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Abstract

NEURObjects is a set of C++ library classes for neural network development, exploiting
the potentialities of object-oriented design and programming. The main goal of the library
consists in supporting experimental research in neural networks and fast prototyping of
inductive machine learning applications. We present NEURObjects design issues, its main
functionalities, and programming examples, showing how to map neural network concepts
into the design of library classes. c© 2002 Elsevier Science B.V. All rights reserved.

Keywords: Neural network development; Fast prototyping of neural network applications;
Object-oriented programming; Library of C++ classes

1. Introduction

The availability of software libraries for the development of neural network ap-
plications can signi;cantly speed up the development time of a speci;c application,
especially when neural network algorithms are implemented from scratch in order
to embed them in new software products.

In neural network and machine learning research, we often need to compare
di=erent learning algorithms, evaluating their performances on di=erent data sets.
Moreover, research and experimentation with new neural network algorithms and
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applications sometimes requires to modify existing algorithms, or to recombine
them, reusing components from existing learning machines.

In such cases, a set of C++ library classes, for neural network development,
seems to be a proper solution to these problems, exploiting the modularity, re-
usability and versatility characteristics of C++ design and coding [36].

It is worth noting that only a few libraries in C++ for neural network devel-
opment are easily accessible. Among the available ones, some of them use C++
as a “better C”, according to a well-known Stroustrup’s statement [37], employing
just in part the potentialities of object-oriented (OO) programming (see, e.g., the li-
braries of the Timothy Masters’s book [22]). Others need remarkable computational
resources, as well as considerable training time for the software developer [16,17].
Other kinds of C++ libraries concern those developed with emphasis on speci;c
neural network models. NNO [19], e.g., has focused its e=orts on self-organizing
incremental networks [13], providing only a simple implementation of classes deal-
ing with multi-layer perceptrons (MLP).

In this paper we present NEURObjects, a set of C++ library classes for neural
network development, exploiting the potentialities of OO design and programming
[36]. The main aim of the project consists in providing a set of basic neural network
classes, supporting design, implementation and comparative testing of classi;cation
algorithms. Hence NEURObjects is a general set of classes supporting research,
application and training in neural networks. The library also provides high level
programs for experimental research in neural networks and fast prototyping of
applications in inductive learning tasks. Source code, compiled libraries, appli-
cations and HTML documentation are freely downloadable for educational and
research purposes at the NEURObjects web site: http:==www.disi.unige.it=
person=ValentiniG=NEURObjects.

The paper is structured as follows: In Section 2 the reasons for using C++
classes in neural network development and the main goals of NEURObjects are
discussed. In Section 3 the general library design is presented, showing also some
basic ideas about neural network OO design. In the next section related works are
summarized and compared with the present work. Section 5 describes the main
way end users can use the library, and simple examples of NEURObjects usage
and programming are given in Section 6. Conclusions and future developments of
this work end the paper.

2. NEURObjects aims

2.1. C++ classes for neural network development

There are many reasons to choose C++ in order to build a library supporting
fast development of neural network based systems:

• C++ is a good general-purpose language with many useful OO features [36,37].
• C++ has also a large Oexibility, allowing to avoid the OO paradigm when

needed, as we can use it as an “improved C language”.
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• The language’s OO features allow us to decompose the library into a set of
modular objects which can be tested independently.

• It is easy to expand and reuse C++ code.
• C++ is very ePcient: none of his own features (overriding, overloading, func-

tion inlining, etc.) lowers execution speed.

Concerning the speci;c application to neural network development, OO design
provides classes corresponding to neural network concepts; in particular:

• C++ linguistic constructions enable us to represent in a concise way features
and functionalities of neural networks.

• Data abstraction allows us to de;ne in a comprehensive way sets of neural
structures and operations.

• Ensembles of neural nets can be easily accomplished by net-objects generated
by C++ constructors.

• Polymorphism of virtual functions leads up to generalization and Oexibility of
the classes related to neural networks.

Moreover, by inheritance, we can easily extend existing classes in order to exper-
iment with new learning algorithms, without wasting time on programming from
scratch.

2.2. NEURObjects goals

The main goal of NEURObjects is to support experimentation, training, test
and comparative study of neural network based systems. NEURObjects permits to
perform in an easy and quick way the following tasks:

• Application of standard neural network algorithms to speci;c classi;cation and
regression problems.

• Fast prototyping of applications in neural network domain.
• Implementation of new neural learning algorithms or variants of already existing

neural algorithms.
• Implementation of neural nets ensembles in order to recombine them and improve

overall system’s classi;cation capabilities.
• Comparison of learning algorithms on speci;ed classi;cation problems.
• Generation of performance statistics such as accuracy, con;dence level, rejection

curves, error rates and confusion matrices.

In particular, the library includes classes implementing methods for ensembles of
learning machines, such as Output Coding decomposition methods [28,23] and
classes (under construction) implementing bagging and boosting [7,12].

3. Design of NEURObjects library

In this section, we outline the main characteristics of the library, showing how
to apply OO design and programming principles to neural networks. EPciency is
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Fig. 1. NEURObjects: examples of inheritance, is-part-of and use relations among concept=classes
(see text).

a key-feature in neural network applications, and the end of the section deals with
this issue in the framework of C++ programming.

3.1. General design approach

The general design approach consists in mapping main concepts of the applica-
tion domain into library classes: For instance, OO design allows the direct trans-
lation of the concept of neural network into the neural network class or from the
concept of network layer directly into the layer class.

The concepts=classes are related each other by OO relations of inheritance,
is-part-of (composition) and use, as illustrated in the examples of Fig. 1 regarding
the structure of three neural network classes (OneLayer, TwoLayer and Three-
Layer) and some learning algorithms (grouped in a dotted box). In the ;gure,
inheritance relation is represented by solid arrows, is-part-of relation by boxes in-
side other boxes (i.e. LayerNet is-part-of OneLayer), and use relations by dotted
arrows. 1

In Table 1 we show the matching between neural concepts relations and OO
relations. We exploit this matching for the design of the library.

It is worth noting that a multilayer perceptron can be made, for instance, up
by one, two or three layers, but the general features of these di=erent MLP are

1 The direction of the arrows in the ;gures is from parent to child, i.e. it is the opposite of the
usual OO inheritance graphs.
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Table 1
Design of NEURObjects: neural concepts and OO relations

Neural concepts relations Object-oriented relations

Di=erent MLPs own similar features Inheritance: A two-layer perceptron
and are hierarchically related. can inherit from a one-layer perceptron

and a three-layer can inherit from a two layer.

MLP is made up by connected layers Is-part-of relation: A layer class
of units and every layer computes is-part-of a neural network class.
using only inputs coming from the
layer below.

Each MLP can use di=erent learning Use relations: Each MLP class can
algorithms. use methods of di=erent learning

functional classes.

Fig. 2. Inheritance hierarchic tree of MLP classes.

similar; they can be designed using inheritance in such a way that a two-layer per-
ceptron inherits from a one-layer perceptron and a three-layer inherits from a two
layer (see Fig. 1). The relations of inheritance model the design of MLP classes:
All classes inherit from Network, a basic abstract neural network class (Fig. 2).
OneLayerTest and its derived classes are MLP with functionalities reduced to
testing only; OneLayer and its derived are standard MLP with, respectively, 0,
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1 and 2 hidden layers; OneLayerECOC and its children classes are MLP ECOC
(multi-layer perceptrons with error correcting output coding) [9]; Dico1 are MLP
specialized for dichotomic classi;cation problems.

The library directly supports perceptrons with three layers or less, but it is easy
to build, by inheritance, perceptrons with more layers.

Moreover, as an MLP is made up by connected layers of units and every layer
computes using only inputs coming from the layer below, we can decompose
the overall computation of the net in the individual computations performed by
each layer. As a consequence, the whole network can compute connecting the
results of each layer in a suitable way. These simple concepts are transposed into
NEURObjects by designing a layer class and using the relation “a layer is-part-of
a neural network” (or in the same way the network is made up by layers of
neurons). The method for computing the output of the neural net is given by the
corresponding computing method used by its components (the layers):

/*

compute: computes network output,
using vinput as input vector.

*/
vector TwoLayer::compute (vector vinput)
{

// hidden layer computation
vector hidout = layer[HIDDEN1].compute(vinput);

// output layer computation
return (layer[OUTPUT].compute (hidout));
}

In this case also OO design directly agrees with the concept of the neural network
domain, since connecting the layers of the net corresponds to the mathematical
neural concept of function composition.

In order to illustrate an example of use relation, let us observe that the same
net can use di=erent learning algorithms. Most of the training algorithms involve
an iterative procedure in order to minimize an error function, with adjustments
of weights made in a sequence of steps. At each step we can distinguish be-
tween two distinct stages: Evaluating the error function derivatives and updating
the weights by using the computed derivatives [5]. As these stages are substan-
tially separated, we can design learning algorithms as functional classes whose
main task is updating the weights of the net, no matter the way this task is
done. The same neural network now can use di=erent learning algorithms, using
their methods to update the weights. Moreover, de;ning the fundamental opera-
tions of an abstract learning algorithm, we can set out pure virtual methods of
a basic abstract learning class; as a consequence, it is easy to add new learn-
ing classes, overriding virtual pure methods of the basic abstract class, without
any modi;cation in other parts of the code. A hierarchic tree of learning func-
tional classes is given in Fig. 3: Learning is the basic virtual class; Gradient
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Fig. 3. Inheritance hierarchic tree of learning functional classes.

descent lin. and Gradient descent exp. are variants of the classic gradient de-
scent algorithm (Gradient descent); Grad. desc. mom. lin. and Grad. desc. mom.
exp. are variants of the gradient descent with momentum algorithm (Grad. desc.
momentum).

3.2. NEURObjects classes

NEURObjects develops classes representing concepts in neural network domain
and uses public domain software for general operations not speci;c to neural net-
works. Using a functional approach, we can divide the library in the following
groups of classes:

• General support classes. These classes are not speci;c to neural networks. For
instance, LEDA’s [31] library classes allow the implementation of the basic
classes used by NEURObjects (lists, queues, vectors, matrices, balanced trees,
dictionaries).

• I=O and pre-processing classes. Classes for reading and writing data ;les, con-
verting attribute types among formats (e.g. automatic conversion of classes from
string-labeled into numeric-labeled format), normalizing attribute values, etc.

• Automatic data generation classes. Classes generating synthetic data ;les for
training and testing by using controlled random or deterministic techniques.

• Neural network building classes. These classes are intended to build neural net-
works ranging from simple perceptrons to di=erent types of multi-layer
perceptrons.



630 G. Valentini, F. Masulli / Neurocomputing 48 (2002) 623–646

• Learning algorithms classes. They implement several standard algorithms, from
simple gradient descent to variations of conjugate gradients [3] or quasi-Newton
methods (such us BFGS algorithm) [4], 2 and others methods.

• PND cleasses. Classes implementing multi-class classi;ers through output cod-
ing decomposition methods [9,28,23]. Polychotomies are performed recombining
parallel independent dichotomizers based upon perceptrons. These classi;ers are
called Parallel Non-linear Dichotomizers (PND) [25] and are implemented in
speci;c template classes whose parameter is the type of decomposition [28].
Using single layer perceptrons as dichotomizers, we obtain classi;ers similar to
that proposed by Alpaydin and Mayoraz [1], while using MLP we obtain the
PND studied in [25].

• Performance statistics classes. Classes handling performance statistics such as
accuracy, con;dence levels, rejection curves, learning rates and confusion ma-
trices, and classes implementing estimations of dependence among output errors
in learning machines, using measures based on mutual information [26,27].

• Comparing algorithms classes. Classes handling statistical test for comparing
algorithms on a particular learning task: they detect whether exists a real (sta-
tistically signi;cant) di=erence among di=erent learning algorithms [8].

Actually NEURObjects consists of about 10 000 lines of code developed using
GNU g++ compiler on PC-Linux and Sun-Solaris workstation platforms. Each
class and related code are documented in HTML and Postscript using DOC++, a
documentation system for C++ and Java [42] (an example is shown in Fig. 4).

3.3. E@ciency of C++ libraries

A key-feature of neural network software is its ePciency. C++ combines Oex-
ibility, reusability and extendibility with this important feature.

In fact, C++ has been designed to devolve compactness and ePciency of ex-
ecutable code to compilers technology. The new C++ features have added no
substantial overhead with respect to C. Considering, for instance, one of the new
key-features of C++, i.e. the implementation of proper functions calls whose type
is unknown at compilation time, no overhead is added. In fact, the call mechanism
needs to examine the object and obtain information that is added to the object
by the compiler: A simple implementation mechanism consists in converting the
name of the function into a table of function pointers (virtual functions table). This
mechanism with current compilers and microprocessors technology implements this
key feature of OO programming with no overhead. Moreover, C++ avoids features
that can add overhead to run-time execution. For instance, a pure OO language
(e.g. Small-Talk) checks during execution if it is possible to perform a speci;c
operation (i.e. to execute a proper function) on a speci;c object. As this dynamic
type checking introduces overhead, C++ uses a static type checking, assuring the

2 At present, some of these classes are not included in the on-line distribution of NEURObjects.
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Fig. 4. An example of HTML documentation of NEURObjects.

users that the operations speci;ed in class declarations are the only one accepted
by the compiler.

Moreover, C++ interfaces well with other programming languages, and we can
easily encapsulate functions and libraries implemented in other languages. In fact,
in future releases we plan to use BLAS [10] and LAPACK [2] libraries for
speeding-up the computation: BLAS o=ers the most ePcient routines (implemented
in FORTRAN) for vector and matrix multiplications, operations that are fundamen-
tal for speeding-up execution both in the forward and in the backward step of the
backpropagation algorithm. LAPACK, that uses BLAS for low-level subroutines,
o=ers a set of very ePcient implementation of linear algebra functions, such matrix
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QR decomposition or pseudoinverse matrix calculation. We have also planned to
use specialized versions of these libraries for family of microprocessors, such as
Pentium III or Pentium IV Intel optimized BLAS libraries.

4. Related work

Di=erent standard network simulation packages are available for experimenta-
tion with neural nets. We cite only the most popular such as SNNS developed at
Stuttgart University [43], Aspirine developed at MITRE Lab [21], or Open Simu-
lator, developed at ETH Zurich [20]. These packages represent good solutions for
neural network simulation, but in this section we deal with software libraries for
neural network development. In particular, we focus on C++ libraries, as they join
good run-time execution speed with the Oexibility and reusability features of OO
programming.

4.1. Libraries that use C++ as a “better C”

There are not many C++ libraries for neural network development, and many
of them use C++ as an imperative language, exploiting only in part its OO char-
acteristics, reducing C++ to an extended version of the C language. For instance,
the Rao & Rao’s library [33], while it o=ers di=erent learning algorithms and ap-
plications with neural networks and fuzzy systems, presents most of the code as
“masqueraded” C++ code; moreover, code is structured in very large blocks, with
only limited e=orts for decomposing and organizing it into modules. Master’s book
and its included software [22] su=ers from similar problems, even if we have a
more rational modularization of the code, but with classes and C functions mixed
without a clear OO design and implementation.

Di=erent is the approach to OO programming in Welsted’s library, where pro-
grammatically the author declares that the neural code is written in C and only
the graphical interface is written using a C++ toolkit [41]. Watson’s book shows
examples of application of OO design and programming concepts to neural net-
works, but it mainly deals with general C++ programming techniques applied in
di=erent contexts and applications, o=ering only a limited set of classes speci;c to
neural network development [40].

4.2. ANNDE library

An interesting pioneering example of applications of OO concepts to neural
networks is represented by the paper of Hung and Adeli [15]. Although this
work is oriented to speci;c domains (structural engineering applications), gen-
eral object-oriented principles are applied to the design of a C++ neural network
library (ANNDE: an arti;cial neural network development environment). Simi-
larly to our library, the main neural network concepts are mapped into neural
network classes, but the overall design is very compact: Only few classes model
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the entire system, while NEURObjects presents a more articulated architecture.
The separation between learning strategies and learning processes (corresponding
to di=erent classes) allows the separation between general learning approaches (su-
pervised, reinforcement and competitive learning) and their actual implementation
using learning algorithms. The inheritance prevails among the other relations be-
tween classes and models the design of the library. This in some cases seems to
limit the extendibility and the reusability of the library. For instance, the learn-
ing domain (LD) class, i.e. the class implementing input and output of the nets,
is the base class for Neural Net (NN), i.e. the class implementing the structure
of the neural networks. This design corresponds to the wrong relation “the net
is-a learning domain”, while the correct relations are “the net has-a” or “uses a
learning domain”. On the other hand, this compact design modeled mainly through
inheritance relations could be appropriate in speci;c domain applications, where
reusability and extendibility are not the main goals. In fact, this library shows
good results in applications related to structural engineering problems.

4.3. Blum’s library

Blum’s book is a good introductory book to OO neural network programming
[6]. Many of Blum’s concepts and design features are present in NEUROb-
jects. For instance, at the lower level ;elds of neurons are represented as vectors,
synapses are represented as matrices and also, at this level, inheritance and com-
position relations are used in the same way, e.g. the matrices representing neural
synapses are components of the neural network objects. Moreover, as in NEU-
RObjects, a base abstract class is proposed for encapsulating the basic abstract
characteristics of all neural nets. However, there are also substantial design and
implementation di=erences. For instance, Blum chooses to model the backpropa-
gation algorithm as a derived class of the base abstract class net, mixing in the
same class the structure and the properties of a multi-layer perceptron with a single
simple version of the backpropagation algorithm. Even if this choice can simplify
the overall design and can be justi;ed from an educational point of view, it is not
the right one for a library for neural network development. In fact, programmers
build their own algorithms, using the classes as basic components or developing
new classes from the existing ones. On the contrary, in our implementation we
have exploited the fact that we can distinguish two stages in the backpropagation
algorithm: evaluating the error function derivatives and updating the weights. In
NEURObjects we have developed a hierarchy of learning classes separated from
the net classes, that simply use a learning algorithm: In such a way, an end user
can select between di=erent learning algorithms, without developing new derived
classes, and a programmer can develop new learning algorithms without modifying
the neural net classes.

Some implementation details also highlight that NEURObjects is conceived for
neural network development in research and fast prototyping of applications, while
Blum’s library limits itself to demonstrative applications. For instance, in Blum’s
library neural network parameters are stored in ;les. It could be a good and clean
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choice, but if we have to train large number of neural networks with a large range
of di=erent parameters (e.g. for model selection), it is useful to provide classes
methods or, better, general purpose applications with multiple parameters, and eas-
ily change them inside shell or Perl scripts. On the other hand, we outline that
these di=erent approaches are not mutually exclusive and can be easily combined
in the same library.

4.4. Neural Network Objects

Neural Network Objects (NNO) [19] is a C++ library specialized on self-
organizing incremental networks [13]. The abstract classes are used for modeling
the library: an abstract neural network class at the root of the hierarchy has two
derived abstract classes, one for supervised and another for unsupervised neural
networks. From each of the two abstract children classes are derived the other
classes of the library. This library provides implementations of Growing Neural
Gas and Growing Cell Structures [14] together with Kohonen Feature Maps [18],
but only a basic implementation of a MLP. Comparing the overall architecture
of NNO with NEURObjects, we can note that the relations of compositions are
not extensively used in NNO. As a consequence, the design is not as modular
as in NEURObjects: For instance, inside the MLP class, layers are not designed
as component classes and learning algorithms are not implemented as separated
classes. However, NNO is a very nice library for experimenting and developing
applications with self-organizing incremental networks.

4.5. MLC++

We conclude this brief review of C++ neural network libraries with MLC++
that it is not in a proper sense a library for neural network development [16,17].
In fact MLC++ probably represent the best e=ort to provide a set of C++ library
classes for the development of machine learning applications. In fact this project,
started at Stanford in the middle of 1990, has produced a large library with classes
implementing a large set of learning machines, but with only a limited implemen-
tation of neural networks. Nevertheless, the excellent design and implementative
solutions proposed in this library can be successfully used for designing and im-
plementing neural network libraries.

Di=erent induction algorithms are implemented in MLC++, such as decision
trees, Naive–Bayes, nearest-neighbor and others; more interestingly, the library per-
mits to interface external inducers, i.e. induction algorithms written by users. An-
other interesting issue is represented by wrappers, i.e. C++ objects that treat algo-
rithms (implemented as separate objects) as black boxes and act on their outputs.
For instance, accuracy estimators wrappers use any of a range of methods, such
as bootstrap or cross-validation to estimate the performance of an inducer. This
wrapper adds Oexibility and power to the library, because we can use the same
wrapper with di=erent induction algorithms. This feature is only partially present
in NEURObjects: e.g. we have no wrapper for cross-validation, that it is simply
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implemented as a public method in neural network classes. However, in boosting
classes, we use this feature to wrap a general and unspeci;ed learning machine
in order to use it as base learner in boosting algorithms. In this way, we can
easily add new learning machines to our library, using them as base learners in
boosting algorithms, without changing code for boosting itself. MLC++ allows us
also to build easily hybrid algorithms, i.e combinations of di=erent learning algo-
rithms; NEURObjects, being a neural network library, does not o=er the same rich
variety of learning algorithms, but it provides classes and facilities to build ensem-
bles of neural networks, e.g. output coding decomposition, bagging and boosting
ensembles.

Considering the overall software architecture, MLC++ library is designed
through sets of independent units, encapsulating in di=erent classes di=erent con-
cepts related to learning machines. Inheritance is used only when it helps the pro-
grammer: analogously to NEURObjects a set or relatively independent classes is
given, and the library is built exploiting all the relations of inheritance, composition
and use between classes proper of OO design and programming. The result is a set
of classes with clear-cut interfaces, easily re-usable and extendible for developing
and comparing learning machine algorithms. From an educational standpoint, our
library, smaller and limited to neural networks, takes only a little training time,
while MLC++ is a large machine learning library and consequently, it requires a
relatively long training time. In conclusion, these libraries are not comparable for
dimensions and also cover di=erent areas of machine learning, but share similar
applications of OO concepts and principles to software library design.

5. NEURObjects for neural network developers

Developing programs for training and testing neural networks using NEUROb-
jects requires just a few lines of C++ code, each corresponding to a concept or
an operation of the application domain:

Multilayer perceptron building, training by means of a learning algorithm and
testing the resulting neural network need only one or few lines of code.

Programming with NEURObjects consists in selecting the proper components
useful for the desired task and, when it is necessary, in overriding the behavior
of some components to fully ;t them to a speci;ed task. The work can be done
producing at each step a fully working program writing at each stage only few
lines of code. To show that, in the next sections, we will present some simple
example of NEURObjects programming.

In detail, we can distinguish three main ways end-users can use NEURObjects:

(1) Using high level applications. Some general purpose applications, implemented
using the library classes, allow to easily and quickly experiment on classi;-
cation problems. These basic applications allow neural networks training and
testing using di=erent types of neural nets, learning algorithms, and testing
methods. Each application has a basic simple use and it is possible to choose
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di=erent options in order to solve a problem. Some examples are showed in
the next section of this paper.

(2) Building applications by NEURObjects classes. It is possible to use NEU-
RObjects classes to build customized applications. This task requires at least
a bit of C++ programming know-how, but applications gain in power and plia-
bility. Some simple examples are showed in the next section of this
paper.

(3) Developing new classes. Programmers can develop their own classes, learning
algorithm, set of neural nets, or other similar advanced programming tasks,
using the library classes as parents. It is also possible to extend the existing
classes by inheritance or class composition.

6. NEURObjects usage and programming

In this section, we show some simple usage examples of NEURObjects classes
and its basic general purpose applications in order to solve di=erent classi;cation
problems: The ;rst one by using synthetic data, generated by an utility program
of NEURObjects itself, and the others by using data from UCI repository [29].

6.1. Examples of synthetic data generation

The NEURObjects class Patgen can generate synthetic data ;les in ASCII for-
mat and an info ;le with information about the generated data. These data consist
of clusters, each centered around a point in the input space. Each class is con-
nected with each cluster (but it is possible to connect one class with more clusters).
The clusters are generated by a normal distribution, centered around the generator
point.

For the ;rst classi;cation problem we edited an info ;le (p6.info) using the
class Patgen in order to generate a data ;le with six clusters. In this way, we can
de;ne the dimension and the number of patterns, the centers of the clusters, and the
standard deviation of the normal distribution along main axes. These parameters
may also be randomized, according to the options supplied to the application. For
instance, the following commands generate two six-class tridimensional data ;les
p6.train and p6.test using information written in the ;le p6.info:

dodata -t readinfo p6.train -ninfo p6
dodata -t readinfo p6.test -ninfo p6

6.2. Examples using general-purpose applications

We now show how to use general-purpose applications in classi;cation problems.
From a general point of view, these applications require only, as parameters, the
name of data set ;les, but supplying more parameters we can select more speci;c
options. More examples are on-line available at NEURObjects web site.
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6.2.1. Examples with the application nn
By using the application nn, we can train and test an arbitrary multilayer per-

ceptron (MLP) on speci;ed train and data sets. Program options allow to de;ne
the structure of the net, its learning algorithms and parameters. The line command
for nn, using the earlier generated data set, is

nn p6.train -test p6.data -nc 6 -d 3 -rate 0.02 -s p6.net

and the corresponding output is

Type: Multi layer perceptron
Layers number: 2
Input dimension: 3
Units hidden layer: 5
Classes number: 6
Stop conditions:
Maximum number iterations: 1000
Error threshold: 0.1
Learning algorithm type: Gradient descent
Learning rate: 0.02
By pattern learning.

Training results:
RMS error = 0.0970926
Iterations = 21
ELAPSED CPU time : Minutes : 0 seconds : 7

Testing results:
Errors:
Output - computed class - target class
6 0.31583 0.48789 0.14634 0.02548 0.19459 0.04472 - 2 - 1
6 0.04162 0.02127 0.53876 0.44078 0.01896 0.33760 - 3 - 4
Network saved in file p6.net

Confusion matrix :
199 0 0 0 0 0
1 200 0 0 0 0
0 0 200 1 0 0
0 0 0 199 0 0
0 0 0 0 200 0
0 0 0 0 0 200

Total errors:
Errors number : 2 : Error percent : 0.166667 %
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Table 2
Testing results on p6 data

H. units Algorithm Errors % Error

11 Grad. desc. 3 0.25
11 Grad. desc. mom. 3 0.25
11 Bold 2 0.17
11 Bold mom. 3 0.25
9 Grad. desc. 2 0.17
9 Grad. desc. mom. 3 0.25
9 Bold 2 0.17
9 Bold mom. 2 0.17
7 Grad. desc. 2 0.17
7 Grad. desc. mom. 2 0.17
7 Bold 2 0.17
7 Bold mom. 2 0.17
5 Grad. desc. 2 0.17
5 Grad. desc. mom. 2 0.17
5 Bold 2 0.17
5 Bold mom. 2 0.17

It is possible to save the history of learning errors during the computation, done
by epoch, and the whole output of the net for following statistical elaborations,
by using the following options that produce the ;les p6.herr (history errors) and
p6.out (output of the net with test ;le as input):

nn p6.train-test p6.data -nc 6 -d 3 -rate 0.02 \
-s p6.net -serr p6 -out p6

Several algorithms can be used by the option -alg. Table 2 shows some results
obtained by training and testing with the synthetic data sets p6.train (training set)
and p6.test (test set), both containing 1200 three-dimensional examples. 3 Neural
networks with two-layer perceptrons have been used. Hidden units vary between
5 and 11 and training is performed using classical gradient descent [34], gradient
descent with momentum, bold driver [39], and bold driver with momentum. The
same initial seed for random generation of initial weights is used. In the table,
for di=erent number of hidden units (H. units) and di=erent training algorithms
(Algorithm), the absolute error (Errors) and the error rate (%Error) are reported.
Training and testing time require few seconds on a Linux PC platform with 32K
RAM memory and AMD K6 microprocessor.

6.2.2. Examples with the application pnd
Using the application pnd, we can train and test an ensemble of MLP gener-

ated by output coding decomposition methods [28]. A PND [24] is a multi-class

3 The p6 synthetic data sets are available at ftp:==ftp.disi.unige.it=person=ValentiniG=Data=
p6.tgz.
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Table 3
Testing results and computation time on optdigits data, using output coding decomposition ensembles
of neural networks

Ensemble No. of base No. of hidden % Error Total time Avg. base learner
algorithm learners units rate (min.s) time (min.s)

CC-gd 45 20 2.17 86.45 1.55
CC-bold 45 20 2.34 97.30 2.10
CC-gd 45 30 1.89 116.44 2.36
CC-bold 45 30 1.95 133.06 2.58
CC-gd 45 40 2.12 149.36 3.19
CC-bold 45 40 2.06 174.06 3.52
ECOC-gd 15 20 2.00 22.21 1.29
ECOC-bold 15 20 2.06 26.24 1.46
ECOC-gd 15 30 2.89 29.35 1.52
ECOC-bold 15 30 2.95 36.54 2.28
ECOC-gd 15 40 2.45 38.35 2.35
ECOC-bold 15 40 2.28 47.09 3.08
OPC-gd 10 20 3.00 22.09 2.13
OPC-bold 10 20 2.89 23.28 2.20
OPC-gd 10 30 2.17 29.28 2.56
OPC-bold 10 30 2.23 32.31 3.14
OPC-gd 10 40 2.45 44.30 4.26
OPC-bold 10 40 2.45 47.21 4.42

classi;er composed by a set of dichotomizers implemented through MLP; each
base classi;er of the ensemble executes a subtask (a dichotomy) of the overall
task of multi-class classi;cation.

Table 3 summarizes some results of PND implemented by MLP with one hidden
layer on the UCI data set optdigits. This data set is composed by 10 classes with
64-dimensional input patterns: we have used for training and testing the two sepa-
rated data sets of, respectively, 3823 and 1797 samples available at UCI repository
web site [29]. The ;rst column speci;es the output coding decomposition ensemble
type: CC stands for correcting classi;ers [30], ECOC for error correcting output
coding [9] and OPC for one per class, while gd speci;es that a standard backprop-
agation algorithm with ;xed learning rate �=0:3 has been used, and bold stands
for bold driver algorithm [4]. In the second column, there is the number of the
base learners of the ensemble and in the third, the number of hidden units of the
hidden layer. In the next column are shown the classi;cation error on the test set
and the overall computational time (in minutes and seconds) required for training
all the MLP composing the ensemble. In the last column is shown the average
computational time for training a single base learner of the ensemble. The experi-
mentation has been performed using a RedHat 6.0 Linux system with a 350 MHz
Pentium II microprocessor and 64 Mbytes of RAM.

6.2.3. Examples with the application pnd cv
The application pnd cv can train and test a PND using the method of cross

validation [35]. The folds can be prepared using the program dofold in a simple
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way:

dofold glass.data -nf 10 -na 9 -name glass

This command build the folds for a tenfold cross-validation test. The data set
is glass from the UCI Machine Learning repository [29]. Ten folds from the data
;le glass.data (named glass.;.train and glass.;.test varying i from 1 to 10) are
extracted (the option -na speci;es the number of attributes of the data sets).

Using pnd cv, it is possible now to exploit a tenfold cross-validation, using for
example, a decomposition scheme one-per-class (OPC), generating a number of
dichotomizer equal to the number of classes, each dichotomizer choosing a class
versus all others:

pnd cv glass -res glass -nc 6 -d 9

The option -nc speci;es the number of classes and -d the dimension of the
attributes. The results of the tenfold cross-validation are saved in the ;le glass.cv
(option -res). There are also many more options that can be used in order to change
the default behavior of the PND, such as the kind of decomposition, the structure
and learning algorithms of the dichotomizers and so on (see the NEURObjects
web site for a full description of the available options).
NEURObjects high level applications are well suitable for neural network ex-

perimentations requiring extensive training and testing tasks: Cross-validation of
many MLPs can be performed launching a single high level application of NEU-
RObjects. These applications have been used in di=erent research and application
works, such as comparative evaluation of output coding decomposition methods
[23], evaluation of di=erent architectures in ECOC learning machines [24], anal-
ysis of the dependence among output errors in ECOC learning machines [27],
applications of MLP and PND to electronic noses [32], and in applications to
bioinformatics problems [38].

6.3. Programming examples using library classes

In order to build-up a neural network application using NEURObjects classes,
at least a bit of C++ programming know-how is necessary, but this will increase
power and pliability of the application itself.

The main steps necessary to build an application, i.e. to train and test a MLP
for a classi;cation task using NEURObjects, are

(1) Calling general initializing functions,
(2) Data sets preparation,
(3) Building the desired MLP,
(4) Building the desired learning algorithm,
(5) Training the net,
(6) Testing the net.
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Each of these steps requires only a few lines of code:

int main(int argc, char∗ argv[])
{
int num train;
unsigned nclass = 6; // number of classes
unsigned nhidden = 5; // number of hidden neurons
unsigned num attr = 3; // dimension of attributes
double eta = 0.02; // learning rate
unsigned iter = 0; // iteration number
double err = 0.0; // training error

// 1. General initialization of the NEURObjects environment
NEURObjectsInit();

// 2. Construction and preprocessing of the training and test set
num train = wc ("trainfile");
TrainingSet trainset(num attr, num train, "trainfile",
TrainingSet::last);
trainset.normalize();

num train = wc ("testfile");
TrainingSet testset( num attr, num train, "testfile",
TrainingSet::last);
testset.normalize();

// 3. Build the desired MLP, here a two layer MLP
// with nhidden hidden units,
// num attr inputs and nclass outputs
TwoLayer mynet(nclass, nhidden, num attr);

// 4. Build the desired learning algorithm, here
// a simple gradient descent algorithm with learning rate eta
GradientDescent gd(eta);

// 5. Init the weights and train the net by pattern using
// the previous learning algorithm
mynet.init weights norm();
mynet.Learn by pattern(trainset, gd, iter, err);

// 6. Test the net using the test set and print errors
mynet.test(testset);
mynet.print errors();
}
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This example is a working program of about 10 lines of code. It is possible to
use other algorithms to train and test the net adding three or four lines of code.
For instance, one can re-train the previous net by a bold driver algorithm and test
it by appending to the previous ;le the following lines:

BoldDriver bd();
mynet.init weights norm();
mynet.Learn by pattern(trainset, bd, iter, err);
mynet.test(testset);

Adding only some lines of code to the previous example, we can save the trained
net and reload it to continue training with di=erent parameters:

// save the structure, parameters and weights of the net
mynet.save weights(FileNameoftheNet);
BuildNet buildnet(); // contructor of net builder
// read the structure of the net and
// its weight and builds it
OneLayer∗ reloadnet = buildnet.build(FileNameoftheNet);
// continue training and testing
reloadnet-¿ Learn by pattern(trainset, gd, iter, err);
reloadnet-¿ test(testset);

Moreover it is simple to build a PND and train it by cross validation:

: : :
// number of neurons in each layer
unsigned neurons num[3]= {num attr, nhidden2, nhidden1;}
// type of dichotomizer activation functions
act func t fun [3]= {sigmoid, sigmoid, sigmoid;}

// dico is an object for specifying dichotomizer type
DicoType dico(nlayers, neurons num, t fun);

// Constructor of a PND with
// ECOC decomposition and dichotomizer of type dico
PoliDico¡d ECOC ex ¿ ∗ pd=
new PoliDico¡d ECOC ex¿(nclass, dico, sigmoid);
// n-fold cross validation
pd-¿CrossValidate(namefile, nfold, num attr,

resultfile, learninfo);
// destruction of the polychotomizer
delete pd;
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It is also possible to build array of more complex structures of MLPs or di-
chotomizers and train and test each of them by di=erent learning algorithms.

7. Conclusions

NEURObjects is a set of C++ library classes for fast neural network devel-
opment, exploiting the potentialities of OO design and programming. The library
provides a set of basic neural network classes for fast prototyping of inductive ma-
chine learning applications based on neural networks, cutting o= the costs related
to implementation from scratch in systems embedding neural network technology.

The set of NEURObjects library classes enable neural network researchers to
speed up experimentation and testing of new learning methods, and neural network
developers can easily use existing classes to build scienti;c applications. Moreover,
the library has been proved to be helpful in teaching neural networks, providing
facilities in order to visualize neural network parameters, during training, and to
analyze training and testing results.

At the actual development stage, the library consists of about 10 000 lines of
code, and provides a set of basic neural network classes, including an implemen-
tation of the PND ensemble model. In the coming release, we will add classes for
bagging and boosting ensembles of learning machines. In future releases, we plan
also to use BLAS libraries for speeding-up the computation. Another planned de-
velopment consists in the parallel implementation of PND classes using Message
Passing Interface libraries [11], in order to exploit the parallel nature of output
coding decomposition ensembles.
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