
Developing an Ontology for the Retrieval
of XML Documents: A Comparative Evaluation

of Existing Methodologies

Valentina Cord̀ı†, Viviana Mascardi†, Maurizio Martelli†, Leon Sterling‡

† Dip. di Informatica e Scienze dell’Informazione, Università di Genova, Italy.
1996s081@educ.disi.unige.it, {mascardi,martelli }@disi.unige.it
‡ Dept. of Computer Science and Software Engineering, Melbourne University, Australia.

leon@cs.mu.oz.au

Abstract. The paper discusses a framework for evaluating and comparing metho-
dologies for ontology development and its application to the evaluation of three
existing methodologies. The framework is characterised by a domain-independent
step and by an application-driven step. It has been adopted to analyse and com-
pare three methodologies, the “Ontology Development 101” methodology, the
“Unified Methodology” and EXPLODE, in respect to the analysis, design, veri-
fication and implementation of an ontology for content-based retrieval of XML
documents.

1 Introduction

Peer-to-peer (P2P) systems [9] have emerged as a promising new paradigm for dis-
tributed computing, as witnessed by the experience with Napster and Gnutella and by
the growing number of research events related to them.

Current P2P systems focus strictly on handling semantic-free, large-granularity re-
quests for objects by identifier (typical name), which both limits their usability and
restricts the techniques that might be employed to access data. Intelligent agents that
exploit ontologies to perform content-based information retrieval in P2P networks may
represent a viable solution to overcome their limitations [2,10].

A recent proposal of a semantic, policy-based system for the retrieval of XML docu-
ments in P2P networks comes from [8]. There, peers are organised into thematic groups,
each one coordinated by a “super-peer agent”. The super-peer agent provides an ontol-
ogy (“group ontology”) that sets the concepts dealt with by the group and establishes
the relationships among them. Each peer can dynamically enter and leave any group
inside the P2P network. When the peer joins a group for the first time, it is requested
to provide to the super-peer agent as much information as possible about the concepts
that are dealt with by the documents it is willing to share. This allows the super-peer
agent to know which peers are more likely to deal with which concepts. When a query
is submitted to a peer, the peer forwards it to the super-peer which can understand the
meaning of the terms appearing in the query by exploiting the group ontology. Since
the super-peer knows which peers deal with which concepts, it identifies the peers in

the group that can contain an answer for the query and forwards the query only to them,
in order to minimise the number of messages exchanged inside the group.

While the architecture and the communication flow of the P2P system proposed in
[8] are described in detail, the engineering stages that a developer must follow in order
to build the group ontology are not addressed at all.

Developing ontology is akin to defining a set of data and their structure for other
programs to use. Problem-solving methods, domain-independent applications, and soft-
ware agents use ontologies and knowledge bases built from ontologies as data. Although
some methodologies for ontology development exist (most of which date back to almost
ten years ago), little effort has been devoted to help a developer in choosing the right
methodology for modelling, verifying, and implementing his/her ontology.

In this paper we propose an integrated framework for evaluation and comparison
of existing methodologies for ontology development. Our framework is characterised
by a domain-independent step, which can be performed once to provide general and
re-usable results, and by an application-driven step, which must be repeated any time
the application domain or the software/hardware system where the ontology will work
changes. The system and domain we are interested in are the ones outlined in [8]. We
will adopt our framework to evaluate how a set of methodologies behave when used
for the development of an ontology for the retrieval of XML documents based on their
semantics.

The structure of the paper is the following: Section 2 discusses the three methodolo-
gies we have evaluated and compared using our framework. Section 3 introduces our
framework. Section 4 describes the first step of the framework that consists of analysing
existing literature and/or contacting the developers and users of the methodology in or-
der to obtain general information. Section 5 introduces the case study based on [8].
Section 6 describes the development of the case study using the three methodologies.
Conclusions follow.

2 Methodologies for ontology development

In this section we outline the three methodologies that we analyse and compare using
our evaluation framework: the “Ontology Development 101” methodology, the “Unified
Methodology” and EXPLODE. Their choice has been driven by the will to complement
the document [4] where other methodologies (not including these ones) were analysed
and compared.

A previous document describing methodologies for ontology development is [7],
which surveys TOVE, the Enterprise methodology, METHONTOLOGY, IDEF5, be-
sides other additional methods which address specific aspects of the ontology develop-
ment process.

The reader interested in knowing more about methodologies for ontology devel-
opment can find a very nice survey in the Deliverable 1.4 produced by the OntoWeb
consortium in 2002 [4]. Besides analysing several approaches for building ontologies
from scratch (Cyc, the Enterprise methodology, TOVE, KACTUS, METHONTOL-
OGY, SENSUS, and the On-to-Knowledge methodology), the deliverable surveys meth-
ods for re-engineering ontologies, for cooperative construction of ontologies, for ontol-

ogy merging, for ontology evolution, and for their evaluation. The document proposes
an evaluation framework for methodologies and uses it to evaluate the seven approaches
for building ontologies from scratch listed above. We introduce and extend that frame-
work in Section 3.

The “Ontology Development 101” guide.The “Ontology Development 101” guide,
developed by Noy and McGuinness in 2001 [11], proposes an iterative approach to
ontology development: it starts with a rough first pass at the ontology, then it revises
and refines the evolving ontology and fills it in the details.

The methodology is divided in seven steps:

1. Determine the domain and scope of the ontology by answering a set of basic ques-
tions (“What is the domain that the ontology will cover?”, “For what we are going
to use the ontology?”, “Who will use and maintain the ontology?”, ...) and by iden-
tifying the ontology competency questions.

2. Consider re-using existing ontologies.
3. Enumerate the terms that the developer wants either to make statements about or to

explain to a user.
4. Define the classes and the class hierarchy by following one of the several existing

approaches (top-down, bottom-up, middle-out).
5. Define the properties of classes by means of slots, namely, the class attributes.
6. Define the features (“facets”) of the slots, such as the value type, allowed values,

the cardinality, etc.
7. Create instances of classes in the hierarchy.

The Unified Methodology.The “Unified Methodology” proposed by Uschold in 1996
[12] embraces the TOVE and Enterprise methodologies in a unique framework. The
methodology builds up of five steps:

1. Identify the purpose of the ontology, in particular identify and characterise the
range of intended users, identify the uses for the ontology, identify (fairly general)
motivating scenarios and competency questions, and produce a user requirements
document for the target software system.

2. Decide how formal the ontology needs to be. This is determined in large part by the
purpose and users of the ontology.

3. Identify the scope of the ontology. Two main ways to proceed with this process are:
(a) Create the detailed scenarios that arise in the applications.
(b) Use brainstorming to do a more thorough and accurate job of scoping.

4. Build the ontology itself, namely produce the definitions and decide how and whether
arranging the definitions in some particular way, thus structuring the ontology.

5. Evaluate the ontology and start a revision cycle if needed.

EXPLODE. The EXPLODE methodology, introduced in 2002 by Hristozova and Ster-
ling [5] and also discussed in [6], is the most recent methodology for ontology develop-
ment we are aware of. It integrates ideas from the eXtreme Programming methodology
(XP, [1]) and is particularly suitable for dynamic and open environments thanks to its
focus on immediate feedback and evaluation.

The EXPLODE method consists of seven steps, which can be iterated until the
desired ontology is created:

1. Fetch the requirements of the system. The collected data will be used to create a
baseline ontology, namely an ontology that consists of a small number of concepts
that are unavoidable for a particular domain.

2. Define the competency questions.
3. Perform a validation test to check if the competency questions can be answered

using the existing ontology.
4. In case of a negative result to the previous step, perform a redundancy test in order

to control if classes, attributes or relationships with similar or matching names exist.
5. Estimate the cost and time for building and subsequently managing the developed

ontology.
6. Continuously integrate the ontology with other modules of the hardware/software

system it is part of.
7. Perform acceptance tests to know in advance what the system should do and to

understand it.

3 Our evaluation/comparison framework

When a software developer understands that the system under development can benefit
from the integration of an ontology, he/she must decide which languages and tools are
most suitable for modelling and building the ontology. Before answering this question,
however, the developer must decidewhich methodology for ontology development is
more suitable to be used, given the ontology and the system requirements, purpose and
expected users. Apart from [4], we are not aware of documents dealing with this issue.

In this section, we propose a two-steps framework for evaluation and comparison
of methodologies. The first step is domain-independent; it can be performed once to
provide general and re-usable results, and to classify the methodologies under evalua-
tion as “probably suitable for the application/system” or “probably unsuitable for it”.
The second step is application-driven and consists in the development of a prototypi-
cal ontology that shows the most relevant features of the real one, using the “probably
suitable” methodologies found in step 1.

– Step 1.Based on the available existing literature and, when possible, on further
information provided by the designers and/or the users of the methodologies, the
person in charge of evaluating the methodologies (the “evaluator”) identifies their
features by filling in the questionnaire sketched later in this section and available
from the web.

– Step 2.The evaluator develops a prototypical ontology using all the methodologies
that, according to step 1, seem to meet the ontology and the system requirements.
This practical exercise helps the evaluator in overcoming the limitations of the pure
“document-based” evaluation performed in step 1.

The evaluation criteria that we consider in step 1 coincide, in their essence, with the
evaluation criteria proposed in Section 2.2 of [4]. The granularity, however, is differ-
ent: we define a list of very precise questions that the evaluator must answer, while the
framework proposed in [4] has a coarser granularity. For space limitations we cannot
include all the questions that characterise our questionnaire. We just introduce a brief

description of the four criteria used for the comparison: proposed construction strategy
and development process, methodology’s use, and technological support. The complete
version of our questionnaire can be downloaded fromhttp://www.disi.unige.
it/person/MascardiV/Download/questionnaire.pdf .

1. Proposed construction strategy. The strategy is partitioned into life cycle proposal,
dealing with the stages through which the ontology moves during its life time and the
activities performed in each stage; the degree of dependency with respect to the appli-
cation that uses the ontology; the use of core ontologies; and the strategy followed to
identify concepts.

2. Proposed ontology development process. It includes project management processes,
that create the framework for the project and ensure the right level of management
throughout the entire product life cycle; ontology development-oriented processes, that
relate to feasibility study, requirements process, design process, implementation pro-
cess, and maintenance of the ontology; and integral processes, that cover the processes
of knowledge acquisition, verification and validation, completeness and correctness
check, ontology configuration management, documentation development and training.

3. Methodologies’ use. It refers to the use of the methodology in projects, the accep-
tation of the methodology by groups besides the one that has elaborated the approach,
the set of ontologies developed following the approach, the domains of such ontologies,
and the systems where they have been used.

4. Technological support. It refers to the tools that provide full or partial support to the
methodology.

In Section 4 we summarise the answers to our questionnaire related to the “Ontology
Development 101” methodology, the “Unified Methodology” integrating TOVE and the
Enterprise methodologies, and EXPLODE. Again, due to lack of space, we cannot in-
clude the completed questionnaires in the paper; the interested readers can download
them fromhttp://www.disi.unige.it/person/MascardiV/Download/ .

Since all the methodologies prove to be “probably suitable” for the development of
the ontology for content-based retrieval of XML documents, we use all of them to build
a prototypical ontology for the simplified domain outlined in Section 5. The results of
this “on the field” comparison are discussed in Section 6.

4 Our framework at work: step 1

In this section we summarise the features of the methodologies drawn from the ques-
tionnaires. In the sequel of the paper, we will indicate the “Ontology Development 101”
methodology with OD101 and the “Unified Methodology” with UniMeth.

1. Proposed construction strategy.

– Generality and domain-independence. All the three methodologies are general-
purpose and domain-independent.

– Core ontology. Both OD101 and EXPLODE allow and recommend, whenever it
is possible, the use of an existing ontology to start with. UniMeth does not face this
aspect.

– Approach for identifying concepts.OD101 has no preferred approach to identify
the concepts of the ontology, while EXPLODE suggests the bottom-up approach
and UniMeth suggests the middle-out approach.

2. Proposed ontology development process.

– Domain analysis.OD101 and UniMeth define a set of questions to be answered in
order to analyse the ontology domain (Who are the intended users of the ontology?
For what the ontology will be used? etc.). EXPLODE suggests to define and answer
the competency questions at this stage.

– Requirements definition.All the three methodologies face the stage of identify-
ing the requirements and goals of the ontology. They suggest to define and answer
the competency questions. UniMeth also proposes the use of motivating scenarios,
brainstorming and trimming. The only methodology that also suggests to define
the requirements of the hardware/software system where the ontology will work is
EXPLODE. The motivation is that if the ontology is developed without consider-
ing the capabilities of the other system modules, then the final integration of the
ontology with the system will be much more difficult, expensive, and with more
potential points of conflict.

– Informal and formal specification. All the methodologies allow the developer to
specify the ontology both formally and informally. None of them commits to any
specific tool or language, but some indications of useful graphical tools (Protéǵe
2.0, Chimaera and Ontolingua) and formal languages (first-order logic, KIF) are
provided.

– Testing, validation, verification. UniMeth is the methodology which deserves
more attention to testing and evaluating the ontology. It provides both general
guidelines like verifying the clarity, consistency and re-usability of the ontology,
and project-specific criteria. OD101 and EXPLODE just use the competency ques-
tions.

– Development of intermediate prototypes.All the methodologies allow the devel-
oper to build an intermediate prototype.

– Correctness and completeness.The only methodology which faces this stage in a
formal way is UniMeth. Both TOVE and the Enterprise Ontology Methodology, in
fact, allow the developer to formally prove the correctness and completeness of the
ontology.

– Iterative refinement. All the methodologies support an iterative refinement of the
ontology.

– Implementation of a machine-readable ontology.The only methodology that ex-
plicitly deals with the development of a machine-readable ontology is OD101. The
other ones do not prevent the developer from implementing a machine-readable
ontology, but they do not provide ad-hoc guidelines for this stage.

– Language-independence.All the methodologies are independent from the choice
of one language for ontology specification/implementation.

– Meetings with clients and iterative check.The only methodology that explicitly
suggests meetings with the client is EXPLODE. It suggests a first meeting to gen-
erate the competency questions, and successive meetings, one after each iteration,
to check the ontology with the client.

– Flexibility. Since all the methodologies allow the developer to refine previous
choices, all of them are “flexible”, in the sense that they dynamically adapt to the
client’s needs.

– Documentation.This aspect is poorly addressed by all the three methodologies:
none of them provides clear rules for the creation of documentation. In OD101, the
graphical representation of the ontology can be considered as a partial documenta-
tion. In UniMeth, one kind of documentation is provided by the informal ontology
and another one is provided by the user requirements document. In EXPLODE, the
developed prototypes are the only documentation produced.

– Extensibility and maintenance.Extensibility refers to the support provided by the
methodology to the extension of the ontology, and maintenance is its ability to keep
the ontology and its software environment up-to-date. EXPLODE addresses both
issues. UniMeth faces none of them, while OD101 only faces extensibility aspects.

– Training of users. No methodology includes guidelines to train users.

3. Methodologies’ use.

– The only methodology for which we found an example of use (besides the one dis-
cussed in this paper) is EXPLODE. The domain of that example is value-added pub-
lishing, and the ontology was built by the developers of the method. We did not find
examples of use of UniMeth, but the usage of TOVE and the Enterprise Method-
ology from which it originates is widely discussed in the respective project sites,
http://www.eil.utoronto.ca/enterprise-modelling/tove/ and
http://www.aiai.ed.ac.uk/project/enterprise/ . We did not find
documentation dealing with the use of OD101. We contacted the developers of
both OD101 and UniMeth to get some advice on this and other points, but we got
no answers.

4. Technological support.

– OD101 supports the integration of existing CASE tools. In particular, it suggests
to use Prot́eǵe 2.0, Chimaera and Ontolingua, although all the editing-ontology
environments are allowed. The other methodologies do not prevent the developer
from using one existing CASE tool, but they do not clearly indicate which tool is
more suitable for being used with the methodology.

5 The case study: describing and retrieving XML documents

For the development of the prototypical ontology aimed at “on the field” evaluation and
comparison of the methodologies, we consider a scenario simpler than that for which
we need to develop the “real” ontology, namely the P2P network described in [8].

The scope of our case study is to support the automatic classification of XML doc-
uments retrieved from the network (just a binary classification: “is the XML document
talking about a given topic or not?”).

In particular the case study faces the development of an ontology for structuring the
knowledge about XML documents talking about movies. This knowledge is based on:

1. the semantics of tags that appear in the XML document, and
2. the XML document structure.

For example, both documents in Table 1 describe a movie, even if they are charac-
terised by different structure and different tags. As far as tags are concerned, the first

<movie> <film><title>Title2<title>
<title>Title1<title> <actors>Act3, Act4</actors>
<actors><actor>Act1</actor> <director>Dir</director>

<actor>Act2</actor> </film>
</actors>
<directed_by><name>Name</name>

<surname>Surn</surname>
</directed_by>

</movie>

Table 1.Two XML documents dealing with movies

document uses<movie> to refer to a movie, while the second document uses<film> .
In this context, the semantics of “movie” and “film” is the same. The director is identi-
fied by the tag<directed by> in the first document, and by the tag<director>
in the second one. Again, despite to their syntactic difference, these two tags have the
same semantics.

As far as the structure is concerned, the tag<actors> is structured into a list of
<actor> and the tag<directed by> is composed by<name> and<surname>
in the first document, while the corresponding tags in the second document contain
strings.

The prototypical ontology must contain all the information needed to classify XML
documents talking about movies. In particular, it must contain the information that:

– the tags<film> and<movie> , and<director> and<directed by> are
equivalent in the movie context;

– <actors> can contain a string or a list of<actor> tags;
– the director, be it identified by<directed by> or by <director> , may con-

tain a string or a structure including<name> and<surname> .

In order to build the ontology, a set of XML documents dealing with movies has
been gathered from the web and each document in the set has been manually analysed in
order to identify the structural and the semantic rules exemplified above. The documents
we used for our purposes arehttp://catcode.com/cit041x/assignment4a.

html , http://www.flixml.org/flixml/detour.xml , http://www-db.
stanford.edu/pub/movies/mains218.xml .

The purpose was to build an ontology which could tell that a document starting with
the tag<film> or <movie> (and others, that we do not discuss here for space con-
straints), and containing somewhere a tag<director> or <directed by> , eventu-
ally with different content, is likely to talk about movies. Given a new XML document,
the ontology should allow to answer “yes, it deals with movies because it matches the
semantic and structural rules” or “no, it does not deal with movies”.

6 Our framework at work: step 2

In this section we discuss the stages to develop the ontology relying on those introduced
in Section 5. We had no pre-existing ontology to include as the baseline ontology: the
development was carried out from scratch.

Domain analysis.
Since the ontology under development is just a toy-example, the answers to the

questions suggested by OD101 and UniMeth for analysing the domain are not very
meaningful: there are no expected users of the methodology, the domain is the one de-
scribed in Section 5, and the intended purpose of the ontology is to provide a test-bed
for the methodologies under evaluation. UniMeth suggests to identify fairly general
scenarios and use them to help clarify specific uses of the ontology. For example, being
able to recognise both documents in Table 1 as documents dealing with movies is a
general motivating scenario for our ontology.

Requirements definition.
All the methodologies suggest to identify the competency questions. Some of these

questions, together with the answers that the ontology must be able to provide, are:

– Competency Question:Should the ontology be able to separate the concepts re-
lated to the document structure from those related to the document semantics?
Answer: Yes, it should. This separation is very important because it will allow to
re-use the ontology to classify documents in domains different from movies, only
requiring an extension to the ontology concepts related with the document seman-
tics.

– CQ: Is the tagtitle in the context of tagheading allowed in a XML document
about movies?
A: Yes, it is.

– CQ: What are equivalent representations of the tagtitle in a document dealing
with movies?
A: The representations of the tagtitle that can be found in documents dealing
with movies are:movieTitle , titleMovie , t , Title , TITLE .

Besides using the competency questions, UniMeth allows the developer to use other
techniques for the extraction of the ontology requirements. These techniques include
defining the detailed motivating scenarios, brainstorming and trimming. We have only

defined the detailed scenarios that include possible solutions to the problem addressed
by the ontology. For example, the ontology must be able to classify the documents
whose fragments are shown in Tables 2 and 3, as well as all the other documents that
we gathered from the web, as movie documents.

<title role="main"> Detour </title>
<releaseyear role="initial"> 1945 </releaseyear>
<language> English </language>
<studio> PRC (Producers Releasing Corporation) </studio>
<cast> <leadcast>

<male id="TN"> T. Neal <role> Al </role> </male>
<female id="AS"> A. Savage <role> Vera </role> </female>

</leadcast>
<othercast> <male> </male>
</othercast> </cast>

<crew><director>Edgar G. Ulmer</director>

Table 2.A fragment ofhttp://www.flixml.org/flixml/detour.xml

<fid> SMg10 </fid>
<t> Bridget Jones’s Diary </t>
<year> 2001 </year>
<dirs> <dir> <dirk> R </dirk><dirn> NancyMeyer </dirn> </dir>

Table 3.A fragment ofhttp://www-db.stanford.edu/pub/movies/mains218.xml

Finally, EXPLODE suggests to clearly identify the specific constraints from the
hardware/software system that come from other modules in the system that interact
with the ontology. Since ontologies are often integrated with agents, EXPLODE em-
phasises the importance to define in advance the type of the agents that will use the
ontology. Our ontology will be used by intelligent agents that help the peers in a P2P
network in deciding which of the XML documents they are willing to share deal with
movies, and which do not. The modules that the ontology will interact with are those
described in [8].

Informal and formal specification.
Following OD101, we identified the most important terms of the ontology. For ex-

ample, the terms “tag”, “attribute”, “movie”, “title”, “year” must be represented.
Afterwards, as suggested by both OD101 and EXPLODE, we used an ontology-

editing environment to graphically represent the ontology concepts and the relations
among them. Figure 1 represents the hierarchy of concepts that belong to our ontology.
The ontology was edited using Protéǵe 2.0. Note that semantic aspects are separated

Fig. 1.Concept hierarchy

from syntactic ones. The former are collected under the general concept “Element”,
while the latter are collected under the “Tag” concept. The relationship between tags
and elements is that a tag has a context, which may be the root of the document or
another tag, and a meaning, which is an element. The hierarchy of concepts alone is not
enough informative. In order to make the ontology useful and complete with respect
to its requirements, we had to describe the internal structure of concepts. For example,
Figure 2 shows the attributes of the concept Movie.

The ontology graphically represented in Figures 1 and 2 can be also represented us-
ing first-order logic, as UniMeth suggests. We can represent the hierarchy of concepts
in a standard way by means of theisA relation. All the arguments of the relations below
are constants of the domain.

isA(Movie, Element). isA(Title, Element). isA(Element, THING).
isA(Tag, THING). isA(String, THING).

Tags are identified by an atom (the tag identifier), another atom (the identifier of the
tag context), an element (the tag meaning) and a list of strings (all the possible syntactic
representations of the tag inside the XML document). For example, the semantics of a
tag identified bytitle, and appearing in the context of the tagheading, is given by the
elementTitle. In the XML document, the tag namedtitle may appear with different, but
equivalent, representations: “t”, “Title”, “title”, “TITLE”, “movieTitle”, “titleMovie”.
The first-order logic representation of instances of theTag concept may look like the
following:

instanceOf(tag(“title”, “heading”, Title,
[“t”, “Title”, “title”, “TITLE”, “movieTitle”, “titleMovie”]), Tag).

Fig. 2.The attributes of the concept “Movie”

Similar representations must be provided for all the instances of all the concepts
that the ontology deals with.

Testing, validation, verification.
The primary validation technique that all the methodologies support consists of

checking the ontology against the competency questions. One of the competency ques-
tions we identified for the ontology is: “What are the equivalent representations of the
tag title in a document dealing with movies?”

The expected answer, based on the set of real XML documents we used as our
training set, is: “The equivalent representations of the tagtitle are: movieTitle ,
titleMovie , t , Title , TITLE .”

All these representations are considered by the ontology’s graphical representation
(not shown for space limitation). Also the first-order representation allows to correctly
answer this question.

By checking the ontology, we realised that some motivating scenarios were not cor-
rectly addressed. In particular, the ontology did not include the information thatdirn
represents the concept “director ”, which is indeed necessary to correctly classify
the document in Table 3.

Correctness and completeness.
The only methodology which faces this step is UniMeth that borrows the guidelines

for this stage from the TOVE methodology. Basically, TOVE suggests to express the
competency questions in the same formal language used to express the ontology theory,

Tontology, and to demonstrate that, for each competency questionQ, Tontology � Q.
For example, the competency question related to the equivalent representations of the
tagtitle can be expressed by the formula

∃ X. instanceOf(tag(“title”, Y, Z, X), Tag).
Demonstrating that this formula is a logical consequence ofTontology is trivial. The
witness isX = [“t”, “Title”, “title”, “TITLE”, “movieTitle”, “titleMovie”] .

A full account of the completeness check of the ontology discussed in this paper
can be found in [3].

Development of intermediate prototypes.
The ontology sketched by the screen-shots of Figures 1 and 2 is an intermediate

prototype of the final ontology (which is, in turn, a simplified version of the ontology
for the P2P network). The steps “Testing, validation, verification” and “Correctness
and completeness” helped us to understand that the ontology had to be refined in order
to satisfy all the competency questions, to address the motivating scenarios and to be
proved correct and complete.

Iterative refinement.
All the methodologies support an iterative refinement step, thus it was not difficult

to iteratively extend the intermediate prototypes in order to obtain the final, correct on-
tology.

Implementation of a machine-readable ontology.
Since we decided to use an ontology-editing environment to face all the previous

steps (which could have been addressed using paper and pencil as well), we got a
machine-readable ontology for free.

Meetings with clients and iterative check.
EXPLODE is the only methodology that addresses this aspect. In the development

of our case study, this development phase was not addressed since we played the role
of both the ontology clients and the ontology developers.

Documentation.
The competency questions, motivating scenarios and intermediate prototypes rep-

resent the only documentation we produced while developing the ontology. Even if
producing such a poor documentation is not correct from a software engineering point
of view, it is fully consistent with the guidelines proposed by the three methodologies
we considered.

7 Conclusions and future directions

Based on both the answers to our questionnaire and our direct experience with the
development of the case study, we drew the considerations on the three methodologies
summarised in Table 4. The table includes only the most significant features of the
methodologies.

Techniques used by\
for

UniMeth OD101 EXPLODE

Requirements defini-
tion

Competency questions, moti-
vating scenarios, brainstorm-
ing and trimming.

Competency questions.Competency questions, re-
quirements of the ontology
HW/SW environment.

Test and validation Different criteria are sug-
gested, both general and
project-specific.

Verification against the
competency questions.

Verification against the com-
petency questions.

Correctness and com-
pleteness check

Formal check that the com-
petency questions are logical
consequences of the ontology.

No formal technique sup-
ported.

Continuous check of the pro-
duced ontology together with
the client.

Machine-readable on-
tologies

Neutral with respect to this
factor.

Use of an ontology-
editing environment.

Neutral with respect to this
factor.

Checking of the
client’s needs

Not covered in detail. Not covered. Continuous check of the pro-
duced ontology together with
the client.

Methodology’s sim-
plicity of use

No easy-to-adopt guidelines
provided w.r.t. formal ap-
proach to ontology develop-
ment.

Practical and easy-to-
adopt guidelines are
provided.

The provided guidelines are
not as easy-to-adopt as the
ones offered by OD101.

Table 4.Comparison of the three methodologies

Our opinion is that OD101 is suitable for the development of simple ontologies
that do not present safety-critical issues. For such ontologies, OD101 results to be the
best methodology among the three because it provides very detailed and easy-to-follow
guidelines.

Both EXPLODE and UniMeth are suitable for the development of complex ontolo-
gies, but the guidelines they provide are not as detailed as the ones offered by OD101.
While EXPLODE suggests to check that the ontology satisfies the client requirements
by means of regular meetings with the client himself, but without using formal tech-
niques, UniMeth suggests the opposite: using formal techniques without checking the
ontology with the client. For ontologies with special constraints on the security and con-
formance to the client’s need, both approaches should be followed. Another important
feature of EXPLODE is that it takes the definition of the requirements of the ontology’s
environment into account. This feature is very important in order to develop an ontol-
ogy that operates in a real system and easily integrate it in the system.

Our evaluation of the methodologies and the conclusions we drew about them suf-
fer from one limitation: both the completion of the questionnaire and the development
of the case study were addressed by ourselves. Although we did our best to maintain
an objective point of view, the results described in this paper may be influenced by
our subjective experience. We are confident that this limitation can be overcome when
the proposed comparison/evaluation framework will be adopted by a more significant
number of persons. It is part of our future work to involve “independent” third parties

(maybe students or colleagues) to adopt our framework, in order to get objective feed-
back on the framework itself and on the three methodologies we have evaluated using it.

Acknowledgements:The authors thank Marco Mesiti for the constructive discussions
on the use of ontologies in the P2P context, and the anonymous referees for their useful
comments.

References

1. K. Beck. Extreme Programming Explained: Embrace Change. Addison Wesley, 2000.
2. A. Castano, S. Ferrara, S. Montanelli, E. Pagani, and G. P. Rossi. Ontology-addressable

contents in P2P networks. InProc. of the 1st SemPGRID Workshop, 2003.
3. V. Cord̀ı and V. Mascardi. Checking the completeness of ontologies: A case study from the

semantic web. InProc. of the CILC’04 Workshop, 2004.
4. M. Ferńandez-Ĺopez. A survey on methodologies for developing, maintaining, evaluating

and reengineering ontologies. OntoWeb IST-2000-29243 Project Deliverable 1.4, 2002.
5. M. Hristozova and L. Sterling. An eXtreme method for developing lightweight ontologies.

In S. Cranefield, T. Finin, and S. Willmott, editors,Proc. of the OAS’02 Workshop, 2002.
6. M. Hristozova and L. Sterling. Experiences with ontology development for value-added

publishing. In S. Cranefield, T. Finin, V. Tamma, and S. Willmott, editors,Proc. of the
OAS’03 Workshop, 2003.

7. D. Jones, T. Bench-Capon, and P. Visser. Methodologies for ontology development. In
J. Cuena, editor,Proc. of IT&KNOWS’98, pages 62–75, 1998.

8. M. Mesiti, G. Guerrini, and V. Mascardi. SAPORE P2P: A semantic, policy-based system
for the retrieval of XML documents in P2P networks. Tech. Rep., DISI-TR-04-05, Computer
Science Department of Genova University, 2004.

9. D. Milojicic, V. Kalogeraki, R. Lukose, K. Nagaraja, J. Pruyne, B. Richard, S. Rollins, and
Z. Xu. Peer-to-peer computing. Tech. rep., HPL-2002-57, HP Labs Palo Alto, 2002.

10. W. Nejdl, M. Wolpers, W. Siberski, C. Schmitz, M. Schlosser, I. Brunkhorst, and A. Löser.
Super-peer-based routing and clustering strategies for RDF-based peer-to-peer networks. In
Proc. of WWW’03, pages 536–543, 2003.

11. N. F. Noy and D. L. McGuinness. Ontology development 101: A guide to creating your first
ontology. Tech. rep., KSL-01-05, Stanford Knowledge Systems Laboratory, 2001.

12. M. Uschold. Building ontologies: Towards a unified methodology. InProc. of ES’96, 1996.
Also published as technical report, AIAI-TR-197.

