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Abstract

Vector quantization and clustering are two different peot$ for which similar techniques
are used. We analyze some approaches to the synthesis dbageantization codebook,

and their similarities with corresponding clustering altions. We outline the role of fuzzy

concepts in the performance of these algorithms, and peoposalternative way to use
fuzzy concepts as a modeling tool for physical vector qaatitn systems, Neural Gas
with a fuzzy rank function.
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1 Introduction

The problem of clustering [1] is often addressed with thdipee, centroid-based ap-
proach of thec-Means procedure and many other derived algorithms. Inappgoach
clustering is viewed afinding the reference vectors (centroids) which best erpllag¢
input data distribution according to some cost criterion

Vector quantization [2,3] is a different technical problemhich can be stated as follows:
find the reference vectors (codevectors) which approximéte the minimum error the
input data according to some distortion criteriddsually the problem is also constrained
by some resource limits. This is the rationale for the seedaRate/Distortion and Distor-
tion/Rate approaches.

In this work, we analyze some approaches to the synthesisadftar quantization code-
book, and their similarities with corresponding clustgraigorithms. We outline the role
of fuzzy concepts (such as membership in more than one Vopatghedron) in the per-

formance of these algorithms. Then, we propose an altemasie of the fuzzy paradigm
in the vector quantization training algorithm by Martinetzl., the “Neural Gas” [4].
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2 Clustering, vector quantization, and fuzzy concepts

We have outlined some differences between clustering aatwvguantization, yet the
synthesis of a codebook for vector quantization is ofterr@gghed with algorithms de-
rived fromc-Means (a standard clustering technique). One usual difter is that, since
vector quantization is typically adopted for large-dimenal, large-sized training sets,
minimization is performed by stochastic gradient descenliffe training) rather than by
deterministic (obatch algorithms. This is because the curse of local minima issened
by the large dimensionality and codebook size. Stochaptimization helps escaping lo-
cal minima by adding errors (due to random sampling of paseto the current estimate
of the cost function. Therefore there is a nonzero proltglwh taking steps in directions
other than that of the “closest” local minimum.

Several clustering algorithms have been modified in thectioe of incorporating fuzzy
concepts (starting with the FuzzyMeans algorithm [5]). A review of fuzzy concepts in
clustering is provided in [6,7]. In the large majority of eas fuzziness means that any
point can belong to more than one cluster.

The relationship between the clustering and quantizatroblpms is of a geometrical
nature. In both cases, the input space is partitioned Ygranoi tessellatior§8], repre-
senting regions of data sharing similar properties by meéassingle reference point or
site or (in vector quantization jargon) codevector. Howgtleere is a distinction in the
goal to be achieved. Generally speaking, in clustering datats belonging in a single
region should be the largest group of data that can be reblsogethered in a single clus-
ter (clusters should be as few as possible to enable unddnstathe structure of data),
whereas in vector quantization points in a region must bersides that the approxima-
tion error obtained by substituting data with codevectsrsggligible. Thus in the case of
clustering codevectors should be as many as possible nitairesource limits imposed
by the overall system design.

The introduction of a fuzzy membership has a twofold meammglustering. On one
side, data can be partially belonging to more than one clustel this has a conceptual
interpretation: it is possible to analyze and quantify vaeetpoints are clearly clustered
or there is any ambiguity in cluster attribution.

On the other side, fuzziness is a way to fight local minimardydptimization. In vector
quantization, the first aspect is irrelevant, since at the @ntraining a crisp decision
must always be made. The other aspect is more importang #inthe typical vector
guantization application local minima are a serious issue.

3 Codebook design (training)

In the following we review how typical algorithms for the gfiesis of vector quantiza-
tion codebooks introduce fuzzy concepts in the minimizatimocedure, and what is their



effect. We will assume thail training points (individually denoted witk) of dimension-
ality d are used to design a codebof, ...y} of c reference points. The distorsion
assumed is the Euclidean distamie- ||x — yi||.

3.1 Lloyd’s method

The classical approach is Lloyd/MacQueen’s method [9-thE] standard-Means clus-
tering procedure. Thi-th input vector is attributed to the Voronoi polyhedron deti
by reference vectoy; if ux = 1, whereuik is a crisp membership value which is 1 if
dik = min{dy, ...,dnk} and O for all other reference vectors. The closest refereactr
for a data point wil be called the “winner” for that point. Thpdating rule is:

N .
yi(t+1) _ Zk:Nl XkUik (1)
2 k—1Xk

This algorithm finds the minimum of a cost function based anrtfean square error as
a distortion criterion. Its well-known drawback lies in thage number of local minima
(for practicald andN).

3.2 MacQueen’s method

The on-line version of-Means training, which is due to MacQueen, transforms thargi
iteration of the standard version, in which at each step asssry minimum condition is
satisfied, in a stochastic optimization process. Inputorsare randomly selected, adding
noise to the cost function, now optimized on the average.upuating rule is therefore:

yi(t+1) = Yi(t) +nYuk (xk—yi) (2)

wheret indexes the training steps(!) is an updating coefficient, arids a random func-
tion of t.

Convergence is usually much slower, but local minima are@sd thanks to the “statis-
tical” behaviour of the updating procedure, which does remassarily reduce the cost at
each step and therefore does not necessarily get trappesliptoptimal basins.

The law for varyingn® to ensure convergence (annealing schedule) has beendsindie
[12]. MacQueen [10] adopts an individual coefficient for gveeference vector, equal to
1/ti wheret; is the number of updates for reference vegi@o far, thus retaining the exact
equivalence between the online and batch versiomsnoéans. Ritteet al. [13] propose
instead an exponential decay ra® = n; (r]f/r]i)t/t’"ax from n; to n¢ in tmax Steps. This
law has been used also in the Neural Gas algorithm.



3.3 Fuzzy c-Means

The most popular algorithm for clustering in the fuzzy fravoek, the “Fuzzyc-Means”

[5] or “Fuzzy ISODATA’ [14], has no direct counterpart in thector quantization prac-
tice. Here the standard (crisp)Means membership is replaced by a fuzzy membership
defined as a function of the point-prototype distance:

¢/l \ VM1
5@ ©

so that membership values are no longer 0 or 1, and each ypettiirns out to be a
weightedmean of its cluster.

3.4 Maximum Entropy approach (the Deterministic Annealirethod)

The maximum entropy approach of the Deterministic Anngglechnique by Rose [15]

builds on a different concept. Here a fuzzy membership istehs is introduced by sub-
stituting the “min” selection criterion, by which a singleference vector is selected for
updating on a minimum-distance basis, with a “softmin”emiin:

e—di/[3

Uy=——
! z(j::l edi/B

(4)

The parametep governs the fuzziness of this criterion; fdr— 0 it turns back into the
crisp “min” criterion. The Deterministic Annealing appabais a sequence of determin-
istic minimizations (made by Picard iterations), wigtdecreasing at each minimization.
Therefore the first minimizations are done with a high degfefizziness, that is, high
B (with few local minima), whereas the last minimizationstiw — 0, are potentially
subject to local minima, but they take advantage of the gaddhlization provided by
previous steps. (This is a classical simulated anneajipg-procedure, wher@ acts as
the temperature parameter.)

3.5 Possibilistic approach

Another popular fuzzy clustering approach which is not camiy used in vector quan-
tization practice is the Possibilistic Approach by Krishopeam and Keller [16]. Here a
higher level of fuzziness is introduced by relaxing the regment of memberships to all
prototypes for each point summing up to 1, which is enforeedlliother methods. This
changes considerably the principle of operation of the ngthnd is not compatible with
vector quantization goals.



3.6 The Neural Gas algorithm

The Neural Gas algorithm by Martinettzal.[4] combines fuzzy membership in partitions
with stochastic minimization. This algorithm has the ietting feature that membership

in a Voronoi polyhedron is not defined as a direct functionhef distance from the data
point to the reference vector, as in previously cited mesh&ather, it is a function of its
rank with respect to the list of distances from all referemeetors. Distancel; has the
rankp; in the set{ds, ...,dy} when ordered decreasingly with respect to values, and this
value can be written in an algebraic fashion as:

pi= 6(di—d) (5)

6(x) is the Heaviside step function, taking on the values Ofer0, 1 forx > 0, and 05
for x = 0. This extension is needed in the case of ties, very uncomhtbe distances
are real numbers; however this is the standard way to dehltigd in rank tests (such as
Spearman’s rank correlation or Kendall's rank correlaind coefficient of concordance).
Notice thatpwinner = O rather than 1, sp; € {0,...,c—1} Vi€ {1,...,c}.

The membership of the data point to ik encoding polyhedron is:

u(x) = e Pi/A (6)

whereA is a parameter which is annealed (made smaller) duringitigithereby pro-
gressively reducing the extent to which reference vectottser than the nearest (the
“winner”), are included in the updating process.

The annealing of the two parameters {(nfluence of prototypes other than the “win-
ner”, and learning coefficient) can be interpreted from ta@dpoint of learning machine
capacity. When vectors other than the winner get updatedralation is introduced be-
tween reference vectors, thus effectively reducing thenlag capacity of the vector quan-
tizer. As the annealing proceeds, the range of the cormelathrinks gradually, and the
capacity is correspondingly increased; however, at theedane the learning coefficient
is reduced, so that it is progressively more difficult to fato local minima. (To relate
vector quantization, an approximation procedure, to tleem of learning capacity it is
necessary to adopt a threshold-based criterion. This sisayintroduced in [17].)

3.7 Kohonen’s Self-Organizing Maps

In this review, we must also mention Kohonen’s Self OrgargzMaps [18], in which

fuzziness is of the same nature as in the Neural Gas techrfatas, in the influence of
non-winners on the update of the winner. This method is eedltlustering algorithm nor
a vector quantization algorithm (it is conceived as a mirttehsional scaling technique),
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Fig. 1. An analog VLSI realization of a vector quantizatiorceder.

but we cannot avoid mentioning it due to its inmportance anfldiénce on the subject
(and particularly on many vector quantization algorithmsluding Neural Gas).

3.8 Interval Vector Quantization

A different way to include fuzziness into vector quantimatis making thecodevectors
themselvefuzzy. Although adopting this formulation can lead to a comagpionally inef-
ficient algorithm, this approach can be simplified by repnésg uncertainty by means of
interval values. This has been done in [19]. With referendfé image compression ap-
plication, uncertain codevectors can be defuzzified byyapglsome additional criterion
(for instance, regularity or smoothness of the overall nstwcted image), which acts as
a constraint and helps obtaining better perceived quality.

4 A fuzzy mode of theranking function

The performance of the Neural Gas algorithm is remarkabtdgas found in previous
research by the present and other authors. This is probaigytalthe combination of
fuzzy membership, stochastic optimization and robustgtain through ranking. There-
fore it is not surprising that this algorithm has been usethasasis for improvements
[20] [21] as well as hardware implementations [22]. In theecaf analog hardware im-
plementations, other algorithms either perform worse,@abave reviewed, or imply very
complex circuit structures. The Neural Gas seems the beaten view of this trade-off,
also because the sorting step can be simplified with litttop@ance loss [23].

In analog hardware, when the functions implemented aredeal-there can be a variable

effect on training performances. In particular, the ramiction (5) uses the Heaviside step
as a crisp distance comparison.



@ Vout

05
Vout g

-05

Vin

Fig. 2. A low-performance operational amplifier implemeasapproximate step function.

The step function in analog hardware is simply built by meaha saturating ampli-
fier with large gain, which means typically an open-loop agienal amplifier. However,
Equation (5) has & space complexity, so circuit topologies should be made irezy-
pensive in terms of silicon area. This means very simpleltgpes (typically two stages).
Consequently, the operational amplifier will feature a @rgiain which implies a deviation
from the ideal behavior.

The input-output relationship of an operational amplifiem&ddle frequencies is a hyper-
bolic tangent saturating (approximately) at theand— power voltages. This suggests a
very natural fuzzy model for the non-ideal rank function.

In a fuzzy perspective, it is more natural to define the retatlarger” among two (con-
ventional) numbers as a degree to which one number is ldngerdnother. We should
mention that the problem of ranking fuzzy quantities hasbegiewed for instance by
Bortolan and Degani [24]. and, more recently, by Wang and&Kg5,26]. However, we
are not dealing with fuzzy quantities, but witHuzzy evaluationf crisp quantities. This
approach is reasonable in very common situations such asrmpre of noise or other un-
certainties in the measure of signals. In this case, twoagalhich are very close cannot
be reliably ranked, and a statement sucheds farger tharb” is more naturally expressed
in fuzzy terms.

As a numerical illustration, suppose that we are to compaydi(= 3 with d» = 4, and
(b) d;y = 3 withd, = 3.01. Clearly in both case (a) and case (b) we can rightfullytbay
d> > dj, but it is also clear that in (a) this is “more true” than in.(&)ith a given level
of uncertainty (for instance due to a given quantity of addinhoise) it is also possible to
guantify how much (a) or (b) are “true”.

Therefore, we can make the following substitution:

1



Fig. 3. Comparing crisp and fuzzy rank functions.

and

1

11 eldi—d)/B @e(di — di) (8)

so the computation of fuzzy rank can be expressed as

A 1

A1 A ®)

pj =

The parameteB here acts as a fuzzification parameter, such that for [Ardpe ranking
function is definitely fuzzy, while fop = 0 we obtain the original, crisp ranking function.

The two expressions (5) and (9) for the rank functjn) are compared in a simple
example, illustrated in Figure 3, where the following setvafues is used{d, 2, 3,5}.
The diagram is a plot gb(d) (in the two expressions, crisp and fuzzy) tbin the range
[0,7]. Two plots are shown for the fuzzy expression, oneffet 0.05 and another for
B = 0.25 (smoother).

The fuzzy ranking function is directly implemented by theapp-based circuitry out-
lined above. The fuzzification parameter is the inverse e&timplifier gain (the crisp and
fuzzy version coincide for gain> « or for 3 — 0). Therefore the fuzzy Neural Gas is a
realistic model for the hardware implementation of the atgm.



Fig. 4. The “Lena” image.

5 Experimental performance

5.1 Experimental setup

The fuzzy model for the Neural Gas has been tested by conopawgh the standard
version on some problems, both artificial and real:

(1) Centers-only (toy problem, very trivial): place threxlevectors on three points. For
initial “consistency checks”.

(2) Centers-plus-noise (toy problem): place three codeveon a set of points gener-
ated by a superposition of three Gaussians plus 60% randortspo

(3) Lena (real problem). Vector quantization of the staddanchmark image “Lena”,
shown in Figure 4, with codebooks of size 16 and 256.

(4) Fourimages (real problem). Vector quantization of mmeachmark images, shown
in Figure 5.

The training of both algorithms was performed with identicatialization parameters
(for the scheduling of updating coefficient and of range @fience of non-winners,

5.2 Experimental results

The first problem was used to ensure that the training steps an@ too different, to
validate the software (written in C). F@r= 0 the two algorithms are indeed identical.

The second problem highlighted that, for low valuegpthere are no significant differ-
ences in performance between the two algorithms. In somerements the fuzzy version



Fig. 5. Four benchmark images (frdmtp://links.uwaterloo.ca/bragzone.base.html).

outperformed the standard version, but this is not a tyjneahvior.

The training on the Lena image was a test of these outcomeseaa problem. In Figure
6 is shown a typical training trace (mean square error verairsng steps), put on a log-
arithmic scale to show that the two traces are differentcbaverge to the same solution.
The thin trace is standard Neural Gas and the thick trace &ightly different in some
locations) is the fuzzy modification.

Finally, the four additional images, which are greyscald are of size 256x256, were
used to confirm the previous results. The images were oltt&om the “Waterloo Reper-
toire”, available online dittp: //links.uwaterloo.ca/bragzone.base.html. Code-
vector sizes used are 16, 64 and 256. Results on the concerdathe two methods are
outlined in the following table. For each test, the maximuewidtion of the fuzzy version
over the standard version (in percentage of RMS error) ig#ated. The final codebooks
have always been found to be equal according to the follod&fimition. Two codebooks
A and B are considered equal if, for any codevector in codebgothe closest code-
vector in codebook B is within a preselected distance ttulesf his threshold has to be
selected case by case, taking into account codebook chtylisyad making it less than
the minimum distance between two codevectors of any codeboo

10
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Fig. 6. Trace of mean square error during training on the d&.@émage.

Test Max. discordance in RMS
goldhill 16 0.8%
goldhill 64 0.9%
goldhill 256 1.3%
bridge 16 0.0%
bridge 64 0.5%
bridge 256 0.5%
bird 16 0.2%
bird 64 1.0%
bird 256 2.1%
camera 16 1.7%
camera 64 1.7%
camera 256 1.1%

The remarkable fact that final codebooks were always cagmtits a confirmation of
the good properties of the Neural gas algorithm, which psaeebe stable under the
perturbations induced by reasonable valueR. of
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Fig. 7. Nomogram for the calculation @8f

5.3 Choice of parametds

The acceptable value @f depends linearly on the difference between distances #sat h
to be resolved. The nomogram in Figure 7 is a plo ekrsushij = d; — d; for different
values of the accepted error (annotated on the right margin)

A method to select the acceptalfiecan be based on the distribution of the distance dif-
ferences in the training set. Tig;’s are tabulated and sorted; then a given tolerance is
selected (for instance, 1%) and the corresponding quasiitentified on the table. This
corresponds to a given value &fand therefore (through the nomogram) to the required
acceptable value di.

6 Conclusion

In this paper we have reviewed some uses of fuzzy concepectorvquantization train-

ing. The main application is to enhance convergence, butave hlso proposed using
fuzzy ranking for the modeling of hardware implementatidriee method shows that, for
reasonably chosen uncertainty levdd the neural gas algorithm is remarkably stable.
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