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Abstract

Vector quantization and clustering are two different problems for which similar techniques
are used. We analyze some approaches to the synthesis of a vector quantization codebook,
and their similarities with corresponding clustering algorithms. We outline the role of fuzzy
concepts in the performance of these algorithms, and propose an alternative way to use
fuzzy concepts as a modeling tool for physical vector quantization systems, Neural Gas
with a fuzzy rank function.
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1 Introduction

The problem of clustering [1] is often addressed with the partitive, centroid-based ap-
proach of thec-Means procedure and many other derived algorithms. In thisapproach
clustering is viewed asfinding the reference vectors (centroids) which best explain the
input data distribution according to some cost criterion.

Vector quantization [2,3] is a different technical problem, which can be stated as follows:
find the reference vectors (codevectors) which approximatewith the minimum error the
input data according to some distortion criterion. Usually the problem is also constrained
by some resource limits. This is the rationale for the so called Rate/Distortion and Distor-
tion/Rate approaches.

In this work, we analyze some approaches to the synthesis of avector quantization code-
book, and their similarities with corresponding clustering algorithms. We outline the role
of fuzzy concepts (such as membership in more than one Voronoi polyhedron) in the per-
formance of these algorithms. Then, we propose an alternative use of the fuzzy paradigm
in the vector quantization training algorithm by Martinetzet al., the “Neural Gas” [4].
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2 Clustering, vector quantization, and fuzzy concepts

We have outlined some differences between clustering and vector quantization, yet the
synthesis of a codebook for vector quantization is often approached with algorithms de-
rived fromc-Means (a standard clustering technique). One usual difference is that, since
vector quantization is typically adopted for large-dimensional, large-sized training sets,
minimization is performed by stochastic gradient descent (onlinetraining) rather than by
deterministic (orbatch) algorithms. This is because the curse of local minima is worsened
by the large dimensionality and codebook size. Stochastic optimization helps escaping lo-
cal minima by adding errors (due to random sampling of patterns) to the current estimate
of the cost function. Therefore there is a nonzero probability of taking steps in directions
other than that of the “closest” local minimum.

Several clustering algorithms have been modified in the direction of incorporating fuzzy
concepts (starting with the Fuzzyc-Means algorithm [5]). A review of fuzzy concepts in
clustering is provided in [6,7]. In the large majority of cases, fuzziness means that any
point can belong to more than one cluster.

The relationship between the clustering and quantization problems is of a geometrical
nature. In both cases, the input space is partitioned by aVoronoi tessellation[8], repre-
senting regions of data sharing similar properties by meansof a single reference point or
site or (in vector quantization jargon) codevector. However, there is a distinction in the
goal to be achieved. Generally speaking, in clustering datapoints belonging in a single
region should be the largest group of data that can be reasonably gathered in a single clus-
ter (clusters should be as few as possible to enable understanding the structure of data),
whereas in vector quantization points in a region must be so similar that the approxima-
tion error obtained by substituting data with codevectors is negligible. Thus in the case of
clustering codevectors should be as many as possible, within the resource limits imposed
by the overall system design.

The introduction of a fuzzy membership has a twofold meaningin clustering. On one
side, data can be partially belonging to more than one cluster, and this has a conceptual
interpretation: it is possible to analyze and quantify whether points are clearly clustered
or there is any ambiguity in cluster attribution.

On the other side, fuzziness is a way to fight local minima during optimization. In vector
quantization, the first aspect is irrelevant, since at the end of training a crisp decision
must always be made. The other aspect is more important, since in the typical vector
quantization application local minima are a serious issue.

3 Codebook design (training)

In the following we review how typical algorithms for the synthesis of vector quantiza-
tion codebooks introduce fuzzy concepts in the minimization procedure, and what is their
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effect. We will assume thatN training points (individually denoted withx) of dimension-
ality d are used to design a codebook{y1, . . .yc} of c reference points. The distorsion
assumed is the Euclidean distancedi = ||x−yi||.

3.1 Lloyd’s method

The classical approach is Lloyd/MacQueen’s method [9–11],the standardc-Means clus-
tering procedure. Thek-th input vector is attributed to the Voronoi polyhedron defined
by reference vectoryi if uik = 1, whereuik is a crisp membership value which is 1 if
dik = min{d1k, . . . ,dNk} and 0 for all other reference vectors. The closest referencevector
for a data point wil be called the “winner” for that point. Theupdating rule is:

y(t+1)
i =

∑N
k=1 xkuik

∑N
k=1 xk

(1)

This algorithm finds the minimum of a cost function based on the mean square error as
a distortion criterion. Its well-known drawback lies in thehuge number of local minima
(for practicald andN).

3.2 MacQueen’s method

The on-line version ofc-Means training, which is due to MacQueen, transforms the Picard
iteration of the standard version, in which at each step a necessary minimum condition is
satisfied, in a stochastic optimization process. Input vectors are randomly selected, adding
noise to the cost function, now optimized on the average. Theupdating rule is therefore:

y(t+1)
i = y(t)

i +η(t)uik (xk−yi) (2)

wheret indexes the training steps,η(t) is an updating coefficient, andk is a random func-
tion of t.

Convergence is usually much slower, but local minima are escaped thanks to the “statis-
tical” behaviour of the updating procedure, which does not necessarily reduce the cost at
each step and therefore does not necessarily get trapped into sub-optimal basins.

The law for varyingη(t) to ensure convergence (annealing schedule) has been studied in
[12]. MacQueen [10] adopts an individual coefficient for every reference vector, equal to
1/ti whereti is the number of updates for reference vectoryi so far, thus retaining the exact
equivalence between the online and batch versions ofc-means. Ritteret al. [13] propose
instead an exponential decay rateη(t) = ηi (ηf/ηi)

t/tmax from ηi to ηf in tmax steps. This
law has been used also in the Neural Gas algorithm.
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3.3 Fuzzy c-Means

The most popular algorithm for clustering in the fuzzy framework, the “Fuzzyc-Means”
[5] or “Fuzzy ISODATA” [14], has no direct counterpart in thevector quantization prac-
tice. Here the standard (crisp)c-Means membership is replaced by a fuzzy membership
defined as a function of the point-prototype distance:

u jk =

[

c

∑
l=1

(

d jk

d jl

)1/(m−1)
]−1

(3)

so that membership values are no longer 0 or 1, and each prototype turns out to be a
weightedmean of its cluster.

3.4 Maximum Entropy approach (the Deterministic Annealingmethod)

The maximum entropy approach of the Deterministic Annealing technique by Rose [15]
builds on a different concept. Here a fuzzy membership in clusters is introduced by sub-
stituting the “min” selection criterion, by which a single reference vector is selected for
updating on a minimum-distance basis, with a “softmin” criterion:

ui =
e−di/β

∑c
j=1e−d j/β (4)

The parameterβ governs the fuzziness of this criterion; forβ → 0 it turns back into the
crisp “min” criterion. The Deterministic Annealing approach is a sequence of determin-
istic minimizations (made by Picard iterations), withβ decreasing at each minimization.
Therefore the first minimizations are done with a high degreeof fuzziness, that is, high
β (with few local minima), whereas the last minimizations, with β → 0, are potentially
subject to local minima, but they take advantage of the good initialization provided by
previous steps. (This is a classical simulated annealing-type procedure, whereβ acts as
the temperature parameter.)

3.5 Possibilistic approach

Another popular fuzzy clustering approach which is not commonly used in vector quan-
tization practice is the Possibilistic Approach by Krishnapuram and Keller [16]. Here a
higher level of fuzziness is introduced by relaxing the requirement of memberships to all
prototypes for each point summing up to 1, which is enforced in all other methods. This
changes considerably the principle of operation of the method, and is not compatible with
vector quantization goals.
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3.6 The Neural Gas algorithm

The Neural Gas algorithm by Martinetzet al.[4] combines fuzzy membership in partitions
with stochastic minimization. This algorithm has the interesting feature that membership
in a Voronoi polyhedron is not defined as a direct function of the distance from the data
point to the reference vector, as in previously cited methods. Rather, it is a function of its
rank with respect to the list of distances from all referencevectors. Distancedi has the
rankρi in the set{d1, . . . ,dN} when ordered decreasingly with respect to values, and this
value can be written in an algebraic fashion as:

ρi =
c

∑
j=1

θ
(

di −d j
)

(5)

θ(x) is the Heaviside step function, taking on the values 0 forx < 0, 1 forx > 0, and 0.5
for x = 0. This extension is needed in the case of ties, very uncommonif the distances
are real numbers; however this is the standard way to deal with ties in rank tests (such as
Spearman’s rank correlation or Kendall’s rank correlationand coefficient of concordance).
Notice thatρwinner = 0 rather than 1, soρi ∈ {0, . . . ,c−1} ∀i ∈ {1, . . . ,c}.

The membership of the data point to thei-th encoding polyhedron is:

u(x) = e−ρi/λ (6)

whereλ is a parameter which is annealed (made smaller) during training, thereby pro-
gressively reducing the extent to which reference vectors,other than the nearest (the
“winner”), are included in the updating process.

The annealing of the two parameters (λ, influence of prototypes other than the “win-
ner”, and learning coefficient) can be interpreted from the standpoint of learning machine
capacity. When vectors other than the winner get updated a correlation is introduced be-
tween reference vectors, thus effectively reducing the learning capacity of the vector quan-
tizer. As the annealing proceeds, the range of the correlation shrinks gradually, and the
capacity is correspondingly increased; however, at the same time the learning coefficient
is reduced, so that it is progressively more difficult to fallinto local minima. (To relate
vector quantization, an approximation procedure, to the theory of learning capacity it is
necessary to adopt a threshold-based criterion. This analysis is introduced in [17].)

3.7 Kohonen’s Self-Organizing Maps

In this review, we must also mention Kohonen’s Self Organizing Maps [18], in which
fuzziness is of the same nature as in the Neural Gas technique, that is, in the influence of
non-winners on the update of the winner. This method is neither a clustering algorithm nor
a vector quantization algorithm (it is conceived as a multidimensional scaling technique),
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Fig. 1. An analog VLSI realization of a vector quantization encoder.

but we cannot avoid mentioning it due to its inmportance and influence on the subject
(and particularly on many vector quantization algorithms,including Neural Gas).

3.8 Interval Vector Quantization

A different way to include fuzziness into vector quantization is making thecodevectors
themselvesfuzzy. Although adopting this formulation can lead to a computationally inef-
ficient algorithm, this approach can be simplified by representing uncertainty by means of
interval values. This has been done in [19]. With reference to the image compression ap-
plication, uncertain codevectors can be defuzzified by applying some additional criterion
(for instance, regularity or smoothness of the overall reconstructed image), which acts as
a constraint and helps obtaining better perceived quality.

4 A fuzzy model of the ranking function

The performance of the Neural Gas algorithm is remarkably good, as found in previous
research by the present and other authors. This is probably due to the combination of
fuzzy membership, stochastic optimization and robust evaluation through ranking. There-
fore it is not surprising that this algorithm has been used asthe basis for improvements
[20] [21] as well as hardware implementations [22]. In the case of analog hardware im-
plementations, other algorithms either perform worse, as we have reviewed, or imply very
complex circuit structures. The Neural Gas seems the best choice in view of this trade-off,
also because the sorting step can be simplified with little performance loss [23].

In analog hardware, when the functions implemented are non-ideal there can be a variable
effect on training performances. In particular, the rank function (5) uses the Heaviside step
as a crisp distance comparison.
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Fig. 2. A low-performance operational amplifier implementsan approximate step function.

The step function in analog hardware is simply built by meansof a saturating ampli-
fier with large gain, which means typically an open-loop operational amplifier. However,
Equation (5) has ac2 space complexity, so circuit topologies should be made veryinex-
pensive in terms of silicon area. This means very simple topologies (typically two stages).
Consequently, the operational amplifier will feature a finite gain which implies a deviation
from the ideal behavior.

The input-output relationship of an operational amplifier at middle frequencies is a hyper-
bolic tangent saturating (approximately) at the+ and− power voltages. This suggests a
very natural fuzzy model for the non-ideal rank function.

In a fuzzy perspective, it is more natural to define the relation “larger” among two (con-
ventional) numbers as a degree to which one number is larger than another. We should
mention that the problem of ranking fuzzy quantities has been reviewed for instance by
Bortolan and Degani [24]. and, more recently, by Wang and Kerre [25,26]. However, we
are not dealing with fuzzy quantities, but with afuzzy evaluationof crisp quantities. This
approach is reasonable in very common situations such as presence of noise or other un-
certainties in the measure of signals. In this case, two values which are very close cannot
be reliably ranked, and a statement such as “a is larger thanb” is more naturally expressed
in fuzzy terms.

As a numerical illustration, suppose that we are to compare (a) d1 = 3 with d2 = 4, and
(b) d1 = 3 with d2 = 3.01. Clearly in both case (a) and case (b) we can rightfully saythat
d2 > d1, but it is also clear that in (a) this is “more true” than in (b). With a given level
of uncertainty (for instance due to a given quantity of additive noise) it is also possible to
quantify how much (a) or (b) are “true”.

Therefore, we can make the following substitution:

θ
(

d j −di
)

≈
1

1+e(d j−di)/β (7)
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Fig. 3. Comparing crisp and fuzzy rank functions.

and

1

1+e(d j−di)/β −→
β→0

θ
(

d j −di
)

(8)

so the computation of fuzzy rank can be expressed as

ρ j =
n

∑
i=1, j,i

1

1+e(d j−di)/β (9)

The parameterβ here acts as a fuzzification parameter, such that for largeβ the ranking
function is definitely fuzzy, while forβ = 0 we obtain the original, crisp ranking function.

The two expressions (5) and (9) for the rank functionρ(·) are compared in a simple
example, illustrated in Figure 3, where the following set ofvalues is used:{d,2,3,5}.
The diagram is a plot ofρ(d) (in the two expressions, crisp and fuzzy) ford in the range
[0,7]. Two plots are shown for the fuzzy expression, one forβ = 0.05 and another for
β = 0.25 (smoother).

The fuzzy ranking function is directly implemented by the op-amp-based circuitry out-
lined above. The fuzzification parameter is the inverse of the amplifier gain (the crisp and
fuzzy version coincide for gain→ ∞ or for β → 0). Therefore the fuzzy Neural Gas is a
realistic model for the hardware implementation of the algorithm.
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Fig. 4. The “Lena” image.

5 Experimental performance

5.1 Experimental setup

The fuzzy model for the Neural Gas has been tested by comparison with the standard
version on some problems, both artificial and real:

(1) Centers-only (toy problem, very trivial): place three codevectors on three points. For
initial “consistency checks”.

(2) Centers-plus-noise (toy problem): place three codevectors on a set of points gener-
ated by a superposition of three Gaussians plus 60% random points.

(3) Lena (real problem). Vector quantization of the standard benchmark image “Lena”,
shown in Figure 4, with codebooks of size 16 and 256.

(4) Four images (real problem). Vector quantization of morebenchmark images, shown
in Figure 5.

The training of both algorithms was performed with identical initialization parameters
(for the scheduling of updating coefficient and of range of influence of non-winners,

5.2 Experimental results

The first problem was used to ensure that the training steps were not too different, to
validate the software (written in C). Forβ = 0 the two algorithms are indeed identical.

The second problem highlighted that, for low values ofβ, there are no significant differ-
ences in performance between the two algorithms. In some experiments the fuzzy version

9



Fig. 5. Four benchmark images (fromhttp://links.uwaterloo.ca/bragzone.base.html).

outperformed the standard version, but this is not a typicalbehavior.

The training on the Lena image was a test of these outcomes on areal problem. In Figure
6 is shown a typical training trace (mean square error versustraining steps), put on a log-
arithmic scale to show that the two traces are different, butconverge to the same solution.
The thin trace is standard Neural Gas and the thick trace (only slightly different in some
locations) is the fuzzy modification.

Finally, the four additional images, which are greyscale and are of size 256x256, were
used to confirm the previous results. The images were obtained from the “Waterloo Reper-
toire”, available online athttp://links.uwaterloo.ca/bragzone.base.html. Code-
vector sizes used are 16, 64 and 256. Results on the concordance of the two methods are
outlined in the following table. For each test, the maximum deviation of the fuzzy version
over the standard version (in percentage of RMS error) is indicated. The final codebooks
have always been found to be equal according to the followingdefinition. Two codebooks
A and B are considered equal if, for any codevector in codebook A, the closest code-
vector in codebook B is within a preselected distance threshold. This threshold has to be
selected case by case, taking into account codebook cardinality and making it less than
the minimum distance between two codevectors of any codebook.
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Fig. 6. Trace of mean square error during training on the “Lena” image.

Test Max. discordance in RMS

goldhill 16 0.8%

goldhill 64 0.9%

goldhill 256 1.3%

bridge 16 0.0%

bridge 64 0.5%

bridge 256 0.5%

bird 16 0.2%

bird 64 1.0%

bird 256 2.1%

camera 16 1.7%

camera 64 1.7%

camera 256 1.1%

The remarkable fact that final codebooks were always coincident is a confirmation of
the good properties of the Neural gas algorithm, which proves to be stable under the
perturbations induced by reasonable values ofβ.
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Fig. 7. Nomogram for the calculation ofβ.

5.3 Choice of parameterβ

The acceptable value ofβ depends linearly on the difference between distances that has
to be resolved. The nomogram in Figure 7 is a plot ofβ versus∆i j = di −d j for different
values of the accepted error (annotated on the right margin).

A method to select the acceptableβ can be based on the distribution of the distance dif-
ferences in the training set. The∆i j ’s are tabulated and sorted; then a given tolerance is
selected (for instance, 1%) and the corresponding quantileis identified on the table. This
corresponds to a given value of∆ and therefore (through the nomogram) to the required
acceptable value ofβ.

6 Conclusion

In this paper we have reviewed some uses of fuzzy concepts in vector quantization train-
ing. The main application is to enhance convergence, but we have also proposed using
fuzzy ranking for the modeling of hardware implementations. The method shows that, for
reasonably chosen uncertainty levels (β), the neural gas algorithm is remarkably stable.
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