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Abstract

In previous works, it has been experimentally shown
that the implementation of Error Correcting Output
Coding (ECOC) classi�cation methods with an ensem-
ble of parallel and independent non linear dichotomiz-
ers (ECOC PND) outperforms the implementation
with a single monolithic multi layer perceptron (ECOC
MLP). The low dependence of the errors on di�erent
codeword bits was qualitatively indicated as one of the
main factors a�ecting this result. In this paper, we
quantitatively evaluate the dependence of output er-
rors in ECOC learning machines using mutual infor-
mation based measures, and we study the relation be-
tween dependence of output errors and classi�cation
performances.

1 Introduction

The evaluation of the statistical dependence among the
outputs of learning machines can provide us with infor-
mation about their nature and behavior and can help
us to select well-suited models for solving a speci�c
learning problem.

We can measure the dependence among the outputs
of a learning machine using di�erent statistical tools
such as Cramer's V or the contingency coeÆcient C

[5] that are both �2 based, the covariance and the cor-
relation coeÆcient statistics, the Q-statistic [6], or also
non parametric correlation coeÆcients as the Spearman

rank-order correlation coeÆcient or the Kendall's tau

[7].

In this paper we use some mutual information based
measures for the evaluation of dependence among out-

puts errors in a learning machine proposed in [10]. The
main idea behind the application of those measures
of dependence consists in interpreting the dependence
among the outputs as the common information shared
among them. Mutual information measures have been
already applied to di�erent problems in machine learn-
ing, e.g., to the modeling of self organizing systems [1],
to image processing [15], and to feature transformation
and selection [14]).

In a previous work [8], we have qualitatively identi�ed
the dependence among output errors as one of the fac-
tors a�ecting the e�ectiveness of ECOC decomposition
methods [4]. Error Correcting Output Coding (ECOC)
are classi�cation methods based on a decomposition of
a multiclass problem in a set of two-class subproblems
and on a successive reconstruction of the original poly-
chotomy, exploiting the error recovering capabilities of
error correcting output codes. We have experimentally
showed that the implementation of these methods with
an ensemble of parallel and independent non linear di-
chotomizers (ECOC PND) outperforms the implemen-
tation with a single monolithic multi layer perceptron
(ECOCMLP). This result can be ascribed to the better
e�ectiveness of error correcting output coding methods
when the errors on di�erent code bits are low depen-
dent.

In this paper, we apply the proposed mutual informa-
tion measures for quantitatively evaluating the depen-
dence among output errors in ECOC classi�ers, ana-
lyzing the relations between this dependence and the
performances of ECOC methods through an extensive
experimentation.

The paper is structured as follows. In the next section
we summarize the main characteristics of the measures
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based on mutual information for evaluating the depen-
dence among output errors. Sect. 3 presents the ex-
perimental setup, the results and the discussion, and,
then, the section of conclusions summarizes the main
results and the incoming developments of this work.

2 Mutual Information and Dependence

between Output Errors

In a typical machine learning problem a learning algo-
rithm outputs an hypothesis f̂(x) : <d ! <l of the
unknown function f(x) : <d ! <l using a limited data
set D = f(x(i); c(i))gNi=1, where x

(i) 2 <d and c(i) 2 <l.

Let us represent the correct outputs as c =
[c1; c2; : : : ; cl] and the computed outputs of a learn-
ing machine as ĉ = [ĉ1; ĉ2; : : : ; ĉl] . Then we de�ne
the corresponding output errors as e = [e1; e2; : : : ; el],
where ei expresses the error on the ith output of the
learning machine. De�ning ei as the absolute error
(ei = jci � ĉij;8i = 1; : : : ; l ), we can reduce the weight
of outliers.

The outputs of learning machines can be considered
correct with respect to an assigned tolerance Æ > 0 if
8i; ei < Æ. For instance, in a classi�cation problem a
threshold usually separates the assignment of a class
from another and so it is natural to associate Æ with
this threshold. Analogously, in a regression problem
using the � insensitive loss function [17], usually used
with support vector machines, it is natural to associate
Æ with � itself.

In order to compute the mutual information among
the output errors of a learning machine, we have to
discretize its outputs. Representing the output er-
rors as a vector e = [e1; e2; : : : ; el], we can discretize
each ei in b intervals, de�ning the set of the intervals
bin(j); 1 � j � b as an ordered list:

bin = f[k0; k1); [k1; k2); : : : ; [kb�1; kb]g

with 0 = k0 < k1 < k2 < : : : < kb = max. The jth

interval is selected by

bin(j) = [kj�1; kj) j = 1 : : : b; kj�1; kj 2 [0;max]

The bin(1) is the correct interval and the others are
intervals corresponding to errors. The �rst interval
bin(1) = [0; k1) is such that k1 = Æ, that is an error
lower than Æ is interpreted as a correct output. For
instance, in the simplest case we have two intervals:
bin = f[k0; k1); [k1; k2]g and bin(1) = [k0; k1); k1 = Æ

is the correct interval. The width of each interval bin(j)
is equal except possibly the �rst one.

We de�ne e
(i)
k as the output error of the ith pattern on

the kth output and ekj as the number of the e
(i)
k values

falling in the interval bin(j):

ekj =
����i 2 f1; : : : ; Ngje(i)k 2 bin(j)

	���
where N is the cardinality of the data set. The discrete
probability function p(ekj) is de�ned as:

p(ekj) =

����i 2 f1; : : : ; Ngje(i)k 2 bin(j)
	���

N

and the discrete joint probability function among all the

output errors as:

p(e1j1 ; e2j2 ; : : : ; eljl) =����i 2 f1; : : : ; NgjV1�u�l(e
(i)
u 2 bin(ju))

	���
N

where ju 2 f1; : : : ; bg.

We de�ne the mutual information error IE as the mu-
tual information of the l output errors:

IE(e1; : : : ; el) = (1)
bX

j1=1

: : :

bX
jl=1

p(e1j1 ; : : : ; eljl) log

 
p(e1j1 ; : : : ; eljl)

p(e1j1) : : : p(eljl)

!

The mutual information error (eq. 1) expresses the
dependence among all output errors of a learning ma-
chine. If it is equal to 0 then the distributions of the
output errors are statistically independent. It expresses
also the similarity of the probability distributions of the
output errors.

Using the notion of correctness of the outputs de�ned
above in this section, we can introduce a "mutual in-
formation" generated by two or more errors on the out-
puts, that is, without considering the mutual informa-
tion error generated by correct outputs and by errors
only on a single output. We de�ne this quantity mutual

information speci�c error ISE :

ISE(e1; : : : ; el) = (2)X
J

p(e1j1 ; : : : ; eljl) log

 
p(e1j1 ; : : : ; eljl)

p(e1j1) : : : p(eljl)

!

where

J =
n
[j1; : : : jl]j9(jv ; jw)j(jv 6= 1)^(jw 6= 1)^(v 6= w)

o
with v; w 2 f1 : : : lg.

The mutual information speci�c error takes into ac-
count the output errors when two or more errors spring
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from the output, disregarding all cases with no errors
or with only one error. Then, if we have l outputs, are
considered all cases with l�2 correct outputs, l�3; l�4,
until 0 correct outputs and l errors. In a proper sense
it is not a mutual information among random variables
according to the information theory, but it expresses
the dependence among two or more errors on the out-
puts of a a learning machine, disregarding the mutual
information error due to a single error or no errors on
the outputs.

It is worth noting that, in the computation of the mu-
tual information error, the curse of dimensionality [2]
problem can arise, as the computation of IE(e1; : : : ; el)
requires the sum of bl elements and the memorization
of matrices l dimensional composed by bl elements. For
instance, with 10 outputs and 8 intervals we would have
joint probability matrices with 810 elements, and also
disregarding the space and time computational com-
plexity involved, we need anyway billions of data sam-
ples to �ll so huge matrices.

These problems can be tackled by evaluating the mu-
tual information error between all the output pairs. We
de�ne a pairwise mutual information error matrix R

composed by the elements IE(ei; ej) = [Rij ]. It can be
de�ned also a pairwise mutual information error matrix

index �R:

�R =

lX
i=1

lX
j=1

IE (ei ; ej ) (3)

In the same way can be de�ned a pairwise mutual in-

formation speci�c error matrix S, composed by the el-
ements ISE(ei; ej) = [Sij ] and a pairwise mutual infor-

mation speci�c error matrix index �S :

�S =

lX
i=1

lX
j=1

ISE (ei ; ej ) (4)

These indices can be used as substitutes of the mu-
tual information error and the mutual information spe-
ci�c errors among all output errors, because these val-
ues express the total pairwise dependence between all
the couples of output errors. However these indices
(eq. 3 and 4) are not equivalent to the corresponding
equations 1 and 2 of the mutual information among all
output errors. Recall that eq. 3 and 4 consider only
the mutual information between pairs of output errors,
while eq. 1 and 2 consider the overall mutual informa-
tion among all output errors.

It is worth noting that the absolute values of IE , ISE ,
�R and �S depend on the number of outputs and on
the selected number of discretization intervals.

These mutual information related quantities can be
used to compare the dependence of the output errors
among di�erent learning machines on the same learning
problem, using, of course, the same data sets. The mu-
tual information error and the mutual information spe-
ci�c error can o�er insights into the dependence and the
probability distribution of the errors, especially when
we want to compare the behavior of di�erent architec-
tures of learning machines.

3 Estimating the Dependence between Output

Errors in ECOC Learning Machines

In this section we analyze the dependence among out-
put errors of monolithic Error correcting Output Cod-

ing [4, 8] (ECOC monolithic for short) and ECOC Par-

allel Non linear Dichotomizers [9] (ECOC PND for
short) learning machines, using the proposed mutual
information based measures.

3.1 The problem

ECOC is a two-stage classi�cation method, that con-
sists in decomposing a multiclass problem in a number
of two-class (dichotomic) subproblems and then com-
bining them to achieve the class label. Both monolithic

and PND ECOC learning machines code their outputs
through error correcting output codes [12], in order to
exploit their error correcting capabilities. They dif-
fer in their design: ECOC monolithic are implemented
by a single multilayer perceptron (MLP) with one hid-
den layer, while ECOC PND are implemented by an
ensemble of dichotomic MLPs, one for each di�erent
dichotomy generated by the ECOC decomposition.

We know that the e�ectiveness of ECOC classi�cation
methods depends on the dependence among codeword
bits errors [12, 8]. In our experimentation we evalu-
ate this dependence in ECOC monolithic and ECOC
PND learning machines.

3.2 The data

In our experiments we have used data sets from the
UCI repository of Irvine (glass, letter, optdigits) [11]
and a synthetic data set (d5) made up by �ve three-
dimensional classes, each composed by two normal dis-
tributed disjoint clusters of data 1.

We have used, both for training the learning machines
and for evaluating the dependence among the output
errors, NEURObjects [16], a set of C++ library classes

1The synthetic data set d5 is available at
ftp://ftp.disi.unige.it/person/ValentiniG/Data.
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Figure 1: Di�erence of the pairwise mutual information error index �R and of the pairwise mutual information speci�c
error index �S between ECOC monolithic and PND learning machines on the data sets glass (a,b), optdigits
(c,d) and letter (e,f).

for neural networks development 2.

3.3 Results and discussion

The �rst results concerned the comparison of perfor-
mances of ECOC monolithic and ECOC PND learning
machines obtained with multiple runs of di�erent ran-
dom initialization of the weights and cross-validation
techniques (see Tab. 1).

2NEURObjects is on line available at
http://www.disi.unige.it/person/ValentiniG/NEURObjects.

Then, we have compared the dependence among out-
put errors of ECOCmonolithic and ECOC PND learn-
ing machines varying the number of hidden units, the
number of discretization intervals (bins) of the output
errors, and the values of the output error tolerance
Æ. For each data set and for a �xed number of hid-
den units we have considered all the combinations of
Æ 2 f0:1; 0:2; 0:3; 0:4gwith the number of discretization
intervals bins 2 f2; 3; 4; 5; 6g, for a total of 20 pairs of
(Æ; bins).
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Figure 2: Di�erences of Pairwise mutual information matrices on the optdigits data set between ECOC monolithic and
ECOC PND learning machines. R di�erence matrix (a) and S di�erence matrix (b).

IE and ISE among all output errors are greater for
ECOCmonolithic respect to ECOC PND learning ma-
chines for both the data sets d5 and glass, no matter
the structure, the number of intervals and the Æ val-
ues used. Due to the dimensional problems described
Sect. 2, IE and ISE values have not been computed on
letter and optdigits. For these data sets we evaluated
only the pairwise global indices �R and �S .

The di�erences between the pairwise mutual informa-
tion error index �R and the pairwise mutual informa-
tion speci�c error index �S between ECOC monolithic

and ECOC PND are always positive on all UCI data
sets (Fig. 1). In the graphs of Fig. 1, each line cor-
responds to a di�erent triplet number of hidden units,
number of intervals and values of Æ. Considering the
data set d5, only in 2 of the 220 cases we have negative
values, showing that �R and �S are higher for ECOC

Table 1: Performances of MLP ECOC monolithic and
PND ECOC ensembles.

MLP ECOC PND ECOC

monolithic ensemble

Data set mean stdev mean stdev

d5 18.31 6.44 12.34 0.74
glass 36.17 4.54 32.05 1.77
letter 6.55 1.91 3.24 0.24
optdigits 3.08 0.47 1.95 0.10

monolithic.

The examination of the pairwise mutual information
error matrices can provide us with information about
the dependence of speci�c pairs of output errors. In ad-
dition we can also directly compare the matrices of dif-
ferent learning machines to synthetically evaluate the
dependence among all the output pairs. As an example,
we consider the matrices R and S, selecting a triplet
with Æ = 0:4 and a number of intervals equal to 6 for
the data set optdigits (Fig. 2). This �gure represents
the di�erences of R (Fig. 2 a) and S (Fig. 2 b) matri-
ces between ECOC monolithic and ECOC PND learn-
ing machines. Each three-dimensional bar matches a
pair of output errors and corresponds to their mutual
information error IE or their mutual information spe-
ci�c error ISE . The S and R matrices are represented
as triangular matrices, without the diagonal, because
they are symmetric and the elements on the diagonal
are the entropy of output errors. Gray bars stand for
positive values, and black for negative ones. Only the
output error pairs (1; 13); (3; 14) and (11; 12) show neg-
ative values of the IE (Fig. 2 a) and ISE (Fig. 2 b)
di�erences. Similar results are obtained also for the
other considered data sets.

We have seen that all the results about IE , ISE , �R and
�S , together with the analysis of the pairwise mutual
information matrices R and S show higher values for
ECOCmonolithic learning machines. Moreover, apply-
ing the mutual information error t-test [10] for evalu-
ating the signi�cance of the di�erences between the IE
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and ISE values of the two ECOC learning machines,
we have veri�ed that in almost all the comparisons we
have registered a signi�cant di�erence with a degree of
con�dence of 95%.

Consequently, we can state that ECOC Parallel Non
linear Dichotomizers show a lower dependence among
the output errors of their decomposition unit compared
with the output errors of the corresponding ECOC
monolithic MLP.

4 Conclusions

In this paper we have presented an extensive experi-
mentation for quantitatively evaluating the dependence
among codeword bits errors in ECOC learning ma-
chines. In particular, we have used measures based
on mutual information proposed in [10] for comparing
the dependence among output errors between ECOC
monolithic and ECOC PND learning machines.

Our experimentation shows that ECOC PND are af-
fected by a lower dependence among the output errors
of their decomposition unit compared with the output
errors of the corresponding ECOC monolithic MLP,
suggesting that a low dependence can be achieved im-
plementing the decomposition unit through an ensem-
ble of parallel and independent dichotomizers, such as
dichotomic MLP or decision trees [13] or support vector
machines [3].

Future developments of this work should consist in
quantitatively studying the dependence among output
errors in ECOC learning machines architectures that
can improve the diversity between the dichotomizers
implementing the decision unit.
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