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Abstract— The Human Leukocyte Antigens (HLA) system
consists of three regions in the human genome. In transplantation,
the match between donor’s and receiver’s HLA is critical for
histocompatibility. HLA typing problem consists in the donor’s
and receiver’s HLA systems matching. We describe the image
analysis module of a Decision Supporting System supporting
the application of the oligonucleotide microarray technology to
the HLA typing. The Decision Supporting System is based on a
fuzzy modeling approach that allows the biologist to describe and
classify the probe activations using its language and concepts in a
natural way, and, at the same time, supports a robust interactive
image filtering thanks to the usage of a Fuzzy Basis Functions
network.

I. INTRODUCTION

The Human Leukocyte Antigens (HLA) system consists of
three regions in the human genome. In transplantation, the
match between donor’s and receiver’s HLA is critical for
histocompatibility. HLA typing problem consists in matching
the donor’s and receiver’s HLA systems.

In the last few years, the availability of the oligonucleotide
microarrays technology [2] stimulated the development of new
methodologies for HLA typing [13][3].

Oligonucleotide microarrays [2] make it possible to perform
a large quantity (100-10000) of simultaneous experiments.
Each experiment corresponds to a given oligonucleotide probe
(a DNA strand of 15-20 bases) hybridizing with a target
RNA sample. The probes are affixed to specific positions of a
chip’s surface. The target is fluorescently labelled. Therefore a
fluorescence measurement by laser scanning gives information
about the amount of RNA hybridized at each specific location
on the chip (spot).

There are many techniques available for tackling HLA
typing using oligonucleotide microarrays, but none of them
seems able to resolve all ambiguities [4].

The aims of the Decision Supporting System (DSS) pre-
sented in this work is to support the design of oligonucleotide
microarrays for HLA typing, and to simplify their analysis.
Actually, as noted in [4], combinations of techniques may
be necessary for reliable typing, and, moreover, serological
analysis may still be necessary. Therefore it is important that
the usage of this molecular characterization tool is as simple
as possible.

The main constituents of the DSS for HLA typing are:

1) Support to the oligonucleotide probe design;
2) Spotter system programming;
3) DNA microarray hybridation measurement;
4) Genotyping.

The first subsystem of our Decision Supporting System is
based on the analysis of the alleles of the HLA system1. The
task of this subsystem is to support the design of a set of
oligonucleotides, of about 15-20 bases, able to discriminate
the alleles (in high or low resolution). The ordered list of
probes corresponds to the codes associated to the alleles to
be discriminated. Note that to each probe corresponds an op-
timal temperature for the hybridization (melting temperature)
depending on its constituents. This subsystem tries to suggest
to the user oligonucleotides with similar melting temperatures;
in facts, as the hybridization will be at the same temperature
for all the probes on the microarray, if the probes’ melting
temperatures are too different there will be the risk of false
positive and false negative spots.

The second subsystem interacts with the user in order to
program a spotter to print the selected probes on the target
microarrays, with an assigned redundancy level.

The DNA Microarray hybridation measurement subsystem
is devoted to classifing the probe activations on the basis of
the information coming from the microarray’s scanner.

The last subsystem computes the probe activation codes and
compares them with the codes associated to groups of alleles
to be discriminated supplied by the first subsystem supporting
the oligonucleotide probe design.

As reported in the literature [9], [8] the analysis of the
information embedded into a DNA microarray is a complex
task. In this work, we address in particular the presence of
outliers and the possibility that a probe can produce spots with
intermediate activation that, in principle, could be ascribed
either to the positive or negative activation classes.

In the next section, we will give a short description of the
hardware and software environments. Then we will present the
DNA microarray hybridation measurement subsystem (Sect.
III). Discussion and Conclusions are in Sect IV. The Appendix

1The IMGT/HLA Sequence Database is available on-line at the URL
http://www.ebi.ac.uk/imgt/hla/, and is continuously updated.



Fig. 1. A sample image produced by the scanner. It is possible to distinguish spots with positive or intermediate activation and outliers, as for instance the
bright spots in the bottom area of the image.

contains some details on the classification system based on the
Fuzzy Basis Functions network that are used by the DSS.

II. HARDWARE AND SOFTWARE ENVIRONMENTS

The Decision Supporting System has been developed on
a 500MHz PC Pentium in Sun Java 2, and is based on an
interactive graphical user interface, making extensive use of
pure Sun Java Swing graphical components such as tables,
trees, menus and image panels.

The instrumentation setup considered is as follows:

• a Packard-Bell Bioscience Division SpotArray 24 printing
system that prints, on one or more slides (DNA microar-
rays), the probes to be used in the hybridization process;

• a Packard-Bell Bioscience Division ScanArray Express
slide laser scanning system.

The available drivers for those instruments are designed for
the Microsoft Windows NT operating system.

In the spotting task, redundancy plays a relevant role. The
spotter robot cannot print single spots but only groups of
5 adjacent spots, in order to prevent printing errors and to
consume all the probe “ink” loaded by pins. Moreover, it
is important to program the robot to spot the same probe
in several different zones of the slide, in order to prevent
the effects of local problems due to low quality zones in
hybridization process.

The ScanArray Express reads the DNA microarray by laser
scanning and produces an high resolution image with spots
corresponding to the hybridization activity results of oligonu-
cleotide probes (see, e.g., Fig. 1). Moreover, the scanner driver
provides a data base associating each spot to a vector of
features, to be used for classification, including:

• the evaluation of intensity level, background level, di-
ameter, area, footprint, circularity, spot uniformity, back-
ground uniformity and signal-to-noise ratio and

• the position of spot centers and other geometrical infor-
mation coming from the spot printing system.

III. DNA MICROARRAY HYBRIDIZATION MEASUREMENT

SUBSYSTEM

We have to consider two sub-problems:
1) The classification of the activity measured by each spot

on the basis of the scanner outputs.
2) The integration (or fusion) of the activities of spots

corresponding to the same probe, in order to obtain
a robust evaluation to the results of the hybridization
process.

A. Spot activity evaluation

In the oligonucleotide microarray technology, the spot’s
hybridization is, in principle, a binary variable {0,1}, associ-
ated with the outputs of the scanner. In practical experimental
cases, it is necessary to take into account some intermediate
levels of probe hybridization due to environment factors like
the discrepancy of the melting temperature of probes with
respect the experimental temperature of the microarray (false
positive and false negative problems), and to others like,
e.g., the (partial) probe curling due to the presence of auto-
complementary sequences or to the bad anchorage of the probe
to the glass.

Given the large throughput of the oligonucleotide microar-
ray technology, an automatic approach to spot hybridization
evaluation, on the basis of the features measured by the
scanner driver, is necessary.

A direct approach to the design of such sub-systems is not
easy, as an expert biologist can discriminate the hybridization
level of a spot on the basis of the image produced by the
scanner, while he cannot obtain a reliable classification of
spots using only the features measured by the scanner driver.

As no useful rules, based on the scanner’s features, can
be obtained a-priori from the domain expert, we defined the
linguistic variable hybridization on the virtual universe of
discourse [0,1]. The term ”virtual” means that no direct mea-
surements of the hybridation are possible, while information
related to it is embedded in the scanner’s features, even if a
clear relationship is unknown.
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Fig. 2. Linguistic variable hybridization. In this figure the intermediate fuzzy set is split into two different fuzzy sets.

The terms (fuzzy sets) of the linguistic variable hybridiza-
tion are, e.g., Negative (N), Intermediate (I), Positive (P), and
Outlier (O) 2. The membership functions of those terms must
be indirectly evaluated on the basis of the scanner’s features
(semantic map).

In our DSS, the semantic map is obtained using a learning
system able to estimate the membership functions of terms on
the basis of a small set of labeled samples supplied by the
biologist through a graphical interface. The main constituent
of this module is a learning machine based on a network of
Fuzzy Basis Functions (FBF) [15], [12] (see Appendix).

A FBF network is a Mamdami fuzzy logic system [10]
with singleton fuzzification, max-product composition, product
inference and height defuzzification, equivalent to the ANFIS
model by Jang [5], that can learn its parameters from a labelled
data set using a gradient descent procedure.

Each FBF network’s task is the discrimination of class
against the remaining others. We use the mean square error
(MSE) as the cost function (empirical risk). In this way
the FBF network estimates the posterior class conditional
probability of any unknown data sample [11], [1], that we can
consider as the fuzzy membership to the class. A representa-
tion of the linguistic variable hybridation using two different

2Note that, in order to model different intermediate activation levels of
probe hybridization, such as false negative hybridization and false positive
hybridization, intermediate fuzzy set can possibly be split into more fuzzy
sets.

Intermediate terms is shown in Fig. 2.
Fig. 3 shows an example of the graphical interface. The

user can select a small set of samples for each class and
in few seconds the adaptive fuzzy system generalizes the
classification to all spot in the image. After learning, the spot
activity (hybridization) will be classified using a Winner Take
All (WTA) rule that associates the data points related to the
spot to the highest membership class. Points not belonging to
the alpha-cuts shown in Fig. 2 will be rejected (i.e., assigned
to a Outlier class). Rejected spots will not be considered in the
following fusion step. The user can accept the classification, or
else can either prepare a new training set, or explicitly change
the membership class of each spot.

B. Classification fusion

The Fusion Module allows the user to integrate the activity
levels of the redundant spots corresponding to the same probe
and to obtain in such a way a more robust evaluation to the
results of hybridization process. For each probe, the fusion
can be obtained by a choice of operators such as maximum,
minimum, averaging, voting, etc., possibly referred to each
sequential group of spots and between groups of spots.

IV. DISCUSSION AND CONCLUSIONS

We have described the image analysis module of a Decision
Supporting System designed for supporting HLA typing. This



Fig. 3. The user interface used in the DNA microarray Hybridization Measurement Subsystem. Each row of the table corresponds to a spot and contains
the feature values computed by the scanner driver, plus other information, such as the class of membership (activity). On the bottom, on the scanned image,
the squares represent the position of spots, and the color of their contours is related to the class to which each spot has the highest membership.

module classifies the spots on a oligonucleotide microarray im-
age on the basis of user hints. The subsequent processing steps
transform the list of class memberships of probe hybridization
activation into codes. Then the computed codes are compared
with whose designed using the Oligonucleotide Probe Design
Subsystem.

In the coding process, probes belonging to Positive and
Negative fuzzy sets will be coded, respectively, as 1 and
0. The probes belonging to the Intermediate fuzzy set(s)
could be assigned either code (1 or 0) depending on domain
knowledge obtained by an interaction with the user. This piece
of knowledge will be recorded in the probe data base.

As a general comment, the DDS we are developing and
testing adds novel tools to those already available for the HLA
typing problem [3], [4]. The approach to HLA typing shown
in this paper is based on fuzzy modeling, and can be fruitfully
integrated with others already published, as each approach
presents its own strengths and weakness.

However, our approach provides several advantages and
is therefore expected to obtain notable results by itself. In
particular, it allows using the standard biologist’s language
and concepts to describe and classify the probe activations in
a natural way. Furthermore, it allows robust interactive image
filtering thanks to the usage of a learning machine based on a
fuzzy system.
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APPENDIX

Fuzzy Logic Systems with singleton fuzzification, max-
product composition, product inference and height defuzzi-
fication can be represented as [12]

y = f(x) =

M
∑

l=1

y lφl(x) (1)

where y l denote the center of gravity of the output fuzzy set,
and φl(x) are called fuzzy basis functions and are given by

φl(x) =

∏p

i=1
µF l

i

(xi)
∑M

l=1

∏p

i=1
µF l

i

(xi)
(2)

where l = 1, 2, ..., M . We can refer to those FLS as fuzzy
basis expansions or networks of fuzzy basis functions (FBF
network) 3.

It is worth noting that the FLS with universal function prop-
erty studied by Mendel and Wang [15], which is a singleton
FLS using product inference, product implication, Gaussian
membership and height defuzzification, can be rewritten as a
FBF network expansion. The universal function approximation
property gives a strong mathematical ground when applying
FLSs in critical applications, ranging from control, to time
series prediction, to pattern recognition.

3The relationships between fuzzy basis expansions and other basis functions
have been extensively studied in [7].



Let us consider a fuzzy logic system based on a multi-
input-multi-output version of this FBF network. Specifically,
if there are K units in the input layer, J fuzzy inference rules
and I outputs, the rule activations can be expressed as rj =
∏

k µjk(xk), where the quantity µjk(xk) represents the value
of the membership function of the component xk of the input
vector for the jth rule and is defined as:

µjk(xk) = exp

(

−
(xk − mjk)2

2σ2

jk

)

, (3)

and mjk and σ2

jk are the means and variances of the Gaussian
membership functions. The values of the output units are:

yi =

∑

j rjyij
∑

j rj

=
∑

j

yijφj(x) , (4)

where yij is the center of gravity of the output fuzzy mem-
bership function of the jth rule associated with the output yi,
and

φj =

∏

k µjk(xk)
∑

j

∏

k µjk(xk)
(5)

is the fuzzy basis function associated to rule j, and represents
its normalized activation. (Without loss of generality, we could
assume that the fuzzy membership functions are singletons:
yij ≡ sij .)

The FBF network can be regarded as a feedforward connec-
tionist system with one hidden layer whose units correspond
to the fuzzy rules. It can be identified [10] both by exploiting
the linguistic knowledge available (structure identification
problem) or by using the information contained in a data
set (parameter estimation problem), which is the approach
followed in the present context.

As shown in [11], in order to obtain a ”fuzzy” classifier
approximating the Bayes discriminant functions in the large
training set size limit, we must find the values of the parame-
ters (or weights) that minimize the mean square error (MSE)
defined as

MSE =

∑

k,n(yn
k − tnk )2

N
, (6)

where N is the size of the training set, yn = (yn
k ) is the

network output, and tn = (tnk ) is the n-th label of the
associative pair of the training set. The components of tn are
defined as follows:

tj =

{

1 if the pattern belongs to class j,
0 otherwise.

(7)

The cost function (6) can be minimized by many different
techniques. In our experiments, the FBF network parameters
(i.e., mjk , σjk and yij) were obtained by performing a gradient
descent with respect to the MSE across the training set.

The learning formulas are as follows [6], [14]:

∆yij = ηs[ti − yi]φj (8)

∆mjk = ηmφj

∑

i

[ti − yi][yij − yi][xk − mjk ]/σ2

jk (9)

∆σjk = ησφj

∑

i

[ti − yi][yij − yi][xk − mjk]2/σ3

jk (10)

where ηs, ηm, and ησ are the learning rates of yij , mjk , and
σjk .
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