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Abstract

In medical imaging uncertainty is widely present in data, because of the noise in
acquisition and of the partial volume effects originating from the low resolution of sensors.
In particular, borders between tissues are not exactly defined and memberships in the
boundary regions are intrinsically fuzzy. Therefore, computer assisted unsupervised fuzzy
clustering methods turn out to be particularly suitable for handling a decision making
process concerning segmentation of multimodal medical images. By using the possibilistic
c-means algorithm as a refinement of a neural network based clustering algorithm named
capture effect neural network, we developed the possibilistic neuro fuzzy c-means algorithm
(PNFCM). In this paper the PNFCM has been applied to two different multimodal data sets
and the results have been compared to those obtained by using the classical fuzzy c-means
algorithm. Furthermore, a discussion is presented about the role of fuzzy clustering as a
support to diagnosis in medical imaging. © 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

In clinical field, the fuzzy diagnosis concept is widely applied. It can range
between the supervised classification of a number of clinical cases within different
classes of pathologies, through a set of rules concerning both linguistic and
numerical data, and the unsupervised segmentation of medical images, through
data based methods of analysis concerning spatially distributed numerical variables.
In all these cases large uncertainty is present in data as well as in rules and this
suggests that fuzzy methods can be successfully applied thanks to their intrinsic
flexibility. In this paper we focus our attention on methods for the segmentation of
multimodal medical images.

Today, medical images are obtained by different acquisition modalities, including
X-ray tomography (CT), magnetic resonance imaging (MRI), single photon emis-
sion tomography (SPECT), positron emission tomography (PET), ultrasounds
(US), etc. [14].

Multimodal volumes can be derived from a set of such different diagnostic
volumes carrying complementary information (e.g. both structural and functional)
provided by medical imaging technology. An efficient analysis of multimodal
medical imaging volumes is an inherently complex task where each component of
the data structure, that is, the spatial distribution of the values of a single feature,
must be considered together with all the other components. For these reasons, the
visual inspection of a large set of such volumetric images permits the physician to
only partially exploit the whole global information.

Computer-assisted approaches may be particularly helpful in the clinical oncolog-
ical field as a support to diagnosis, in order to delineate volumes that have to be
treated with radiotherapy and surgery, and to assess quantitatively (in terms of
tumor mass or detection of metastases) the effect of oncological treatments. The
extraction of such volumes, or other entities of interest, from imaging data is called
segmentation and it is usually performed, in the image space, defining sets of voxels
with similar features within a whole multimodal volume. The segmentation can be
described as the definition of clusters, in the multimodal feature space, whose points
are associated to similar sets of intensity values in the different images. As a
consequence, in this approach the clustering process is the main step in the
segmentation procedure [5,20,15,21,10], and clustering-based techniques have been
shown to be more robust to noise in discrimination of different tissues than
techniques based on edge detection [5].

Moreover, volumes of interest in medical imaging are not strictly bounded and
the application of segmentation methods to multimodal data is difficult and often
a lot expensive in terms of time because of complex geometries.

Supervised methods have been largely employed in medical imaging segmentation
studies but they require conditions difficult to satisfy in the clinical field. First of all,
they require the labeling of a set of prototypical samples in order to apply the
process of generalization. Even if the number of clusters is predefined, a careful
labeling of voxels in the training set, belonging with certainty to the different
clusters, is not trivial, especially when it concerns multimodal data sets. Moreover,
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users have to introduce bias in consequence of the large inter-user variability,
generally observed when manual labeling is performed. On the contrary, unsuper-
vised approaches self-organize the implicit structure of data and make clustering of
the feature space with no need any user’s definition of training regions [3,8] and,
finally, the multidimensionality of data is better exploited.

Some considerations about the possible solutions seem adequate. Physicians are
hardly able, at least for low level steps in image analysis, to describe the rationale
of their decisions. For higher levels, although rationales are more clearly defined,
they strongly depend on the different clinical frameworks, on the different anatom-
ical areas, on the different theoretical approaches, etc. As a consequence, it is often
impossible to establish well-grounded rule based systems, and data driven ap-
proaches have been preferred in most cases.

In such data driven systems, on one hand, a supervised approach has two major
drawbacks: is very time-consuming (especially for large volumes) and heavy biases
may be introduced by unskilled or fatigued physicians. On the other hand, in
clinical practice there is a strong demand for physicians who control both the
sequence of choices and of results of the analysis process in order to introduce their
theoretical and heuristic knowledge.

Moreover, uncertainty is largely present in medical images, because of the noise
in acquisition and of the partial volume effects. This means that voxel values,
especially at the borders between volumes of interest, correspond to mixtures of
different anatomical tissues, because of the low resolution of sensors. As a
consequence, borders between tissues are not exactly defined and memberships in
boundary regions are intrinsically fuzzy.

From all these considerations our choice has been a data driven system, whose
computational core is grounded on fuzzy clustering, mostly unsupervised but with
powerful interactive tools for knowledge based refinements.

In the next section, the problem of segmentation of multimodal images through
clustering is discussed. In Sections 3 and 4 we describe the neuro-fuzzy clustering
algorithm used. In Section 5, the obtained results are shown and discussed.
Conclusions concerning fuzzy algorithms as support to diagnosis are presented in
Section 6.

2. From clustering to segmentation

Let us consider a multimodal volume resulting from the spatial registration of a
set of s different imaging volumes. Its voxels are associated with an array of s
values, each representing the intensity of a single imaging volume in a voxel. In
other words, the s different intensity values related to all the voxels in such
multimodal volumes can be viewed as the coordinates of the voxels within an
s-dimensional feature space where multimodal analysis can be made.

Two different spaces have therefore to be considered for a more complete
description of the segmentation problem:
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� an image space (usually 3D) defined from the spatial coordinates of the data set,
and;

� a multidimensional feature space, as described before.
The interplay between these two spaces turns out to be very important in the task

of understanding the data structure. Actually, the definition of clusters, within the
above described s-dimensional feature space, and the classification of all the voxels
of the volumes to the resulting classes, are the main steps in segmenting multimodal
volumes.

In a previous paper [20], we described an interactive system based on a X-Win-
dows Motif interface supporting a full sequence of analysis of multimodal medical
images. The functions performed by this system are: feature extraction, dimension-
ality reduction, unsupervised clustering, voxel classification and intra- and post-pro-
cessing refinements. As pointed out above, the main element of the whole
segmentation system is the unsupervised clustering algorithm used within the
segmentation sequence.

In order to improve the efficiency of this task, we have studied different
clustering algorithms. Besides the classic c-means (CM) algorithm [6] and a neural
network based algorithm, called capture effect neural network (CENN) [7], we
made several experiments with a number of fuzzy approaches to clustering for
medical image segmentation. These methods seem to adaptively perform an efficient
unsupervised clustering, not affected by the dimensionality of the feature space.
Moreover, fuzzy clustering methods produce a voxel classification, related to the
membership function of clusters, and can add some kind of smoothness to voxel
classification. This helps to better define surfaces of the anatomical objects de-
scribed by segmentation.

The first fuzzy method we studied is the fuzzy c-means (FCM) algorithm by J.
Bezdek [4]. The FCM algorithm needs an a priori definition of the number of
classes and its results critically depend on this choice. The application of this
algorithm to the segmentation of multimodal medical imaging has been described in
[15].

The second one is the maximum entropy principle [9] based fuzzy clustering
(MEP-FC) method[18,19,2]. It avoids any a priori assumption on the number of
classes. Methodology and results of the implementation of this algorithm, concern-
ing the segmentation of multimodal medical imaging, have been shown in previous
papers [16,15].

At last, we made experiments with the two versions of the possibilistic c-means
(PCM) algorithm [12,13] that, as shown in the next Section 3, relax the probabilistic
constraint of the previous methods and give absolute values of membership, or
typicality, for points in a fuzzy set (or cluster). Moreover, starting from an oversized
number of clusters, the PCM algorithm, like MEP-FC algorithm, can find the
natural number of clusters in a data set.

In our experiments, the second version of the possibilistic c-means (PCM-II)
algorithm [13], used as a refinement step of the results of CENN, has produced the
best results in segmentation. As a consequence, with the addition of a heuristic final
step designed to merge redundant clusters, a possibilistic PNFCM algorithm has
been defined. It has turned out to be the most suitable for our goals.
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In the next sections, the PNFCM algorithm is described and results are presented
for two clinical data sets.

3. The possibilistic c-means algorithm

The possibilistic approach to clustering by Keller and Krishnapuram [12,13]
assumes that the membership function of a point in a fuzzy set (or cluster) is
absolute, i.e. it is an evaluation of a degree of typicality not depending on the
membership values of the same point in other clusters. By contrast, many clustering
approaches (such as CM [6], FCM [4] and MEP-FC [18,2]) impose a probabilistic
constraint, according to which the sum of the membership values of a point in all
the clusters must be equal to one.

In [12,13], Krishnapuram and Keller present two version of a possibilistic
c-means algorithm (PCM) that relax the probabilistic constraint, in order to allow
a possibilistic interpretation of the membership function as a degree of typicality.

Let X={xk�k=1,…, n} be the set of unlabeled samples; Y={yj� j=1,…, c} be
the set of cluster centers (or prototypes); and U= [ujk ] be the fuzzy membership
matrix. In the PCM, the elements of U fulfill the following conditions:

ujk� [0, 1] Ö j, k ; (1)

0B %
n

k=1

ujkBn Ö j ; (2)

V
j

ujk\0 Ö k. (3)

The first possibilistic c-means algorithm (PCM-I) proposed by Krishnapuram
and Keller [12] is based on a modification of the objective function of FCM [4]. In
this case, one must supply the values of parameters such as the fuzzifier parameter,
and of those regulating the spread of membership functions [12,1].

PCM-II [13] is based on a modification of the CM [6] (instead of the FCM) cost
function in order to avoid the determination of the fuzzifier parameter. The
objective function of the PCM-II contains two terms, the first one is the objective
function of the CM [6], while the second is a regularizing term. Thanks to this
regularizing term, points with a high degree of typicality have high ujk values, and
points not very representative have low ujk values in all the clusters:

Jm(U, Y)= %
c

j=1

%
n

k=1

ujkEj(xk)+ %
c

j=1

c j %
n

k=1

(ujk log ujk−ujk), (4)

where Ej(xk)= ��xk−yj ��2 is the squared Euclidean distance, and the parameter 7j

depends on the distribution of points in the jth cluster, and must be assigned before
the clustering procedure.

Note that if the second term of Jm(U,Y) is omitted, the elimination of the
probabilistic constraint leads to a trivial solution of the minimization of the
remaining cost function, that is ujk=0 Öj,k.
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If one searches for clusters with similar distribution, 7j could be set to the same
value for each cluster. In general, it is assumed that 7j depends on the average size
and on the shape of the jth cluster.

As demonstrated by Krishnapuram and Keller [13], the pair (U, Y) minimizes Jm,
under the constraints (1–3) only if:

ujk=exp
!Ej (xk)

c j

"
Ö j, k, (5)

and

yj=
%k=1

n xkujk

%k=1
n ujk

Ö j. (6)

This theorem provides the conditions for minimizing the cost function Jm (U,Y).
Eqs. (5) and (6) can be interpreted as formulas for recalculating the membership
functions and the cluster centers. If we start with an over-dimensioned number of
clusters c, redundant centers move to very close positions, and the natural number
of clusters can be found by merging clusters with quasi-coincident centers.

A bootstrap clustering algorithm has to be executed before starting PCM, in
order to obtain an initial distribution of prototypes in the feature space and to
estimate some parameters used in the algorithm. By considering an FCM bootstrap
for the PCM [12,13], the following definition of 7j is initially used:

c j
%k=1

n (ujk)mEj(xk)

%k=1
n (ujk)m

, (7)

where m� (1,+�) is the fuzzifier parameter used by the FCM and K is a
normalization parameter. This definition makes 7j proportional to the mean value
of the intracluster distance and critically depends on the choice of K (in [12] it has
been suggested K=1).

In a following optional refinement step a second definition of 7j is used:

c j
%xk� (pj)a

Ej(xk)

�(Pj)a � , (8)

where (Pj)a is the set of points of the jth cluster whose membership function is over
a given threshold a(a-cut). This definition is a less noise sensitive evaluation of the
mean value of the intracluster distance obtained by using only points belonging to
an a-cut.

The PCM-II starts from the solutions of the bootstrap clustering algorithm and
is based on two Lloyd–Picard iterations, the first one using Eq. (7), and the second
one using Eq. (8) [12], as shown in Fig. 1.
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The use of FCM as a bootstrap for the PCM, involves the problem of the
estimation of the fuzzifier parameter m and of the number of clusters c. Sometimes,
even if c has been over-dimensioned, FCM aggregates close clusters, characterized
by large scatter of points, in one unique cluster. This gives rise to a bias if the FCM
is used as a bootstrap for the PCM. Moreover, intracluster distances, obtained by
an algorithm with a probabilistic constraint, are used to calculate membership
parameters for a possibilistic algorithm: this often produces a misdefinition of the
7j.

Fig. 1. Possibilistic fuzzy c-means (PCM-II) algorithm.
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For these reasons we propose, in this paper, the PNFCM, a new neuro-fuzzy
version of the PCM-II which uses, as bootstrap, the CENN [7] algorithm. CENN
automatically obtains a robust estimation of the number c of natural clusters, and
of their centers and radii. In particular, the estimation of radii is a very helpful
information that is closely related with the intracluster distance.

In the Section 4 we describe the CENN algorithm and in Section 5 we shall
present the PNFCM algorithm.

4. The capture effect neural network

The CENN [7] is a self-organizing neural network able to take into account the
local characteristics of the point-distribution (adapti6e resolution clustering). CENN
combines standard competitive self-organization of the weight-vectors [11] with a
non-linear mechanism of adaptive local modulation of receptive fields (RFs) of
neurons (capture effect). The learning phase of CENN consists of the training step,
performing a vector quantization of data, and the labeling step, where the proto-
types, obtained by performing the previous step, are grouped in order to obtain
robust clusters.

In the training step an initial great deal of neurons ni={wi, ri} is assumed and
initialized with randomly chosen weight vectors wi (representing centers of sub-clus-
ters), and with large radii ri(ri=R0) of the receptive fields RFi (modeled by
Gaussian functions g)1. After that, the data set is presented to CENN and the
following learning formulas are applied:

Dwi=hw(xk−wj)
g(dj(xk))

%l g(dl(xk))
(9)

Dri=
!h r

0
(di(xk)−ri) exp(−di(xk)/p)
if di(xk)]R0

"
(10)

where hw and hr are learning rates, di (xk)= ��xk−wi �� is the Euclidean distance of
points to weight vectors, and the parameter p is defined as:

p
Bdi(xk)\

D ln 10
, (11)

assuming D as the dimension of the feature space.
The labeling step discards any neuron nq with rq=R0 (i.e. neurons not represent-

ing elements of the training set) and then pairs of neurons, np and nq, will receive
the same label (i.e. their associated clusters are merged) if

wp−wqB (rp+rq)s, s � (0, 1), (12)

1 The radius of a Gaussian RF is defined as the radius of an a-cut of RF itself.
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i.e., if they have (partially) overlapped RFs. The parameter s is called the degree of
o6erlapping. This process obtains c groups of neurons Gj, j=1,…, c. We can then
define the center and radius of a cluster, related to the jth group, as:

yjBw�\Gj rjBr�\Gj. (13)

A remaining isolated neuron nq is called associable to a group Gj; if

wp−w�B (rp+r�) (14)

at least for one neuron n� of group Gj.
For such neurons associable to one or more groups, the following completion

rule of the labeling step is applied: an isolated neuron nq, associable to different
groups, is assigned to the ith group if and only if

i=arg Vj(rGj
−rq) Ö j. (15)

In the operative phase an unknown vector x will be classified by exploiting the
winner-take-all (WTA) rule in the following way:

x� ( jth cluster)Uh=arg Vi

x−wi
ri

, wh�Gj. (16)

After the learning phase:
� the distribution of the prototypes in the feature space approaches the op-timal

vector quantization scheme of the input data distribution, i.e., it approximates
the mixture probability density function;

� the radial size of the RF of each neuron reaches a stable value which is closely
related to the spatial density of input data locally around the weight-vector (that
is the center of the RF).

5. The possibilistic neuro-fuzzy c-means algorithm

In testing CENN as unsupervised clustering algorithm for the segmentation of
multimodal medical images [20], we found some limits and merits of this type of
neural network.

The principal limits of the CENN are, mainly, the difficulty in obtaining good
results for the problems with high dimensionality and a non-negligible variability of
results for classes poorly represented in the data distribution. On the contrary,
especially when the feature space has few dimensions, the main advantages of
CENNs are the speed and the reliability, i.e. the probability to obtain a nearly
correct solution to the clustering problem.

Moreover, the CENN shows some relevant characteristics, such as the capability
to automatically produce a robust estimation of the number of natural clusters c,
and of their centers yj and radii rj, related with 7j (i.e., 7j= f(rj)).

These characteristics make the CENN a very useful method. In fact, it can act as
a robust and unbiased bootstrap procedure for the PCM, overcoming, the limits of
FCM, pointed out in Section 3. As shown in Fig. 2, the PNFCM, uses the CENN
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Fig. 2. Possibilistic neuro-fuzzy c-means (PNFCM) algorithm.

as bootstrap for the basic iteration of the PCM-II, and the applies a merging step
joining clusters with centers in very close positions with respect to a weighted
distance defined as:

tij
yi−yj
c i+ c j

. (17)

Note that the refinement procedure of PCM-II (see Fig. 1) is not still necessary.
It is worth to point out that in the PNFCM algorithm the number of clusters c

is not imposed at the initialization, but is automatically found by the algorithm
itself. In our application, the number of clusters varies from patient to patient even
for the same anatomical region (and even from slice to slice), because of the
different configurations of the anatomical structures, and of the presence of tumors
masses or anatomical anomalies. Besides the better results obtained (as shown in
the next section), this is the general motivation of PNFCM, together with the
interpretation of memberships values as degrees of typicality.

In different applications, where the number of classes is already known, one can
fruitfully apply other improvements to the possibilistic c-means, such as the mixed
model proposed by Pal et al. [17].
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6. Results and discussion

We have implemented the PNFCM algorithm as a clustering module of our
graphical interactive system supporting the full sequence of multimodal medical
volumes analysis. In this section we discuss its application to two different
multimodal data sets. Both data sets are multimodal volumes composed by three
different MRI volumes (T1-weighted, T2-weighted, proton density).

The first data set is from the head of a normal individual and the task is to
discriminate white and grey matter, cerebro-spinal fluid, eyes and other structures
of interest in order to point out morphological abnormalities.

The second data set is from the head of an individual with meningioma and the
task is to define the contours of the tumor located in the right frontal lobe, in order
to correctly separate the tumor from a large amount of edema, and to define, where
it is possible, the borders of the brain structures in order to formulate a correct
differential diagnosis.

In both cases the fusion of the volumes produces a three-modal data set. Each
triplet of voxel intensity in the multimodal data set is represented by a point in a
3D feature space whose coordinates represent the intensity values, in that voxel, of
each volume belonging to the multimodal data set.

Let us compare the results produced by the different clustering algorithms on
transversal slices of the two multimodal volumes. Since our goal was to compare
the different unsupervised segmentation algorithms and not to test the overall
performances of the interactive segmentation system, the images have been ana-
lyzed as they were, without using preprocessing operations like thresholding,
contrast enhancement, dimensionality reduction by principal component analysis,
and definition of regions of interest. Moreover, results are presented without post
processing improvements through morphological operators, or other tools.

For the normal individual, the original images are 171×220 with 256 grey levels
and are shown in Fig. 3. The unsupervised segmentation with CENN is shown in
Fig. 4a. The CENN algorithm autonomously found five classes with general good
performances but with a clear overestimation for the white matter.

In comparison with the FCM algorithm2, trained with the same number of
classes (Fig. 4b), a large misclassification in the skull is present and thin structures
near the eyes result poorly defined while a better definition of the white/grey matter
in the brain is shown.

The PNFCM algorithm3 keeps in general the good findings of the CENN
bootstrap concerning non-brain structures, improving, moreover, its performances
in order to obtain a classification, of white matter and grey matter, better than
FCM’s (Fig. 4c).

2 In our experiments with the FCM we took the localization error of cluster centers as e=2.5, and
m=2, while the centroids were initializated at random.

3 In our experiments with the PNFCM we took the localization error of cluster centers as e=2.5, and
a good evaluation for the PCM-II step of the intracluster distance turned out to be 7j=

D
rj, where D
is the dimensionality of the feature space and rj is obtained by the CENN bootstrap.
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For the individual with meningioma the original images are 256×256 with 256
grey levels and are shown in Fig. 5. In Fig. 6a the results of the unsupervised
segmentation with CENN are shown. The CENN algorithm has autonomously

Fig. 3. T1-weighted (a), T2-weighted (b), and proton density (c) MRI images of a normal patient.
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found ten classes with some redundancy. If we start the FCM algorithm with the
same number of classes, the results (Fig. 6b) may be compared with the CENN
ones.

Fig. 4. Segmented images obtained by the CENN (a), the FCM (b), and the PNFCM (c) algorithms with
five classes (normal patient).
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On one hand, the CENN shows better performance with respect to the defin-
ition of the white and the grey matter, the separation between grey matter
and tumor, and the homogeneity of the skull. On the other hand, FCM gives a
better definition of edema. Both, however, give a noisy definition of the white
matter.

Fig. 5. T1-weighted (a), T2-weighted (b), and proton density (c) MRI images of a patient with
meningioma in the right frontal lobe.
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Fig. 6. Segmented images obtained by the CENN (a) and the FCM (b) algorithms with ten classes
(patient with meningioma).

By applying the PNFCM algorithm, better results with only eight classes have
been obtained (Fig. 7a), starting from those of the CENN bootstrap, improving the
segmentation of tumor and edema, and moreover increasing the quality of the
already good performances about grey matter and skull.
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On the contrary, if a FCM segmentation with eight classes is performed, the
results (Fig. 7b) show a poorly defined segmented image, where the separation
between tumor and grey matter is lost as well as the distinction between edema and
tumor.

Fig. 7. Segmented images obtained by the PNFCM (a) and the FCM (b) algorithms with eight classes
(patient with meningioma).
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Table 1
Comparison scores for the normal patient using CENN, FCM, and PNFCM with five classes

CENN (5) PNFCM (5)FCM (5)

0.91White matter 0.43 0.74
0.830.610.36Gray matter

0.79Eyes/CSF 0.85 0.89
0.51Skull 0.67 0.69

Table 2
Comparison scores for the patient with meningioma using CENN and FCM with ten classes and
PNFCM and FCM with eight classes

FCM (8)CENN (10) FCM (10) PNFCM (8)

0.76White matter 0.69 0.52 0.94
0.76Gray matter 0.53 0.49 0.69
0.95 0.79Edema 0.850.67
0.74Tumor 0.58 0.45 0.58

In general the PNFCM algorithm can separate, in the feature space, classes with
higher density and therefore with greater degree of typicality. At the same time it
merged noisy classes in order to obtain a better homogeneity.

In comparison, FCM, initialized with a lower number of classes, did not obtain
better results than FCM starting with more classes. The reason is that this
algorithm tends to merge classes in the most significant regions of the feature space
while even increasing the number of classes in very noisy regions.

In order to obtain a quantitative comparison between results from the different
algorithms, we made, for both cases, an indirect comparison of the image, seg-
mented by each algorithm, with a segmented image accepted by a pool of skilled
clinicians, considered as a reference image. Comparison scores for each algorithm
and for each class have been calculated by the equation

sij
Aij � Arefj

Aij   Arefj

. (18)

where Aij represents the set of pixels belonging to the jth class found by the ith
algorithm and Arefj represent the set of pixels belonging to the jth class in the
reference segmented image. The results are shown in Table 1 for the normal case
and in Table 2 for the meningioma case and confirm the qualitative evaluation.

7. Conclusions

For the diagnosis of pathologies through medical imaging, approaches based on
clustering techniques [5,20,15,21,10] show higher robustness in discrimination of
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regions than techniques based on edge detection [5], because of the low ratio
signal/noise characterizing most of medical imaging data. Furthermore, fuzzy
approaches to clustering turn out to be particularly interesting because,
due to partial volume effects during acquisition, voxel values at the borders
between volumes of interest correspond to mixtures of different anatomical tis-
sues.

Computer-based image analysis systems for medical diagnosis should take this
problem into account. Partial volume pixels can be considered as fuzzy pixels,
with partial memberships to different kind of tissues. Unsupervised fuzzy cluster-
ing approach has proven to be well-suited to this type of problems normally
competently handled by human diagnosticians.

The possibilistic approach to clustering [12,13], that treats the membership of
a voxel to a tissue as a degree of typicality, is particularly useful. In the imple-
mentation, described in this paper, named the PNFCM algorithm, we combine a
bootstrap based on the (CENN) [7] with the second version of the PCM-II [13]
and a simple heuristic able to aggregate redundant clusters. The CENN avoids
the estimation of the fuzzification parameter m and gives a robust estimation of
the intracluster distance 7j. Moreover, the simple aggregating heuristic overcomes
the problem of coincident clusters. As reported in Section 6, the PNFCM gives
the best performance in the segmentation problem.

Since the main aim of computer based systems in medical imaging should be
the support to the image analysis performed by physicians, each image process-
ing function must be performed through high interactions with the user. The
user has to maintain at each step the selection and the control of the analysis
sequence. The right solution may be therefore a collection of integrated tools
(black-boxes) performing specific processing on data, that physicians could tune
and organize for specific diagnostic tasks.

In the design of the multimodal medical images segmentation system devel-
oped by our group [20] for supporting medical diagnosis, we took into account
all these considerations. We used fuzzy clustering methods (including the PN-
FCM algorithm), and we developed a package for interaction with the
user based on a X Window Motif interface. The resulting computer-based seg-
mentation system reduces the diagnosis times and at the same time can out-per-
form, sometimes, the accuracy of non computer-supported diagnosis, especially
when large sets of medical images, obtained with different modalities, are avail-
able.
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