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Abstract

To accomplish analyses on the properties of neuronal populations it is mandatory that each unit activity is identified within the
overall noise background and the other unit signals merged in the same trace. The problem, addressed as a clustering one, is
particularly difficult as no assumption can be made on the prior data distribution. We propose an algorithm that achieves this goal
by a two-phase agglomerative hierarchical clustering. First, an inflated estimation (overly) of the number of clusters is cast down
and, by a maximum entropy principle (MEP) approach, is made to collapse towards an arrangement near natural ones. In the
second step consecutive partitions are created by merging, two at time previously aggregated partitions, according to similarity
criteria, in order to reveal a cluster solution. The procedure makes no assumptions about data distributions and guarantees high
robustness with respect to noise. An application on real data out of multiple unit recordings from spinal cord neurons of mixed
gas-anaesthetized rats is presented. © 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

Extracellular recordings do not often allow the clear
selection of one single, well-distinguishable, spike form.
The usual recordings may include more than one con-
current neuronal signal, merged into a single trace on
the background noise. Thus it is necessary to implement
on- or off-line techniques to identify homogeneous
structures (spikes from a single neuron) in the data set
(recording trace from an electrode).

Several methods proposed in the past discriminate
homogeneous spike shapes without the aid of a labeled
training set. The absence of category labels, i.e. markers
assigned to objects, distinguishes cluster analysis from

discriminant analysis. Parametric and nonparametric
methods are the two fundamental approaches to clus-
tering. In the parametric approach the distribution of
data is expressed by a statistical model (e.g. a mixture
of normal distributions). In the non-parametric ap-
proach the valleys of the density functions are consid-
ered as the natural boundary separating the modes of
the distributions. A typical technique to construct such
density functions is based on the Parzen method
(Parzen, 1962).

The outcome of a crude application of the unsuper-
vised algorithms to the separation of spikes from a
neuronal recording trace is sometimes unsatisfactory.
Kleinfeld and co-workers (Mitra et al., 1995; Fee et al.,
1996b) recently showed that spike waveforms are highly
anisotropic objects, and that their deviations are not
grasped by Gaussian approaches; this has led to the
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discarding of parametric methods. A detailed guideline
to this problem has been proposed by Fee et al.
(1996a), a further extension to a probabilistic frame-
work has been made by Andersen’s group (Sahani et
al., 1997).

The maximum entropy principle (MEP), proposed in
the 50-ties by Jaynes (1957a,b), maximizes the informa-
tion content of a data set. Recently some important
results about the application of MEP to the clustering
problem were published (Rose et al., 1990, 1993; Hof-
mann and Buhumann, 1997; Masulli et al., 1997). These
papers describe the method of deterministic annealing
applied to clustering. This approach has the nice fea-
ture of revealing the ‘natural’ clusters that exploit the
well-known robustness of maximum entropy inference,
through minimization heuristics named deterministic
annealing.

In order to obtain the correct ‘natural’ clusters, the
proper scheduling procedure for deterministic annealing
must be selected. The selection of such a scheduling is
often a time-demanding task. Moreover, due to the
variability of the recorded signals, the scheduling must
be continually reestablished at each recording session.
In this paper we present a more parsimonious solution,
using heuristics on the recording procedure; the solu-
tion is based on the assumption that no more than a
fixed number G of clusters is present in our trace.

This assumption suggests to consider an overly of the
true number of clusters (three times G, for example)
and uses a tentative scheduling on a MEP-based al-
gorithm to find a first reduced partition. Then, by an
agglomerative hierarchical clustering scheme we join
single partitions, two at time, until G is reached.

The criterion adopted in evaluating the connection
strength between couples of partitions is the one used in
the algorithm CLUSTER (Dubes and Jain, 1976). The
algorithm of Rose et al. (1990) has been used for the
MEP based algorithm.

This hybrid structure of algorithms has proved to be
considerably faster and less sensitive to noise than the
pure algorithm. All the algorithms were realized in
MatLab language, building an easy interactive tool.

2. Data collection

The procedure of animal operation and the recording
technique have been described in detail elsewhere
(Biella et al., 1997).

Briefly, extracellular recordings were performed on
Sprague–Dawley rats. For the experiments the rats
were pre-anaesthetized with pentobarbital (40 mg/kg,
i.p. for induction). A gaseous mixture anaesthesia
isofluorane oxygen was then used during the experi-
ment. The animals were paralysed with pancuronium
bromide (0.5 mg/kg per h i.v.) and the dura mater

opened, to allow single unit recordings from the dorsal
horn of the spinal cord. Throughout the experiments,
body temperature was maintained at 38°C and end-
tidal CO2 was maintained at 3.5–4%. The adequacy of
anaesthesia was monitored by observing the stability of
arterial pressure (values of 90–110 mmHg) and heart
rate (values of 320915 beats/min).

Recording bundles of three to five tungsten elec-
trodes were used (each electrode with a tip impedance
of 0.8–1.2 MV). Signals were band pass filtered be-
tween 300 and 104 Hz. The bundles (inter-tip distances
of 100 mm, in a comb array) were positioned under a
dissecting microscope on the surface of the lumbar
segment of the cord and advanced with 2-mm steps by
an electronic micromanipulator. The electrodes were
placed with the coplanar tips touching the surface of
the cord. The recording sites were located at 450–800
mm corresponding to the V lamina. The depth of the
cells was taken from the mean microdrive readings,
noted on descent and then on ascent toward the cord
surface. There was a mean difference of only 6–10 mm.
In some experiments a current was passed to get a
histological control of the electrode location. In all
cases the microdrive readings were confirmed.

Once a number of neurons was isolated, a recording
session was started. In some trials sensory stimuli were
delivered to induce dynamic modifications in the spon-
taneous activity of the neurons. This procedure was
chosen so as to clarify whether or not neuron dis-
charges could be followed, even in the activated state.
We have set the thresholds in a way that must of the
data gathered is generated by multiunit activity.

All the neurons were recorded extracellularly, and
their activity was acquired by the application of
Schmitt-triggers with high and low pass levels suitably
adapted to the noise consistency and the signal-to-noise
ratio. All the spikes sampled in the simultaneously
recorded trace were digitized at 25 kHz and stored
together their time stamp. Sixteen time points have
been collected for each spike detected; these points have
been concentrated in the rise of the spike to better
represent the waveforms where most of the energy is
found. Data have been synchronized with respect to
positive threshold crossing. Before any analysis, each
spike undergoes a normalization to the [0,1] interval.
On-line analysis was carried out by the appropriate
programs (Data Wave, CO; Computerscope, RC Elec-
tronics, CA).

3. Maximum entropy-based clustering

In what follows x denotes the feature vector describ-
ing the spike recorded, x�Rm, while j is the cluster
index taking its values from J={1,2,…,C}. Let V=
{xk� [1,N ]} be a set containing N unlabeled samples
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and y={y1, y2, …, yC}, yj�Rm, C\G the set of pro-
totypes (the spike models we are looking for).

Many classical approaches to clustering, e.g. k-
means, fuzzy k-means (Duda and Hart, 1973; Bezdek,
1981), are based on the (constrained) minimization of
a functional. For example, the fuzzy k-means al-
gorithm is based on the minimization of

�E�=
1
N

%
C

j=1

%
N

k=1

P( j � xk)E(yi, xk) (1)

under the constraint

%
C

j=1

P( j �xk)=1,Öxk�V. (2)

In Eqs. (1) and (2) E(yj, xk) is a dissimilarity measure
(distance or cost) between a sample xk and the proto-
type yj of a specific cluster j, and P( j � xk) the condi-
tional probability of the specific cluster j. Often
E(yj, xk) is assumed to be the square of the Euclidean
distance, i.e.

E(yj,xk)=
xk−yj
2. (3)

Pitfalls linked to this approach are: (1) the possibility
of getting stuck in local minima of �E�; and (2) the
necessity to assume a value for C.

Some researchers have proposed a clustering
method based on the maximum entropy principle and
a deterministic annealing procedure (Rose et al., 1990,
1993).

This method assumes that the conditional probabil-
ities are Gibbs distributions:

P( j � xk)=
exp(−bE(yj, xk))

Zk

, (4)

where

Zk= %
C

j=1

exp(−bE(yj, xk)) (5)

is a normalization factor named partition function
(Rose et al., 1990). From a statistical mechanics point
of view, the Lagrange multiplier b is interpreted as
the inverse of temperature T (b=1/T).

Moreover, b can be interpreted as a control
parameter of fuzziness. When b increases, the associa-
tion of samples with clusters becomes sharper. As a
consequence, the probability P( j � xk) can be inter-
preted as the membership function of the pattern to
the cluster, as in the fuzzy clustering theory (Bezdek,
1981).

The limit cases are:

� for b�0+, we have P( j � xk)=1/C for all j, k, i.e.
each sample is equally associated with each cluster;

� for b�+�, we have

P( j � xk)=
!1

0
for j=argmin E(yj, xk),ÖjJ

elsewhere
,

i.e. each sample is associated with only one cluster
(hard limit), as in the k-means approach.

Let us define the effective error (also named the
free energy, by analogy to statistical mechanics)

F=
1
b

ln Z, (6)

where Z=�kZk is named the total partition function.
A relevant property of F for the clustering problem

is that

lim
b��

F=�E�. (7)

This limit allows one to find the solution of the con-
strained minimization of �E� (i.e. the solution of the
k-means) by performing a deterministic annealing on
F, as has been proposed (Rose et al., 1990, 1993). In
the algorithm used here E(yj, xk)=
xk−yj
2 is as-
sumed; then, following a temperature scheduling, a
minimization of F with respect to y is performed for
each value of T by iterating the following formula
(Rose et al., 1990):

ŷj=
%
N

k=1

P( j � xk)xk

%
N

k=1

P( j � xk)
for all j (8)

with P( j � xk) given by Eq. (4). The resulting MEP
ALGORITHM is:

c�overly (tree time G, for example)
initialize Y randomly on V ;
test�1;
S�d ; (arbitrary small positive value)
b�bmin;
J� [1, 2,…,C ];
WHILE bBbmax

WHILE test\S

Y. �Eq. (8);
test�maxj�J (E(yj, ŷj)); Y�Y. ;

END
test�1;
b�b+step;

END

It is worth noting that, whereas many well known
(k-means, fuzzy k-means) clustering algorithms need
the specification of the number of clusters, this al-
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gorithm can start with an over-dimensioned number
of clusters (we typically use C=3G).

In fact, at high temperatures, all the prototypes
collapse at the one point, and then, during anneal-
ing, ‘natural’ clusters differentiate. As mentioned in
the introduction, the selection of the scheduling
strongly influences the results. A consequence of the
use of the wrong annealing scheme is a differentia-
tion excess of the clusters. In order to speed up the
analysis procedure, we used a rough scheduling pro-
cedure to find a first partition, then further opti-
mized this partition with an agglomerative
hierarchical clustering scheme that will be shown in
the next section.

4. Aggregation procedure

The aggregation clusters procedure we have imple-
mented is based on a hierarchical scheme, as in Fee
et al. (1996a). We make use of the criterion of the
algorithm CLUSTER (Dubes and Jain, 1976) to
evaluate the connection strength between partition
couples. The results of the MEP algorithm are the
conditional probabilities P( j � xk) and a set of cen-
troids Y. . To obtain the initial partition for the ag-
gregation procedure, we terminate the annealing by
forcing b infinity, where the method becomes regular
k-means. The square-error for cluster Cj, using Eq.
(3), is defined as:

e2
j = %

nj

i=1

E(Y. j, x ( j )
i ), (9)

where xi
( j ) is the ith spike waveform belonging to

cluster Cj, and nj indicates the total number of
waveforms.

The first step to reduce the excess of differentia-
tion is to gather clusters whose centroids are near
each other; the second step is to discard any clusters
made up by only a few elements, reassigning the ele-
ments to the surviving clusters. These two steps form
the COLLAPSER procedure. Experimentally we
found that the COLLAPSER improved the perfor-
mance of the aggregation procedure. After collapsing
the centroids, we used the criterion of CLUSTER
(see Jain and Dubes, 1988) in the aggregation proce-
dure. Such a criterion allows the evaluation of the
connection strength between couples of partitions
that are consecutively joined, two at time, in order
to discover a cluster solution.

4.1. COLLAPSER

COLLAPSER first inspects the size r of the ob-

tained partition P, then looks for those clusters
whose prototype vectors are ‘too close’ (according to
a threshold value d), or ‘too weak’ (the size of their
clusters is too small compared with the feature space
dimension).

The d parameter is up to avoid problems related
to machine precision or the rough annealing scheme
used, typical values are in the [10−1,10−4] range.

The ALGORITHM of COLLAPSER is:
(i) If the cardinality r of the partition P is less

than G, skip to the MEP algorithm with a new an-
nealing scheme.

(ii) For all pairs of centroids ŷj 1 and ŷj 2 merge
their corresponding clusters if E(ŷj 1, ŷj 2)Bd (Eq.
(3)), for a suitable positive value of d, and let ŷj 3 be
its cluster center, where j3 is such that: Cj3=
Cj1@Cj2.

(iii) For all prototypes delete ŷj if its cardinality m
is less than the cardinality nj of its corresponding
cluster Cj, then redistribute the elements of Cj ac-
cording to the minimal distance from all prototypes.

4.2. Aggregation

Let P be the reduced partition induced on the set
V of spikes after the COLLAPSER algorithm, P=
{C1, C2,…,Cr}, where each Cj :j= [1, 2,…,r ] is a clus-
ter having nj elements, satisfying:

� Cj1SCj2=Ø for j1 and j2 from 1 to r, j1" j2

� Cj1@Cj2 @…@ Cjr=P.

The cardinality r of P is such that GBrBC,
where C is the overly number of class we set in the
MEP step, while G is the number of clusters related
to the recording procedure.

A partition P2 is nested into a partition P1 if P2 is
formed by merging components of P1. In the follow-
ing we consider a sequence of nested clusterings
where the number of clusters decreases (one at each
step) as the sequence progresses. The process is iter-
ated until the fixed number G is reached.

To perform the single aggregation step, a similar-
ity measure used in the CLUSTER algorithm has
been considered:

Mave=
1
r

%
r

j=1

��nj

e2
j

�1/2

(N−nj)−1 %
r

j 1=1, j 1" j

nj 1E(Y. j1, Y. j)
n

,

(10)

that is, the ratio of the ‘average’ distance from clus-
ter j to all other clusters is divided by the square
error for cluster j and averaged over all clusters.
This measure is
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a heuristic number such that the larger this number, the
better the clustering. The measure seems appropriate in
relation to the number of available waveforms.

The resulting ALGORITHM of AGGREGATION
is:

(i) For all pairs of clusters ( j1, j2) in the current
clustering, let P( j1, j2) be the partition resulting from
the merging of clusters j1 and j2 into cluster j, and let ŷ j
be its cluster center.

(ii) Compute Mave for such a partition.
(iii) Find the pair of clusters (j. 1, j. 2) such that:

Mave(j. 1, j. 2)=max(Mave( j1, j2)),

where the maximum is over all pairs of clusters in the
current clustering.

(iv) Merge clusters j. 1 and j. 2 to form the next cluster-
ing; if the number of clusters in the current clustering is
G, stop, if not return to the initial step (i).

5. Experimental results

In this section we illustrate the effectiveness of the
proposed unsupervised approach to clustering. The syn-
thetic data set I–L (Table 1) described in (Fukunaga,
1990) was used to test our clustering technique; we
present an example involving real data of multiple unit
recordings from spinal neurons of gas anaesthetized
rats. The entire clustering procedure was carried out in
the original dimensional space of the sampled time
points (m=8 for I–L and m=16 for our data).

For the first experiment, data are drawn from two
multivariate (m=8) Gaussian distributions having dif-
ferent expected vectors and covariance matrices. Both
the covariance matrices are diagonal.

For this data set the Bayes error is 1.9%, while the
nearest mean reclassification algorithm (Hall and Ball,
1965; Fukunaga and Koontz, 1970) was 9.5%.

One hundred samples were generated from each class
of I–L and mixed together to form 200 samples; our
clustering procedure was then applied to classify these
samples in two clusters (G=2); ten training sets were
generated, and the experimental results averaged and
the standard deviation computed.

The following setting was used:
MEP:

� C=4, as the overly number of clusters.

� bmin=1; bmax=96; step=5; for the annealing.
COLLAPSER:

� d=10−2 threshold for the ‘closeness’ of prototypes.
AGGREGATION:

� no parameters required.
We obtain an error rate of 5.9% with a standard

deviation of 1.3.
In the example on real data G=4 was chosen as the

expected number of clusters. In our data, we found that
for the end points of the temperature, comprised in
arbitrary units of 345 and 5°, a freezing session to be
exploited in steps of 20 units could provide a satisfac-
tory parameter value setting for the data.

The following setting has been used:
MEP:

� C=12, as the overly number of clusters.
� bmin=5; bmax=345; step=20; for the annealing.

COLLAPSER:
� d=10−2, as threshold for the ‘closeness’ of

prototypes.
AGGREGATION:

� no parameters required.
Fig. 1 illustrates the clustering results on a spinal

recording source, a projection to highlight the clusters
has been selected. To properly see the anisotropy of
each cluster the spectrum of variability associated with
the principal components of the waveform-pair should
be taken into account as thoroughly discussed in Fee et
al. (1996a). The ‘+ ’ signs indicate prototypes. Fig. 1a
shows the scatter plot of a set of 1112 acquired wave-
forms. Fig. 1b shows the initial prototypes. Fig. 1c and
Fig. 1d shows the prototypes after performing, respec-
tively, 10 and 18 iterations of the MEP algorithm. Fig.
1e shows the results of the COLLAPSER, while in Fig.
1f the final result of the aggregation procedure is
shown.

In Fig. 2 the waveforms corresponding to the final
results of Fig. 1 are shown linked with some specific
index of neuronal dynamics (Raster dot, ISI
Histograms).

In the raster dot the time of occurrence of each spike
is represented by a single dot. Incidentally it is possible
to note alternate activations of the first two neurons
that were placed at the maximum 100-mm distance,
possible in mutual inhibitory connections. The ISI in-
dex is a measure of the minimal time required before a
second spike firing. This parameter outlines some dy-
namic features of the neuron, like the membrane refrac-
toriness time, and establishes an upper limit to the
frequency of discharge, this limit being reliably obtain-
able from a single unit.

The clustering algorithm was run on a Sun 4/80
(SPARC station 20) running MatLab language (Math
Work Inc.). The CPU mean time required to process
the data of Fig. 1 was 23.6 s for the MEP, 0.18 s for the
COLLAPSER and 2.7 s for the AGGREGATION.

Table 1
Data I–L

5 6 7i 81 2 3 4

0 0 00mi 00 0 0
1 11 1 1 111li

1.640.840.843.103.86 1.08mi 0.26 0.01
1.490.220.1212.068.41li 2.730.351.77
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Fig. 1. Intermediate results of the clustering algorithm on a spinal cord source. (a) Original image (projection to highlight clusters), (b) initial
prototypes, (c) 10 iterations, (d) 18 iterations (convergence), (e) prototype after the COLLAPSER step, (f) final result after the aggregation
procedure.

6. Discussion

In this paper we have described a structure of al-
gorithms for the unsupervised classification of neuronal
signals. Three algorithms have been used in sequence
and implemented in an automated routine that allows
the correction of small fluctuations in data assignments.
A clustering method based on the MEP has been used.
The basis of our procedure is deterministic annealing,
where good results can be achieved in the partitioning
of the subset of elements from an original global aggre-
gate. The initial partition of the sampled signals is
obtained by a random process, in that the process is
independent of the initial choice of configuration. The
end points and the steps we have found seem reliable
for neuronal recordings from many sources (e.g. thala-
mus and cortex, unpublished data) and probably repre-
sent a suitable tuning for extracellular neuronal
recordings. As has been shown in applications on spin
glasses, cooling, at temperatures where large clusters
form, represents a limit overcome only by very slow
further temperature drops (Kirkpatrick et al., 1983).
Thus the process in our case is controlled until a
pre-completion level. An inflated estimation or excess
of clusters (three times the expected as a mean) is
established so far (cluster overly). The fitting stages on
the data set obtained by the incomplete annealing are

forced by a hierarchical fitting method that acts by
merging existing structures along a criterion of similar-
ity between couples of partitions. The hierarchization is
programmed so as to avoid expensive procedures at the
final stages of cooling. This locking-in to the previous
results from the MEP algorithm, generally considered a
drawback, can be advantageous in our experimental
schedule, due to the stability of the proximity criteria
during the cluster reductive phase. The excess of differ-
entiation, caused by incomplete annealing, has been
handled by two steps: in the first, aggregating the small
and improperly split clusters lets highly significant sets
be analyzed by the second step; in the second step we
use a function of similarity to evaluate the distances
between distributions to be aggregated in a hierarchical
fashion. The measure introduced by (Dubes and Jain,
1976), in their CLUSTER algorithm, which belongs to
the square error clustering methods, is used to evaluate
the ‘best’ clustering solution. This is an iterative cluster-
ing algorithm that starts with an initial partition and
then reduces square error by assigning a pattern to
clusters. In our recordings, vectors of 12–16 timepoints
were obtained. No feature extraction was made in that
no a priori knowledge was available. With this in mind
we chose not to use general feature extraction methods,
e.g. principal component analysis, because they are not
a suitable tool for a discriminant analysis.
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Fig. 2. (a) Representative spike waveforms for the final clusters identified in the data set and shown in Fig. 1e, (b) corresponding raster dots, (c)
corresponding ISI histogram. The bin size is 1 ms.

Thus, the method presented here seems to be fast and
robust and is a low-cost system to extract, with accu-
racy, families of spikes from a multidimensional elec-
trophysiological recording.
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