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A New Approach to Hierarchical Clustering for the
Analysis of Genomic Data

Francesco Masulli
Dept of Computer Science
University of Pisa
Largo B. Pontecorvo, 3 1-56125 Pisa, Italy
masulli@di.unipi.it

Abstract— Clustering algorithms in biomedical disciplines are
usually selected between two main families, k-Means and Ag-
glomerative Hierarchical Clustering. These methods are well
studied and well established. However, both categories have
some drawbacks related to data dimensionality (for partitional
algorithms) and to the bottom-up structure (for hierarchical algo-
rithms). To overcome these limitations, we present a hierarchical
clustering algorithm based on a completely different principle,
which is the analysis of shared farthest neighbors. The principle
of operation and the rationale are illustrated, and experimental
results on different data sets are presented.

I. INTRODUCTION

Clustering algorithms in biomedical disciplines are usually
selected between two main families. When the number of
experimental observations (cardinality) is high and the number
of observed variables (dimensionality) is not very large, it
is possible to use iterative, partitional algorithms such as k-
Means [1]. When data dimensionality is very large, or the
number observations is small, then hierarchical agglomerative
algorithms [2] are normally used. Popular examples include
average linkage [3] methods and Ward’s method [4].

All of these methods are well studied and established.
In the hierarchical cases, the resulting tree structure can be
easily represented in visual form as a dendrogram [5] or color
diagram [2]. However, both categories have some drawbacks
related to data dimensionality (for partitional algorithms) and
to the bottom-up structure (for hierarchical algorithms).

To overcome these limitations, we present a hierarchical
clustering algorithm based on a completely different princi-
ple, which is the analysis of shared farthest neighbors. This
approach share some similarities with Jarvis-Patrick clustering
[6], which however is based on the analysis of shared nearest
neighbors and is not a hierarchical method.

Il. LIMITATIONS OF CURRENT METHODS

The clustering methods usually adopted have their own
weaknesses, which we are going to point out in this section.
In the following section we will propose countermeasures.

The k-Means clustering method is one of the most popular.
It is well known that it is prone to local minima; however,
when data are sampled in sufficient quantity and the number
k of centroids is small, this may not be a problem.
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However, with biomedical data, the typical situation is that
a single experimental observation is very expensive, therefore
many variable are observed at any experiment. This is exactly
the situation we have with genomic data, and even more so
with microarray experiments. This raises the issue of the curse
of dimensionality [7][8], that is, the need for exponentially
many data points as a function of space dimensionality.

The k-Means algorithm (as well as any one of its many
variants) searches for regions where data are especially dense.
However we expect that, when clustering experiments, the
cardinality of the data sets available is not only small with
respect to the size of the data space (dimension equal to
the number of variables), which would lead to insufficient
sampling of the space: it is usually even less than the number
of variables. This means that the data span only a subspace
within the data space. In these conditions, it is not even easy
to define the concept of (hyper)volumetric density, let alone
estimating it. Therefore k-Means is typically adequate for
clustering variables across experiments, rather than clustering
experiments.

There have been many efforts in solving the dimensionality
problem. We refer the reader for instance to [9], in which the
problem is tackled by seeking clusters on subspaces of the
data space (projection clustering), and to the literature cited
therein for other examples.

Another drawback, shared by both types of techniques, is
related to the number of clusters. The “£” in k-Means, number
of expected clusters, should be known in advance, or estimated
either by prior knowledge or by a-posteriori validation. These
approaches are implemented in many variants, such as 1SO-
DATA [10].

The standard hierarchical approach, on the other hand,
makes no attempt at defining proper clusters, leaving up to
subsequent analysis to split the hierarchy into clusters (at
appropriate levels). The problem is related to the binary proce-
dure of agglomeration, whereby at each stage only two objects
(clusters or data objects) are merged. In this sense, we could
even say that this it is not a true clustering technique, since
it does provide an organization of data, but with no attempt
at identifying clusters. The method retains its usefulness in
its ability to visualize a structure in the form of a taxonomy,
which makes it interesting in a number of applications.



A derivative problem, which is produced by clusters being
obtained only a-posteriori in hierarchical techniques, is that the
taxonomy obtained is not very robust with respect to noise.
In the presence of perturbations, different taxonomic trees can
be obtained even if the perturbations are small. Usually this
problem is tackled with resampling approaches (bootstrap), but
this is again an a-posteriori remedy.

A further problem is again related to space dimensionality.
Defining clusters on the basis of distance requires that dis-
tances can be estimated. However there are results [11] stating
that, when space dimensionality is high or even moderate (as
low as 10-15), the distance of a point to its farthest neighbor
and to its nearest neighbor tend to become equal. This causes
the actual evaluation of distances, and the concept of “nearest
neighbor” itself, to become less and less meaningful with
growing dimensionality.

We can also add to the list the minor inconvenience, for
agglomerative methods, of not being able to produce a partial
(rough) result, to be refined only if needed. In the data mining
jargon, algorithms with this property are called “anytime”
algorithms. In our case this may not be a significant factor
from the computational point of view, but it depends on the
application.

I1l. ADDRESSING THE LIMITATIONS

We outline now the remedies which we propose to overcome
the limitations above. To avoid the problems with the number
of clusters, an algorithm should be hierarchical, but at the
same time it should allow for more than two objects at any
level in the hierarchy. The procedure should be divisive rather
than agglomerative, which produces an algorithm that we can
use up to a desired level of detail without being constrained
to proceed to the level of single data objects. In this way, the
criterion used to divide each cluster into (possibly more than
two) subclusters provides an indication of the “appropriate”
number of clusters for that level in the hierarchy, although
assessing that this number is the true number of natural
clusters would typically require further analysis. For instance,
our choice is an indirect approach whereby class labels in
supervised problems are used to validate clustering results (see
Section VI).

To tackle the dimensionality problem, a typical countermea-
sure found in traditional statistics is moving from the analysis
of values (in our case, distances) to the analysis of their ranks.
Rank is the position of a given value in the ordered list of all
values. This technique is adopted when using actual values
is either difficult or inadequate. The approach is followed for
instance by Spearman with his rank-correlation index r, [12]
or by Kendall with his correlation index 7 and coefficient of
concordance W [13].

Regarding noise robustness, it is certainly possible to apply
some technique to filter out noisy samples and outliers. This
however requires prior knowledge on the statistics of data,
so that the definition of noise and outliers allows labeling as
such those points which do not reflect this statistics. This
approach is not very attractive from the viewpoint of the
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| Datapoints [ 1[2]3]4]
| Neighbor |3 |1 |1]3
Il Neighbor |2 |3 ]2 |2
Il Neighbor | 4 | 4 | 4 |1

Fig. 1. An example data set to illustrate the “Points in perspective” principle.
For each point the table lists the distance ranks of all other points.

present paper. We try to avoid the assumption of a given
distribution or cluster shape, both because this would limit the
generality of the approach we are proposing, and because very
small samples are not statistically significant. Besides, filtering
out what we have labeled as noise may throw away relevant
information which might be important in an exploratory data
analysis step, and reducing an already scarce data set is not
advisable anyway.

The following section will present a principle of operation
based on these considerations and the resulting clustering
algorithm.

IV. THE “POINTS IN PERSPECTIVE” PRINCIPLE

We propose to adopt the following principle of operation:
Two points should be considered similar if they share the
same farthest point among all remaining data. We term this
the “Points in Perspective” Principle, since the points are
examined not with reference to their neighborhood (locally),
but with reference to far-away points in the data set, therefore
in perspective.

Note that usually similarity is assessed on the basis of the
nearest neighbor. For instance, k-Means clustering is done by
associating each data point to the closest cluster centroid or
prototype. However, we do not want to resort to centroids to
define clusters, since this would limit the procedure to metric
data only, and since this would require estimation of centroids
(which we have seen to be an ill-posed problem when the data
set is of lower cardinality than dimensionality). This leaves
open the option of the Jarvis-Patrick [6] approach, termed
“shared nearest neighbors” (SNN). Points are considered sim-
ilar if they share the nearest neighbor, or a list of a given
number of nearest neighbors.

However, the SNN produces the following odd result. The
higher the rank of neighbors, the larger their “agglomerative”
significance. Two points which are very close to each other
and distant to other data points should be considered as a
good cluster. But since the (first) nearest neighbor of either



Fig. 2. The example data set clustered according to the proposed method.

point is the other point, the first nearest neighbor is always
different. This of course is not a major drawback (SNN simply
counts k neighbors and groups objects with at least k; shared
neighbors), but it offers some evidence that the principle itself
may be only partially justified.

Moreover, the SNN approach can be unreliable with very
sparse data, where clusters may be sampled by only one or
two objects. This poses the issue of selecting the clustering
threshold ;.

As a last remark, we recall that we are seeking a hierarchical
method, and SNN provides only partitional clustering, al-
though in the original presentation the authors suggest repeated
applications of the method to obtain tree-structured clusters.

The example shown in Figure 1 clarifies these remarks.

Clustering according to the proposed “Points in Perspective”
principle of operation is done according to the following very
simple procedure: First, all points are labeled. We compute
the distance of each point to all others, and for each point
we identify the farthest neighbor. We define clusters at the
first level by aggregating all points sharing a common farthest
neighbor label.

We should point out that, although we are discussing the
method in terms of distance, it is applicable to more general
dissimilarity definitions than proper distance.

Then, within each cluster, the second farthest neighbor can
be considered exactly in the same way. This produces a second
level clustering within each cluster of the first level.

The procedure is recursively repeated until no further dif-
ferentiation is found (all points within a level [ — 1 cluster
share the same [-th farthest neighbor), or until a predefined
maximum level is reached.

We term this algorithm Shared Farthest Neighbor clustering
(SFN). The example shown in Figure 2 illustrated the result
of applying the SFN procedure to the data of Figure 1.

Here a proposed implementation of the SFN algorithm is
sketched. The algorithm starts computing the distance matrix
D (the matrix of distance between each point ¢ and each
point 7). This is not a symmetric matrix in the case of
more general dissimilarity measures, but the method does
not require symmetry and remains applicable in more general
cases. Note also that, if we have a similarity measure instead
of dissimilarity, we only need to change the direction of the

comparison used in the sorting phase. Finally, this is the
phase where, if required, we can take care of missing data
by adequately defining the measure (imputation seems a less
appropriate technique, given the small cardinality which we
have set as our starting hypothesis).

Once we have D, which may also be given as the input to
the algorithm, we proceed as follows. For each point in the
data set (a row of D) the distances to other data points are
ordered and the corresponding rank is written in place of the
actual distance, obtaining a rank matrix R.

Now each row of this matrix should be “inverted”, that is,
cell contents should be swapped with the corresponding cell
indexes. We obtain an index matrix X listing, for each data
point, all point labels in order of distance. This can be done
simply looking up ranks in R and writing point labels in the
corresponding position of X (that is, z;,,;, = 7).

Clustering is now performed simply by sorting the rows
of matrix X. Conceptually, this is done according to each
column, starting from the first (nearest neighbors) up to the
last. However, we can decrease the algorithm complexity as a
function of data cardinality, and at the same time allow for a
partial clustering, i.e. stopping at a given level of the hierarchy.
This can be obtained if we start sorting from the farthest
neighbor, then partially sort the rows within each individual
cluster, and so on.

The following algorithm summarizes the procedure. The
method can be implemented in many ways, but this pseu-
docode reflects the structure of the implementation which is
available at the web address http://mlsc.disi.unige.it/C/sfn/.

Al gorithm SFN
Data structures:

matrix D (n x n)

matrix X (n x n)

matrix R (n x n)

I nput :
training set T (cardinality n)
Conmpute D = distance matrix for T
Compute R = ranks of distances in D
| (within each row)
Conpute X = index matrix
| (by swapping cell contents with indexes in R

for i =nto 1l {
Sort rows of Y using colum i as key
}
Qut put :
clusters
| clusters at hierarchical depth i share the

| same value in colum i of matrix Y

end al gorithm

V. PROPERTIES OF THE PROPOSED APPROACH

In this section we highlight some features of the approach
presented and of the resulting algorithm.



The algorithm implemented according to the above sketch is
of the “anytime” type, because it is a divisive technique, not an
agglomerative one. We can decide to stop it when the hierarchy
is partially built, and obtain a usable clustering result. Usually
it is advisable to make use of this property, so that the result is
more understandable (fewer larger clusters). It also makes little
sense to split clusters into extremely small partitions when the
data set is already scarce.

With respect to the position of points and to its pertur-
bations, the hierarchy of dichotomies is more stable than
in hierarchical agglomerative clustering algorithms. This is
because clustering is based on the largest distances, over which
the effect of small perturbations is usually negligible, rather
than on the smallest.

A cluster is not constrained to be separated in exactly two
sub-clusters, and the clustering structure is therefore allowed
to fit the natural structure of data (that can be non-dichotomic).

After the distance matrix D has been obtained, the algorithm
operation (and computational complexity) is independent on
data dimensionality. On the other hand, the dependence on
the data cardinality (number of points) is not important, since
by design we are in the case of small cardinality. Moreover,
distances in the data space are used only for computing
ranks and not for estimating densities or approximating region
geometries. Therefore the algorithm is especially appropriate
in those situations where cardinality is low and dimensionality
is high. This makes it well suited to the analysis of genomic
data, for instance with DNA microarrays. In general, many
bio-medical data analysis problems fall within this category,
and the algorithm can be successfully applied.

V1. EXPERIMENTAL VALIDATION

We have validated the SFN algorithm on medical diagnosis
and genomic data analysis problems, some of which are
publicly available. The data sets include:

1) Lung cancer. Five patients with lung cancer have been
analyzed with a DNA microarray technique. These are
preliminary results from an on-going study and are
not publicly available. Given the very small cardinality,
these data have been used to validate the method against
the results obtained with hierarchical agglomerative
clustering.

2) Pima Indians diabetes [14]. Pima Indians are affected by
an endemic form of diabetes, which is found with much
higher frequency than in other populations, and have
agreed to be the subject of a study. The data collected
have been put in the public access on the UCI repository
of machine learning databases [15].

3) Wisconsin diagnostic breast cancer [16]. Samples of
breast mass are microscopically analyzed. The data are
obtained by digitizing an image from each sample.
Features describe the cell nuclei present in the image.
These data are from the UCI repository as above.

4) Lyme disease [17][18]. A disease discovered in the
relatively recent past. It has initial effects on skin, then
it can reach the nervous system, heart, connective tissue
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Fig. 3. Dendrogram obtained on Problem 1 by the SFN algorithm and by
hierarchical agglomerative clustering.

(Lyme arthritis). In regions where it is not endemic,
the diversity of signs can be confusing even to medi-
cal professionals trying to diagnose it, if they are not
specifically trained. One of the authors has worked on
this data set, which is currently not publicly available.

5) Molecular classification of leukemia [19]. DNA microar-
ray are used to characterize two forms of leukemia
at the molecular level, and within one of the two
forms to separate two further sub-classes which are
not distinguishable at the morphologic or serologic
level, but have dramatically different prognoses. There
are a training set and a test set, both available
from the web address htt p: / / www. br oad. mi t . edu/
cgi - bi n/ cancer/ dat asets. cgi .

6) Splice junction sequences [20]. Splice junction sites
are point in the genome where introns (non-coding
sequences) and exons (coding sequences) are joined
together. The task is to identify splicing sites. These data
have been obtained from the UCI repository as above.

Please note that full documentation and credits for the
publicly accessible databases, as well as references to the
relevant literature, should be obtained from the cited sources.
The Lung cancer data are not the same as the data set with
the same name available from the UCI repository.

The first experiment consists in validating the clustering
result on problem 1. This is to achieve a first indication that
the clusters we get are reasonable. This problem has a very
small data cardinality, so the number of possible clusterings
is limited and, arguably, there is only one “correct” result.

Figure 3 show the dendrogram obtained with the SFN
algorithm and with hierarchical agglomerative clustering. Sim-
ilarity is defined as the correlation between data points. We
obtain the same result in both cases, which is therefore shown
only once. The picture is a screenshot from the commercial
data analysis package which produced the hierarchical ag-
glomerative dendrogram.

The experimental results reported on Table 1 are obtained
on Problems 2-5, all with Euclidean distance.

To evaluate the quality of clustering, we adopt the following
approach. The result of clustering is usually assessed on the
basis of some external knowledge about how clusters should



TABLE |
EXPERIMENTAL RESULTS

Problem | n | Preprocessing Error % |
2 768 | Normalized with respect to av- | 12.40%
erage/stdev
3 569 | Normalized with respect to av- 5.60%
erage/2*stdev
4 684 | Normalized with respect to av- 6.00%
erage/2*stdev
5 38 none 0.00%
(training set)
5 72 | none 6.90%
(training+test sets)

be structured. This may imply evaluating separation, density,
connectedness, diameter, and so on. However, these are all
evaluations of results against a given expectation, which may
not translate into good performance when the method is
applied to a problem.

The only way to assess the usefulness of a clustering
result is indirect validation, whereby clusters are applied to
the solution of a problem and the correctness is evaluated
against objective external knowledge. For this reason we need
labeled data sets, where the external knowledge is the class
information provided by labels. The experiments are therefore
all performed on supervised problems.

We expect that, if the algorithm finds significant structures
in the data, these will be reflected by the distribution of
classes. Therefore we operate a “calibration” step for clusters
(assigning to each cluster the class label which is most
represented among its data points) and compare them to the
behavior of supervised methods from the literature.

In this way we cannot obtain a direct assessment of the
goodness of clusters per se; in exchange, we obtain valuable
information about how these clusters map on the natural
structure of the problem.

Regarding the evaluation method, we choose not to perform
cross-validation or similar procedures, considering that the
algorithm is “trained” in a completely unsupervised manner,
and calibration already occurs (in a sense) on an external
validation data set, which is the set of class labels. Cross-
validation or resampling methods, however, can be very useful
to assess the stability of the proposed method, by comparing
clustering structures in repeated experiments.

The results we achieve are comparable with those obtained
by supervised approaches proposed in the literature. This
should be a confirmation of the validity of the method.
Since clustering is done in a completely unsupervised manner,
finding that the cluster structure is reasonably mapped onto
the true classes supports the hypothesis that the algorithm is
capable of discovering the “true” structure, the one which is
inherent in data.

In particular, the results on the Leukemia dataset show
that the method compares favorably with the approach by
Golub et al. [19]. For instance, performance on the training

set of 38 samples is errorless in our case, whereas the original
self-organizing map (SOM) approach yielded 4 misclassified
samples.

It is not easy to compare the deeper trees obtained by stan-
dard agglomerative hierarchical clustering to those obtained
with the proposed method, which may be much less deep and
still convey significant structure, since they have no constraint
on the number of subclusters. In the case of Leukemia data, the
tree depth for standard hierarchical clustering is at least 6 (for
instance, with the average linkage method we obtain a tree
depth of 9). For SFN, splitting stopped at level 4, although
only 1 cluster was split up to the fourth level, whereas 12
clusters with no further sub-structure were present at level 1.
Calibration itself is not a well-defined process for a binary
tree, since the structure of clusters is not related to the depth
of the tree, but rather to the linkage value. The tree should
therefore be trimmed to a given (arbitrary) linkage value.

We can comment further on the clusters obtained by taking
also into account the class labels, which are “ALL” for
27 Acute Lymphoblastic Leukemia patients and “AML” for
11 Acute Myeloid Leukemia. The distribution of cardinality
among the clusters at level 1 is as follows:

Cardinality Clusters Class

10 1 AML
5 1 ALL
4 1 ALL
2 5 ALL
1 4 ALL

The cluster with further structure had cardinality 5 and
contained one data object of class AML. All other AML were
in the largest level 1 cluster. All leaf clusters (those which
are not further split) are homogeneous with respect to the
diagnosis.

This suggests a structure in data whereby AML profiles are
better characterized than ALL profiles. This is clearly true
when we notice that there are two sub-classes of ALL, which
are T-cell ALL and B-cell ALL.

The distribution in general is well represented by a parti-
tional clustering (this is a confirmation of the already good
result obtained by Golub et al. with the SOM approach),
However there is a subset of the data which needs a deeper
structure for adequate representation. After the calibration
step, we see that this subset contains a sample diagnosed as
AML which is correctly separated from the other samples.
Cluster structure is again confirmed by the class labels.

Problem 6 is different in that it involves data objects which
are not metric vectors, but strings of DNA sequences, 60
bases long and centered around the candidate splicing site.
Distance here is defined as the number of mismatches between
bases in corresponding positions (only the 40 central bases
have been considered). Here the result is very good: Figure 4
illustrates the hierarchy obtained (graphics from a program by
the authors). Fixing the maximum level at 2, the structure is
very simple, with a cluster further split into two sub-clusters
and another cluster without sub-clusters. Yet the resulting



cluster.1
cluster.l.1
cluster.l1l.2

cluster.2

‘ count ‘ pos ‘ neg ‘ class‘ perc

2495 | 1593 | 902 1 63.8%
902 0 902 | -1 | 100.0%
1593 | 1593 | O 1 100.0%
695 0 695 | -1 | 100.0%

Fig. 4. Performance on Problem 6. In the diagram: clusters in slanted font
are further split into sub-clusters. In the table: count is number of objects in
each cluster; pos and neg indicate splicing and non-splicing sites, resp.; class
is the majority class; perc is the percentage of objects in the majority class.

classification, after performing the calibration step, is errorless,
as indicated in the figure.

These data should be compared to results of other methods.
Among the results reported in the accompaining documen-
tation to the data set, no supervised method is capable of
errorless performance. Comparison with centroid-based clus-
tering methods (k-Means) is not possible, since a proper
centroid (barycenter) is not obtainable from non-metric data.
It is also difficult to compare the obtained tree to that given
by the standard agglomerative hierarchical methods, since,
in contrast to Problem 1, here the cardinality is high as an
absolute value (although still very low when related to the
dimensionality). Trees obtained with these methods may or
may not be comparable to the one presented.

VI1I. CONCLUSION

The clustering algorithm presented here is based on a novel
principle of operation, and as such has properties not found in
other more commonly used methods. It is especially designed
for the analysis of data sets with high dimensionality and low
cardinality, and is therefore well suited to DNA microarray
data analysis, as demonstrated by the experiments. However
it is more generally applicable in the field of biomedical data
analysis, where these conditions are often met.

We have observed that, similarly to the Jarvis-Patrick al-
gorithm, the method presented may suffer from many small
or singleton clusters. This happens especially when data
cardinality grows. Future developments include criteria for
controlling the proliferation of singletons (cluster validity) and
applications to outlier detection.
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