation of QRF plays a key role in catchment

management and flood warning systems. Accurate forecasts

of the spatial and temporal distribution of rain are useful for

both water quantity and quality management. For example,

a flood warning system for fast responding catchments may

require a quantitative rainfall forecast to increase the lead-

time for warning. Similarly a rainfall forecast provide

advance information for many water quality problems (Luk,

Ball, & Sharma, 2001; Toth, Brath, & Montanari, 2000).

It is widely recognized that obtaining a reliable QRF is

not an easy task, rainfall being one of the most difficult

elements of the hydrological cycle to forecast (French,

Krajewski, & Cuykendall, 1992). There are two possible

approaches to forecast rainfall. The first approach involves

the study of the rainfall processes in order to model the

underlying physical laws (Brath, 1999; Luk et al., 2001).

However, numerical weather forecasting based on the

physical modeling approach may not be feasible because

† rainfall is an end product of a number of complex

atmospheric processes which vary both in space and

time;

† the data that is available to assist the definition of control

variable for the process models, such as rainfall intensity,

wind speed, and evaporation, etc. are linked in both the

spatial and temporal dimensions;

† even if the rainfall can be described concisely and

completely, the volume of calculations involved may be

prohibitive; and

† the temporal and spatial resolution provided by this

approach is not accurate enough for many hydrologic

applications.

A second approach to forecast rainfall makes use of non-

parametric models based on statistics and/or machine

learning. With this approach, QRF is obtained inferring

from features derived from remote sensing observations or

from historical rainfall patterns, with no consideration of the

physics of the rainfall processes (Luk et al., 2001), even if,

when available, the incorporation in the training data series

of other variables, such as pressure, temperature and wind

speed and direction, can, in principle, improve the

forecasting of rainfall.

We point out that, although remote sensing observations

(e.g. radar data and satellite images) provide useful

information on the precipitation pattern, they do not allow

a satisfactory assessment of rain intensities yet (Kryzszto-

fiwicz, 1995). In addition, radar detection is particularly

difficult in mountainous regions, because of ground

occultation and altitude effects (Toth et al., 2000).

The standard non-parametric approaches to QRF by

means of time-series analysis, is based on statistical

techniques that assume linear relationship among variables

or reproduce the precipitation time series only in statistical

sense (Bodri & Cermák, 2000; Burlando, Rosso, Cadavid, &

Salas, 1993; Sharma, 2000a,b; Sharma, Luk, Cordery, &

Lall, 2000). Then, in principle, machine learning models,

such as artificial neural networks, can improve the

forecasting results obtained using models based on standard

non-parametric approaches.

Maier and Dandy (1999) presented an extensive survey

of the applications of neural networks to the forecasting of

water resource variables, that included applications to QRF.

Published contributions on the applications of neural

networks to forecasting of true (not synthetic) rainfall series

on the basis of the information embedded in the past rainfall

depths, fall into two principal classes. The first one contains

some papers on long-term scale rainfall forecasting, such as

the one by Bodri and Cermák (2000) who used MLPs for

extreme precipitation forecasting on yearly scale, while the

other class includes several papers concerning short-term

scale forecasting (hourly or shorter periods). We mention in

this second group the paper by Toth et al. (2000) who

compared short-term rainfall forecasts (1–6 h forward) for a

case study on Apennines mountains (Italy) obtained using

MLPs (that give the best results), linear stochastic Auto-

Regressive Moving-Average (ARMA) models, and non-

parametric nearest-neighbours method. They have been

reported also good results on a shorter term range rainfall

forecasting (15 min ahead for 16 gauges concurrently)

obtained using either MLPs, Partial Recurrent Neural

Networks (Elman, 1990), and Time Delay Neural Networks

(Waibel, 1990), over an urban catchment in western Sydney

(Australia) (Luk, Ball, & Sharma, 2000, 2001).

With respect to the previous referred papers, the study

presented in this paper concerns the forecasting of rainfall in

a large geographical area constituted by the Tiber river (Italy)

basin, involving 135 stations distributed in the Apennines

mountains close Rome and other smaller towns, and in a

different (daily) time scale that has strong relevance in many

hydrologic applications, including flood warning systems.

3. Constructive approach to time series learning

3.1. Embedding theorem and SSA

A constructive approach to shaping a supervised neural

model of a non-linear process was proposed by Studer and
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Masulli (1995), Masulli et al. (1999, 2000), and Cicioni and

Masulli (in press), which can be based on the results and

prescriptions related to the Embedding Theorem (Mañé,

1981; Takens, 1981). The input layer of a MLP predictor

can be sized as the embedding dimension of the dynamical

system computed, e.g. using the Global False Nearest

Neighbors (FNN) method (Abarbanel, 1996), while the time

lag of input can be selected as the first minimum of the

average mutual information of the signal (Abarbanel, 1996;

Fraser, 1989; Fraser & Swinney, 1986; Vastano & Rahman,

1989).

As shown by Studer and Masulli (1995), the estimation

for the time lag based on mutual information is not

supported from theory, and must be validated experimen-

tally. On the other hand, for limited data sets, the best

generalization can be obtained with learning machines of

limited complexity (Vapnik, 1995), sometime leading to

select MLP with input layers smaller that the embedding

dimension of the dynamical system. Anyway, the FNN

technique gives a reasonable starting point for the search of

the optimal structure of the predictor.

Even if this constructive approach has been success-

fully applied to many cases (Masulli et al., 1999; Studer

& Masulli, 1995), it cannot be directly applied to

forecasting discontinuous or intermittent signals, such as

the rainfall signal that is the target of this study, as the

universal function approximation theorems for neural

networks (Cybenko, 1989) and fuzzy systems (Wang &

Mendel, 1992) require the continuity of the function to

be approximated.

In Masulli et al. (2000) and Cicioni and Masulli (in

press), we extended to the case of discontinuous or

intermittent signals, by implementing an ensemble

method based on the SSA (Broomhead & King, 1986;

Kumaresan & Tuffs, 1980; Lisi, Nicolis, & Sandri, 1995;

Vautard et al., 1992).

In SSA, the state vector Si ¼ ðsi; siþ1;…; siþM21Þ is a

temporal window (augmented vector) of a series s of

length N; made up of a given number of samples M:

The cornerstone of SSA is the Karhunen– Loève

expansion, or Principal Component Analysis (PCA) (Ther-

rien, 1989), that is based on the eigenvalue problem of the

lagged covariance matrix Zs: Zs has a Toeplitz structure, i.e.

constant diagonals corresponding to equal lags:

cð0Þ cð1Þ · · · cðM 2 1Þ

cð1Þ cð0Þ cð1Þ · · ·

· · · · · ·

· · · · · ·

· · · · · cð1Þ

cðM 2 1Þ · · · cð1Þ cð0Þ

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

ð1Þ

In the absence of prior information about the signal it has

been suggested (Vautard et al., 1992) to use the following

estimate for Zs :

cðjÞ ¼
1

N 2 j

XN2j

i¼1

sisiþj ð2Þ

The original series can be expanded with respect to the

orthonormal basis corresponding to the eigenvectors of Zs

siþj ¼
XM
k¼1

pk
i uk

j ; 1 # j # M; 0 # i # N 2 M ð3Þ

where pk
i are called principal components (PCs) and the

eigenvectors uk
j are called the empirical orthogonal

functions (EOFs), and the orthornomality property

XM
k¼1

uk
j uk

l ¼ djl; 1 # j # M; 1 # l # M ð4Þ

holds. It is worth noting that SSA does not resolve periods

longer than the window length M: Hence, if we want to

reconstruct a strange attractor, whose spectrum includes

periods of arbitrary length, the large M the better, avoiding

to exceeding M ¼ N=3 (otherwise statistical errors could

dominate the last values of the auto-covariance function).

Concerning the application of SSA to forecasting, it is

supported by the following argument (Vautard et al., 1992):

Since the PC are projections on EOFs, they are filtered

versions of the signal (i.e. weighted moving averages with

weights given by ul). They are band limited and their

observed behavior is more regular than that of the raw

series. Hence, they are more easily forecast.

Following Vautard and Ghil (Ghil & Vautard, 1991;

Vautard & Ghil, 1989; Vautard et al., 1992), suppose we

want to reconstruct the original signal si starting from a SSA

subspace A( of k eigenvectors. By analogy with Eq. (3), the

problem can be formalized as the search for a series ŝ of

length N; such that the quantity

HAðŝÞ ¼
XN2M

i¼0

XM
j¼1

ŝiþj 2
X
k[A

pk
i uk

j

 !2

ð5Þ

is minimized. In other words, the optimal series Ŝ is the one

whose augmented version Ŝ is the closest, in the least-

squares sense, to the projection of the augmented series S

onto EOFs with indices belonging to A:

The solution of the least-squares problem of Eq. (5) is

given by

ŝi ¼

1

M

XM
j¼1

X
k[A

pk
i2ju

k
j ; for M # i#N2Mþ1

1

i

Xi

j¼1

X
k[A

pk
i2ju

k
j ; for 1# i#M21

1

N2 iþ1

XM
j¼i2NþM

X
k[A

pk
i2ju

k
j ; for N 2Mþ2# i#N

8>>>>>>>>>>><
>>>>>>>>>>>:

ð6Þ
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When A consists on a single index k; the series ŝ is called the

kth reconstructed component (RC), and will be denoted by

ŝk: RCs have additive properties, i.e.:

ŝ¼
X
k[A

ŝk ð7Þ

In particular, the series s can be expanded as the sum of its

RCs:

s¼
XM
k¼1

ŝk ð8Þ

Note that, despite its linear aspect, the transform changing

the series s into ŝk is, in fact, non-linear, since the

eigenvectors uk depend non-linearly on s:

If we truncate this sum to an assigned number of RCs, the

explained variance of the related augmented vector Ŝ is

the sum of the eigenvalues associated to those RCs, while

the estimation of the resulting reconstruction error is the

sum of the eigenvalues corresponding to the remaining RCs.

As a consequence, it is suitable to order the RCs following

the value of the eigenvalues.

Let A1; A2;…;AL be L independent subspaces with

cartesian product spanning the full space of M eigenvectors.

We define a reconstructed wave (RW) Vl as:

Vl ¼
X

k[Al

ŝk
: ð9Þ

Then, from Eqs. (8) and (9), we can obtain

s ¼
XL
l¼1

Vl; ð10Þ

that says that the original series s can be recovered as the

sum of all the individual RWs.

3.2. Ensemble method

In order to design a learner for complex signals, such as

discontinuous and/or intermittent signals, we can apply the

following approach that combines an unsupervised step and

one supervised one, building-up in such a way an ensemble

of learning machines:

† Unsupervised decomposition: Using the SSA, decom-

pose the original signal S in RWs, corresponding to sub-

spaces with equal explained variance.

† Supervised learning: Prepare a predictor for each RW as

shown in the previous sub-section.

† Operational phase: The forecasting of the original signal

S is then obtained as the sum of the forecasts of

individual RWs, i.e. using Eq. (10).

It is worth noting that, sometime the most complex

waves (in general those corresponding to the low eigen-

values) cannot be satisfactory forecasted, using the available

data. Following the criteria of the best prediction (Lisi et al.,

1995) in Eq. (10) we can excluded them if, when if enclosed

in the sum, make worse the overall forecasting.

3.3. Previous results on the MS series

One challenging application of this ensemble method,

carried out by our research group, is the forecasting of the

daily rainfall intensities series. The considered data are the

daily rainfall intensities series collected by 135 stations

located in the Tiber river basin (Fig. 1) in the period 01/01/

1958–12/31/1967.

The data analysis reported in depth by Masulli et al.

(2000) and Cicioni and Masulli (in press) was related to the

series of the MS, defined as the average of all 135 daily

rainfall intensity series. Fig. 2 shows a window on the period

07/01/66–12/30/66 that enlightens the discontinuity and

intermittence of the MS signal.

We report here a sketch of the methodology and of some

experimental results that are relevant for the analysis of the

daily rainfall series of the individual stations.

A preliminary work concerned the design of a MLP

predictor of raw MS data using the constructive approach.

The forecasting results obtained in this way were very poor,

due to the discontinuity of the signal.

Then, in order to reduce the effects of the discontinuities,

we applied the SSA to the first 3000 samples of the MS

series. We shall consider in the following the results

obtained with an SSA using a window length M ¼ 182 days.

Some RW and the original signal for period 07/10/1966–

12/30/1966 are shown in Fig. 3.

Using the SSA, from the original MS series we obtained

10 waves ðRW1;…;RW10Þ reconstructed from 10 disjoint

sub-spaces, each of them representing a 10% of the

explained variance (Table 1). The best results for each

Fig. 2. Mean station: daily rain millimeters; period: 07/01/66–12/30/66.
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RW have been obtained using as inputs windows of 5

consecutive elements and two hidden layers with dimen-

sions shown in Table 2.

As each wave contains 3652 daily samples, in our case

for each wave we obtained a data set of 3646 associative

couples, each of them consisting of a window of 5

consecutive elements, as input, and the next day rainfall

intensity, as output.

Each MLP was trained using the first 2000 associative

couples (training sets) and error back-propagation algorithm

Fig. 3. Some RWs of the MS series; period: 07/01/1966–12/30/1966.

Table 1

Mean Station: RWs from disjoint SSA subspaces (each of them explaining 10% of the variance) and corresponding RCs

RW

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10

RCs 1–4 5–11 12–19 20–28 29–39 40–52 53–70 71–93 94–126 127–182

The SSA is performed using a window of 182 days.

Table 2

Mean Station: Size of the hidden layers (L1 and L2), RMS error and Maximum Absolute (MAXA) error on the test set for each RW

RW

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10

L1 6 8 6 8 8 8 4 6 3 3

L2 4 5 4 4 5 4 4 4 4 4

RMS 0.02 0.03 0.04 0.04 0.06 0.15 0.15 0.64 0.75 0.29

MAXA 0.05 0.12 0.15 0.11 0.14 0.40 0.38 1.92 2.40 0.90

The size of MLPs input layer is 5.

D. Baratta et al. / Neural Networks 16 (2003) 375–387380



with momentum and batch presentation of samples (Vogl,

Mangis, Rigler, & Zink, 1988). The following 1000

associative couples (validation sets) were used in order to

implement an early stopping of the training procedures. The

remaining 646 were used for measuring the quality of the

forecasting of the RW (test sets).

Using a window of 182 days for the SSA, the best

forecasting results were obtained using MLPs with five

Fig. 4. (a) Correlation to MS map of the 135 stations on the Tiber river basin. The Geographic Center (GC) of the 135 stations, the two stations more correlated

to MS, and the two stations less correlated to it (Table 3) are shown on the map; (b) histogram of station’s correlation to MS.
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inputs and two hidden layers. Details on the size of

hidden layers and on the forecasting results are given in

Table 2. The sum of the forecasts of the 10 waves at 1

day ahead is very satisfactory, as the resulting MS

forecasting on the test set has a RMS error of only

0.95 mm of rain. We also report that the Maximum

Absolute error is 6.47 mm. Note that the forecasted signal

is clamped to zero.

4. Learning the individual stations

The daily rainfall series of individual stations are more

discontinuous than the series of the MS, but are well

correlated to it. In Fig. 4(a) we plot the correlation map of

the daily rainfall series of the individual stations to the MS,

while the corresponding histogram is presented in Fig. 4(b).

The average linear correlation coefficient is 0.7. Moreover,

using the Fisher–Snedecor test, we find a linear dependence

Table 3

Correlation to MS (Corr), RMS error on the test set obtained using the

Approach C (RMS-C) and the Approach D (RMS-D) for the two stations

more correlated to MS and for the two stations less correlated to it

Rank Station Corr RMS-C RMS-D

1 3257 0.82 1.93 2.40

2 3233 0.81 1.49 1.72

134 3126 0.53 1.56 2.31

135 3070 0.45 2.35 4.51

Fig. 5. Errors in the period 07/01/1966–12/30/1966 using ensembles of 10 MLPs with 5 inputs. The plots are relative to the two stations more correlated to MS,

and to the two stations less correlated to it (Table 3).
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at the 0.01 level of station’s correlation versus the distance

from Geographical Center (GC) of the 135 stations. GC is

defined as the average position of the 135 stations. Its

longitude with respect to Greenwich is: 42 380 88.800 E, its

latitude is: 12 320 51.000, and its height is 473.1 m.

Various problems have to be faced in forecasting the

individual time series of the stations. For example, we could

expect that the limited number of data points could lead to

some uncertainty in setting the parameters of our predictors.

Moreover, we could expect a common background

meteorological behavior for most stations because of their

correlation to the MS.

Let us mention other dilemmas. Efficient predictors can

be based on the characteristic derived from the MS or from

individual stations directly. The SSA could be applied to the

time series of the MS or directly to the time series of the

individual stations. A MLP could be trained on the time

series of the MS, or MLPs could also be trained on time

series from individual stations, eventually decomposed by

SSA, and so on.

In this study, among all possible alternatives, we

explored the four following approaches to the forecasting

of individual time series:

Approach A. Design of a single neural predictor for each

station, sizing of its input layer using the measurement of

the average mutual information and the method of Global

False Nearest Neighbors.

Approach B. Implementing the unsupervised decom-

positive ensemble method based on SSA for each station,

following the same approach previously presented for the

MS.

Approach C. Projecting the series of each individual

station on the EOFs of the SSA already performed on

Fig. 6. Scatter plots on the test sets using ensembles of 10 MLPs with 5 inputs. The plots are relative to the two stations more correlated to MS, and the two

stations less correlated to it (Table 3).
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Fig. 7. (a) One day head forecasting RMS error map for the 135 stations on the Tiber river basin. The Geographic Center (GC) of the 135 stations, the two

stations more correlated to MS, and the two stations less correlated to it (Table 3) are shown on the map; (b) histogram of station’s one day head forecasting

RMS error.
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the MS, calculating the RCs, aggregating the RCs in 10

RWs following Table 1, and then training one MLP for

each RW and for each projected individual station. The

forecasting of the station’s series will be the sum of the

forecasts of the 10 RWs.

Approach D. Projecting the series of each individual

station on the EOFs of the SSA already performed on

the MS, calculating the RCs, and aggregating the RCs

in 10 RWs following Table 1. The forecasting of

the station’s series will be the sum of the forecasts of

the 10 RWs obtained using the MLPs already trained

for the MS (with hidden layer dimensions shown in

Table 2).

Note that the Approaches B–D are ensemble methods

based on the SSA decomposition of the signal, implement-

ing different alternatives: In Approach B for each individual

station we perform the SSA and we train an ensemble of

MLPs on the obtained RWs. In Approach C we obtain the

RWs from the projection of the series of an individual

station on the EOFs of the SSA of the MS and we train one

MLP for each RWs. In Approach D we have only to

obtain the RWs from the projection of the series of an

individual station on the EOFs of the SSA of the MS, as we

will use to forecast the weight of MLPs already computed

for the MS.

5. Results and discussion

From our experimentation, the Approach A is unable to

give useful results for any individual station, as well as for

the MS station.

The Approach B, while is the most computationally

expensive, at the same time leads to poor results, that we

could ascribe to ill-conditioning in the SSA due to the

significant presence of noise in the series of an individual

station.

The Approaches C and D give similar good results.

Using the Approach D (that is less computationally

expensive than Approach C) the average RMS error for

all the stations is about 2.71 mm of rain for all the

stations, that is a good value in QRF. The results obtained

with Approach C are often slight better than those of

Approach D.

In Table 3, we show the RMS errors obtained for the

two stations more correlated to the MS, i.e. Rieti (code

3257) and Arrone–Terni (code 3233), and for the two

stations less correlated to MS, i.e. Scritto–Perugia (code

3126) and San Lorenzo Nuovo–Viterbo (code 3070),

while in Figs. 5 and 6 we present the errors and the scatter

plots on the test set for the stations 3070, 3126, 3233, and

3257. All results have been obtained following the

Approach D, with the exception of those of station 3257

(that is the less correlated with MS) that have been

obtained using the Approach C.

In Fig. 7 the one day ahead forecasting RMS error for the

135 stations is presented in form of as a geographic map and

as an histogram.

6. Conclusions

In order to design a predictor for rainfall forecasting in

the Tiber basin we applied a constructive methodology

proposed in Studer and Masulli (1995), Masulli et al. (1999,

2000), and Cicioni and Masulli (in press) that leads to the

design of efficient predictors even for complex signals, such

as discontinuous or intermittent signals.

The approach followed by us to design the rainfall

forecaster is an ensemble method that combines an

unsupervised and a supervised step:

† Unsupervised decomposition. The original signal is

decomposed in RWs, using the Singular Spectrum

Analysis.

† Supervised learning. For each RW we design and train a

MLP predictor using suggestions from dynamical

systems theory.

In the operational phase the forecasting of the original

signal is obtained as the sum of the forecasts of individual

RWs. As reported in Masulli et al. (2000 and Cicioni and

Masulli (in press), the daily rainfall forecasts of MS are very

satisfactory, with a RMS error equal to 0.95 mm of rain.

In this paper we have extended the methodology to the

learning of individual stations. The approach that gives the

best results is based on the following steps:

(1) Decompose the series of the station using the SSA

already performed on the MS; calculate the RCs and

aggregate the RCs in a number of RWs.

(2) Train one MLP for each RW.

The forecasting of the station’s series is the sum of the

forecasts of the RWs.

We have also shown that it is possible to skip step 2 and

use in forecasting the MLPs already trained for the MS. The

daily rainfall forecasts on individual station obtained with

this latter approach show an average RMS error of 2.71 mm

of rain.

Note that, in the present study we tried to exploit the

potentialities of the proposed ensemble method based on

SSA decomposition and we have chosen to use as base

learner a standard MLP trained with simple cross-vali-

dation. As a consequence, the good quality of the results in

the forecasting of the station’s series we have obtained is to

be ascribed to the ensemble method.

The next step is (a) to investigate more powerful learning

techniques for MLPs (e.g. Optimal Brain Damage (LeCun,

Denker, & Solla, 1990), Brain Surgery (Hassibi, Stork, &

Wolff, 1992) or Weight Decays (Krogh & Hertz, 1992)),
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other base learners (e.g. Partial Recurrent Neural Networks

(Elman, 1990), and Time Delay Neural Networks) (Waibel,

1990), Finite Impulse Response Neural Networks (Wan,

1994), Non-linear Auto-Regressive models with exogenous

input Neural Networks (van Zyl & Omlin, 2001), etc.), and

ensemble methods (e.g. boosting (Freund, Iyer, Schapire, &

Singer, 1999)) that can be introduced to improve the

forecasting of RWs, and (b) to study their effectiveness on

the overall improvement of the forecasting of the station

series.
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