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Abstract

The human leukocyte antigen (HLA) region is a part of genome which spans over 4 Mbases of DNA. The
HLA system is strongly connected to immunological response and its compatibility between tissues is critical in
transplantation. We have developed an application of oligonucleotide microarrays to HLA typing. In this paper,
we present a method based on a fuzzy system which interactively supports the user in analyzing the hybridization
results, speeding-up the decision process moving from raw array data obtained from the scanner to their interpretation
(genotyping). The two-level procedure starts with evaluation of spot activity, then it estimates probe hybridization
levels from activity levels. The method is designed for being readily usable by the biologist, by adopting fuzzy
linguistic variables which are familiar to the user and by featuring a standard and complete graphical interface.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The major histocompatibility complex, known as human leukocyte antigen (HLA) region, is a part of
human genome which spans over 4 Mbases of DNA on the short arm of chromosome 6 and consists of
a large number of immunologically relevant genes. HLA class I and class II regions encode cell surface
glycoproteins involved in the recognition by T cells[11]. One of the hallmarks of HLA complex is the
extensive polymorphism of its loci. The number of HLA alleles reported in the last decade has risen at a
rapid rate. More than 1700 HLA allelic variants have been described to date.1

The HLA system is strongly connected to immunological response. In transplantation, the match
between donor’s and receiver’s HLA is critical forhistocompatibility(compatibility between tissues).
Therefore, characterization and identification (typing) of HLA is crucial for transplantation, as well as
for antigen presentation, autoimmune disease and many others areas of clinical interest[11]. Among the
molecular methodologies, DNA microarray technology can provide a feasible and reliable approach for
HLA typing.

Oligonucleotide microarrays[3] make it possible to perform a large quantity (even thousands) of
simultaneous experiments. Each experiment corresponds to a given oligonucleotide probe, a DNA strand
of 20–30 bases which selectively combines with a complementary sequence in the target RNA sample
(this process is termedhybridization). The probes are affixed to specific positions (spots) on the surface
of a glass substrate, organized as an array. The target is fluorescently labelled, therefore a fluorescence
measurement by laser scanning gives information about the amount of RNA hybridized at eachspot, or
specific location on the chip.

The use of microarray technology in HLA typing is promising[6,18] but to date not yet widespread.
However, the high throughput provided by this method allows the collection and analysis of thousand
of single nucleotide polymorphism in parallel[3,6]. This spot classification task on the basis of the
microarray images is complex and can be very time consuming.

Soft computing and artificial intelligence techniques are routinely proposed for the analysis of mi-
croarray data (reviews can be found for instance in[9,13,17,20]). The use of a fuzzy logic system is well
matched to the inherent uncertainty in data obtained by measurement of physical phenomena. Never-
theless, while the most typical application of soft computing to microarray data aims at measuringgene
expression levels, which are inherently continuous-valued variables, the present work addresses a less
typical microarray problem. In our case, the aim is to model a situation which (in the ideal setting) should
feature binary variables, indicating hybridization. Fuzzy modeling accounts for uncertainty in the rep-
resentation of these quantities. The system interactively supports the user in analyzing the hybridization
results, speeding-up the decision process moving from raw array data obtained from the scanner to their
interpretation, i.e., genotyping.

In this paper, after a description of our approach to HLA typing with microarray (Section2), we will
describe in Section3 the system supporting the measurement of probe hybridization we have developed.
In Section4 we discuss a case study for validation of the proposed approach. Discussion and Conclusions
are in Section5. The Appendix presents the fuzzy basis functions network that we used in order to
speed-up the spot activity labelling.

1 HLA sequences are available from the IMGT/HLA Sequence Database athttp://www.ebi.ac.uk/imgt/hla/, which is con-
tinuously updated.
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2. Procedure for HLA typing with microarrays

Our oligonucleotide array approach for HLA typing involves a fluorescently labelled locus specific
amplification of genomic DNA followed by hybridization with a panel of probes selected to detect a
specific pattern of sequence motifs corresponding to an HLA allele.

The procedure starts with the design of a set of oligonucleotides, of about 15–20 bases, able to discrim-
inate the alleles in high resolution. Each oligonucleotide probe will only anneal to sequences that match it
perfectly, a single mismatch being sufficient to prevent hybridization under appropriate conditions[21].
In such as way, to each gene allele to be discriminated we associate a code made up by a list of positive
or negative expected hybridization of the ordered set of probes.

Then, oligonucleotide probes are synthesized and spotted on the microarray (chip) using a spot printing
robot, and then the microarray is hybridized using the target DNA to be analyzed. After hybridization
and stringent washing the slide is scanned using a slide laser scanning system obtaining in such a way
the fluorescence image of the microarray.

In Fig. 1 there are the images of two microarrays produced by a Packard-Bell Bioscience Division
ScanArray 4000X. In the former image probes are affixed in the central area of the array and their pattern
is repeated twice. We can distinguish spots with positive (lighter ones), intermediate, or negative (darker
ones) activities and outliers (noise) spread mostly in the border areas. The latter image shows an enlarged
detail of another microarray image, with higher presence of outliers.

HLA typing is then obtained by comparing the pattern of hybridization of the ordered set of probes
and the codes associated to gene alleles in the probe design step.

The evaluation of probe hybridization is a complex task due to the presence of spots with intermediate
activity that must be ascribed either to the choice of probes with too differentmelting temperatures2

in the probe design step, or to other experimental problems like, e.g., the (partial) probe curling due to
the presence of auto-complementary sequences or to the bad anchorage of the probe to the glass. As
a consequence, the binary linguistic variableProbe Hybridization(with {Positive, Negative} term set),
must be obtained from the linguistic variableSpot Activationthat can range in a term set containing
Positivevalue,Negativevalue and one or moreIntermediatevalues (the last ones usually corresponding
to so-calledFalse Negative/False Positivespots).

Using the available knowledge about the specific probe and the experimental conditions,Intermediate
values ofSpotActivitycan be mapped intoPositive/Negativevalues of theProbeHybridization. Moreover,
one can exploit the redundancies of the microarray (e.g., the repetitions of spots of the same probe, such
as in the case in Fig.1(a)) in order to obtain a more reliable estimation ofProbe Hybridization.

3. Support to probe hybridization labelling

A typical HLA typing problem can need hundred of probes to be affixed to the microarray that will
contain at least a double number of spots. Because of the large throughput typical of microarrays, eval-
uating probe hybridization by the approach described in Section2 will be very time consuming and

2 The melting temperature of a probe is the optimal temperature for its hybridization and depends on its basis. The quantity
of RNA hybridized can increase/decrease if the hybridization experiment has been done at a temperature higher/lower that the
probe’s melting temperature.
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Fig. 1. Scanned images of two microarrays for HLA typing. (a) The probes are affixed in the central area of the array. One can
distinguish spots with positive (lighter ones), intermediate, or negative (darker ones) activities and outliers (noise) spread mostly
in the border areas. The experiment is described in Section4. (b) There is an enlarged detail of another microarray image, with
higher presence of outliers.

complex, computer-assisted analysis is of value in order to provide large-scale allele typing, improve data
management, and streamline overall quality control processes.

A direct approach to computer-assisted labelling ofProbe Hybridizationcan consist in the definition of
a bank of (fuzzy) rules evaluating the probe hybridization on the basis of the image features obtained from
the spots. But this approach is not easy, as an expert biologist can discriminate the hybridization level of
a probe on the basis of the image produced by the scanner and of the nature of the probe itself, while s/he
cannot obtain a reliable classification of spots using only spots’ features. As a consequence, a machine
learning approach trying to correlate spots’ features (inputs) and theProbe Hybridizationclassification
made by the biologist (labels) can be more fruitful in supporting the user’s labelling task.

In principle, if the microarray shows a sufficient spot redundancy (e.g., if each probe has been spotted
many times), a learning machine can help modeling theProbe Hybridizationof each probe by evaluating
its memberships to fuzzy sets (terms)PositiveandNegativeon the basis of the spot’s sub-image features
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(inputs) and the expert biologist’s classification (labels). But, since usually a probe is spotted few times
on the microarray, the spot redundancy is not sufficient to guarantee a reasonable generalization.

The approach we followed to design a system for the support to probe hybridization labelling is based
on two sequential interactive steps:

(1) A Spot Labelling Stepmodeling theSpot Activityof a probe by evaluating the memberships of spots
to terms (fuzzy sets)Positive, Negativeand (one or more)Intermediate. Moreover, an additional
termOutlier is considered grouping spots contaminated by noise. To this aim we use a learning
machine that takes as input patterns the values of the spot’s sub-image features and as labels the
expert biologist’s classification based on visual inspection of the spot sub-image.

(2) A Probe Labelling Stepsupporting the biologist in the association ofSpot Activityvalues to those
of Probe Hybridization. After the previous step,PositiveandNegativevalues ofSpot Activityare
univocally associated to the same terms asProbe Hybridization. In the current step the biologist will
associate to each probe theIntermediatevalues ofSpot Activityto eitherPositiveorNegativevalues
of theProbe Hybridizationon the basis of the available knowledge about the specific probe and the
experimental conditions and exploiting the redundant spots on the microarray.

We have developed the system on a 500 MHz Pentium PC inSun Java 2, providing it with an interactive
graphical user interface making use of pureSun Java Swinggraphical components such astables, trees,
menusandimage panels(see Fig.2). In this way, the user has access to a familiar look-and-feel which
makes user training much easier.

For each spot we considered its position onto the microarray and the following features computed
on the spot’s sub-image: average intensity, average background intensity, intensity standard deviation,
diameter, circularity, and uniformity. All those data are a sub-set of those produced by the ScanArray
Express software equipping the ScanArray 4000X. If necessary, when using a different scanner type,
these features can be evaluated directly from the spot sub-image.

The learning machine used in the Spot Labelling step is a network of fuzzy basis functions (FBF)
[16,22,23]that is a Mamdani fuzzy logic system[14] with singletonfuzzification,max-productcompo-
sition,productinference andheightdefuzzification, equivalent to the ANFIS model[7]. A FBF network
can learn its parameters from a labelled data set using a gradient descent procedure. A description of the
FBF network and of its learning rules is presented in the Appendix and a Java implementation is available
athttp://mlsc.disi.unige.it/person/HLA/FBF/.

For each class to be modeled we use a FBF network whose task is the discrimination of that class
against the remaining others on the basis of the considered spot sub-images features. We use the mean
square error (MSE) as a cost function (empirical risk) to be minimized by the gradient descent procedure.
In this way the FBF network estimates the posterior class conditional probability of any spot[2,15], that
we can consider as the fuzzy membership to the class.

Fig. 2 shows an example of interaction in theSpot Labelling Step. The user starts by selecting a small
set of spots for eachSpot Activityclass:Positive,Medium,Negative, andOutlier. In few seconds the FBF
networks generalize the classification to all spots in the image. Labels are assigned to spots by using a
Winner Take All (WTA) rule that associates the spot to the highest membership class. If the user accepts
the classification, the step terminates. Otherwise, the user can either explicitly change the membership
class of some spots and terminate the step, or prepare a new sample and retrain. Moreover, every time
the user can mark a spot asReject. Rejected spots will not be considered in theSpot LabellingandProbe
Labelling Steps.
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Fig. 2. The interactive user interface. Each row of the table corresponds to a spot and contains the values of its features, and
other information, including the class of membership (Positive, Medium, Negative, Outlier, andReject). On the bottom, on the
scanned image, the squares represent the positions of spots, and the color of their contours indicate the class of membership.
The experiment is described in Section4.

Note that many outlier points in the microarray image are implicitly filtered out as they are outside the
spots’ sub-images. Concerning the outliers belonging to spots’ areas, the hosting spot areas are grouped
in the classOutlierduring the previously described interactive learning procedure and, moreover, we add
to this class also the spots with low membership to the other classes. The spots assigned to classOutlier
will not be considered in the subsequentProbe Labelling Step.

As our main goal is the development of a system for computer-assisted analysis of scanned images of
microarrays for HLA typing in order to speedup the usual manual labelling task, there are not any strict
generalization or speed requirements for the learning machine to be used inSpot Labelling Step, but,
obviously, the higher those performance indexes, the faster the whole HLA typing.

To this aim we have performed a model selection on FBF networks using a K-fold validation method
[1,19] that is particularly suitable when only a small data set is available, as in the present application.
We considered a data set of 50 vectors of spot features randomly extracted from a scanned image of a
microarray for HLA typing. The data vectors are labelled with 3 classesSpot Activity: Positive,Medium,
andNegative. The best generalization results, using 5 folders of 10 patterns each, have been obtained with
FBF networks with 8 hidden units (i.e., 8 rules), and this is the architecture we selected for implementation
in the system.
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Concerning spot redundancy, there are two typical cases that arise from microarray design. The first one
(local redundancy) is due to a constraint of some spot printing robots (e.g. the Packard-Bell Bioscience
Division SpotArray 24) that cannot print single spots but only groups of 5 adjacent spots, in order
to prevent printing errors and to consume all the probe “ink” loaded by pins. The second source of
redundancy (global redundancy) is a microarray designer’s shrewdness consisting in spotting the same
probe in several regions of the slide, in order to prevent the effects of local experimental problems due
e.g. to low-quality zones in hybridization process.

As already stated, theProbe Labelling Stepsupports the biologist in mapping theSpot Activityvalues
already evaluated into the two values of theProbe Hybridization. To this aim the biologist exploits the
spot redundancy using a choice of operators including maximum, minimum, averaging, and voting, in
order to fuse theSpot Activityvalues corresponding to all instances of a given probe, and then he will
exploit his knowledge about the probes and the experimental conditions in order to mapIntermediate
values ofSpot Activityto eitherPositiveorNegativevalues of theProbe Hybridization.

After theProbe Labelling Step, we obtain the typing of the target HLA allele by comparing the ordered
list of Probe Hybridizationlevels obtained with the list of alleles’ codes produced during probe design.

4. Case study: validation of the system

In this section, we describe an experimental validation of our procedure for HLA typing with mi-
croarrays and of our system assisting probe hybridization labelling. We used a small number of probes
organized in two identical squares of 5× 5 spots (see Fig.1(a)).

A panel of 20-mer oligonucleotide probes was designed for identifying polymorphic positions located
in exon 2 and exon 3 of HLA-A and B loci and in exon 2 of HLA-DRB1 locus (see Table1). Each probe
contained a 5′ aminolink for immobilization chemistry and a 12-mer spacer, followed by the 20-mer
hybridization sequence. The polymorphic sequence was situated near the center of each hybridization
sequence.

Oligonucleotide probes were synthesized and spotted on an array by MWG Biotech Srl. The microarray
was hybridized with single strand PCR product amplified from human genomic DNA.

The target DNA was previously HLA typed asA*0216/0301 HLA with an independent approach (high-
resolution sequencing with a capillary sequencer, for different HLA loci) and was prepared as follows:
double stranded PCR product first generated using locus specific primers and then purified to remove the
excess primers. Single stranded DNA molecules were then generated from asymmetric PCR using one
5′ Cy5-labelled primer as described in[21].

After hybridization and stringent washing the slide was scanned using a ScanArray 4000XL and the
fluorescence image was analysed using the interactive system described in the previous section.

We expected to get positive hybridization with the following probes: ACES2, ACES3, ALMR5,
ALMD2, ALM016, ALM017 and negative with the others. The analysis with the support of the in-
teractive system leads to the expected results with few user interactions. Fig.2 shows a screen-shot of
the interactive interface.3

3 On the web sitehttp://mlsc.disi.unige.it/person/HLA/DSS/ there is a detailed description of the interaction with the system.
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Table 1
List of probes spotted in the HLA typing microarray

PROBE Sequence Array deploy

ACES2 5′ CTA CTA CAA CCA GAG CGA GG 3′ A1; A19
ACES3 5′ ACG GCA AGG ATT ACA TCG CC 3′ A2; A20
ALMR1 5′ G TAT TTC TAC ACC TCC GTG TC 3′ A3
ALM4R 5′ GGG ACC GGA ACA CAC GGA A 3′ A4
ALMR6 5′ TC ACA TCC ATG TCC CGG CC 3′ A5
ALMR2 5′ CAC TCA CAG ATT GAC CGA GTG 3′ A6
ALMR3 5′ GAC GGG CGC CTC CTC CGC 3′ A7
ALMR5 5′ GG AGG GCG AGT GCG TGG A 3′ A8
ALMD1 5′ TG CGT GGA CGG GCT CCG C 3′ A9
ALMD2 5′ TG CGT GGA GTG GCT CCG C 3′ A10
ALMD3 5′ GG AGG GCC GGT GCG TGG A 3′ A11
ALMD4 5′ GG AGG GCA CGT GCG TGG A 3′ A12
ALM012 5′ CAG CTC AGA TTA CCA AGC GC 3′ A13
ALM015 5′ C CAT CCA GAT GAT GTA TGG CT 3′ A14
ALM016 5′ GA GCA GTT GAG AGC CTA CCT 3′ A15
ALM018 5′ TGG AGG GCT GGT GCG TGG 3′ A16
ALM011 5′ CG AGC CAG AAG ATG GAG CC 3′ A17
ALM013 5′ GCA GGA GAG GCC TGA GTA TT 3′ A18
ALM014 5′ AGG TAT TTC TCC ACA TCC GTG 3′ A21
ALM017 5′ GAC ACG GAA TGT GAA GGC CC 3′ A22

The table shows the name assigned to probes, theirs bases sequence with DNA orientation (5′ and 3′) and their deployment
position in the microarray.

5. Discussion and conclusions

We have described a system for assisting the biologist in the analysis of oligonucleotide microarray
images for HLA typing[11]. Because of the large number of probes used in HLA typing computer-
assisted analysis is of value in order to provide high-throughput allele typing, improve data management,
streamline overall quality control processes. In Section4 we have shown an experimental verification of
the system.

The approach we followed is based on a fuzzy modeling of spot activity and the mapping of spot activity
evaluations into the evaluation of the hybridization of related probes. The system interactively supports
the user in analyzing the hybridization results. The spot activity evaluations made by the biologists on a
sub-set of spots are generalized to the other spots by means of learning machines based on FBF networks
[16,22,23]that relate the labels of spots given by the biologist with a set of features measured on the
spots’ sub-images. In this way we obtain a significant speeding-up of the decision process moving from
raw array data obtained from the scanner to their interpretation, i.e. genotyping.

Concerning the set of features used as the input vectors of the learning machine, in the experiments
reported in this paper we have used a subset of those produced by the ScanArray Express software
equipping the ScanArray 4000X. Obviously, other, (if possible more specific) sets of features can be
considered in its place to improve the classification results (see, e.g.,[5]).

On the basis of the promising results obtained with the method described in this paper, we have
started the development of a decision-support system for the full processing of HLA typing using the
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oligonucleotide microarrays technology. Note that the proposed computer-assisted approach increases in
relevance while the complexity of the typing task increases and hundred or thousand of spots have to be
labelled.

Although (to the best of our knowledge) the complete system we are implementing is a novel realization,
the design of a decision-support system is a natural choice in this application field. Computer assistance
in decision making (expert systems, decision-support systems[24]) is especially widespread in medical
practice.

As an example, related to applications of our work, in transplantation there are two main scenarios,
related to the type of transplant. Transplantation of solid organs usually require fast access to information
and donor–receiver compatibility. Decision-support systems in this scenario should enable fast decision
making in ubiquitous computing environments[12]. Very close match between the immune systems is
somewhat less critical in this case. In contrast, when it comes to bone marrow transplantation, even small
mismatch can result in unacceptably increased risk[4]. In this case molecular technologies (based on
Polymerase Chain Reaction, sequencing, or microarrays) have to be adopted. The methods described in
this paper can be fruitfully exploited in this scenario.
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Appendix

Fuzzy logic systems (FSL) withsingletonfuzzification,max-productcomposition,product inference
andheightdefuzzification can be represented as[16]

y = f (x) =
M∑
l=1

yl�l(x), (1)

wherey l denote the center of gravity of the output fuzzy sets,l = 1, 2, . . . , M, x = (xi), i = 1, 2, . . . , p,
are the input patterns, and�l(x) are calledfuzzy basis functionsand are given by

�l(x) =
∏p

i=1 �F l
i
(xi)∑M

l=1
∏p

i=1 �F l
i
(xi)

. (2)

We can refer to those FLS asfuzzy basis expansionsornetworks of fuzzy basis functions(FBF network).4

It is worth noting that the FLS with universal function property studied by Mendel and Wang[23],
which is a singleton FLS using product inference, product implication, Gaussian membership and height
defuzzification, can be rewritten as a FBF network expansion. The universal function approximation

4 The relationships between fuzzy basis expansions and other basis functions have been extensively studied in[10].
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property gives a strong mathematical ground when applying FLSs in critical applications, ranging from
control, to time series prediction, to pattern recognition.

Let us consider a fuzzy logic system based on a multi-input–multi-output version of this FBF network.
Specifically, if there areK units in the input layer,J fuzzy inference rules andI outputs, the rule activations
can be expressed asrj = ∏

k �jk(xk), where the quantity�jk(xk) represents the value of the membership
function of the componentxk of the input vector for thejth rule and is defined as

�jk(xk) = exp

(
−(xk − mjk)

2

2�2
jk

)
(3)

andmjk and�2
jk are the means and variances of the Gaussian membership functions. The values of the

output units are:

yi =
∑

j rj yij∑
j rj

=
∑
j

yij�j (x), (4)

whereyij is the center of gravity of the output fuzzy membership function of thejth rule associated with
the outputyi , and

�j =
∏

k �jk(xk)∑
j

∏
k �jk(xk)

(5)

is the fuzzy basis function associated to rulej, and represents its normalized activation. Moreover, without
loss of generality, we can assume that the fuzzy membership functions are singletons, i.e.,yij ≡ sij .

Note that, the FBF network can be regarded as a feedforward connectionist system with one hidden
layer whose units correspond to the fuzzy rules and it can be identified[14] both by exploiting the
linguistic knowledge available (structure identification problem) or by using the information contained
in a data set (parameter estimation problem), as we done in this paper.

As shown in[15], in order to obtain a "fuzzy" classifier approximating the Bayes discriminant functions
in the large training set size limit, we must find the values of the parameters (orweights) that minimize
themean square error(MSE) defined as

MSE =
∑

k,n(y
n
k − tnk )2

N
, (6)

whereN is the size of the training set,yn = (yn
k ) is the network output, andtn = (tnk ) is thenth label of

the associative pair of the training set. The components oftn are defined as follows:

tj =
{

1 if the pattern belongs to classj,
0 otherwise.

(7)
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The cost function (6) can be minimized by many different techniques. In our experiments, the FBF
network parameters (i.e.,mjk, �jk andyij ) were obtained by performing a gradient descent with respect
to the MSE across the training set.

The learning formulas are as follows[8,22]:

�yij = �s[ti − yi]�j , (8)

�mjk = �m�j

∑
i

[ti − yi][yij − yi][xk − mjk]/�2
jk, (9)

��jk = ���j

∑
i

[ti − yi][yij − yi][xk − mjk]2/�3
jk, (10)

where�s , �m, and�� are the learning rates ofyij , mjk, and�jk.
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