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Allegri 13 – 42100 Reggio Emilia, Italy


ANDREA OMICINI andrea.omicini@unibo.it


Dipartimento di Elettronica Informatica e Sistemistica (DEIS), Università di Bologna a Cesena, Via Venezia
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Abstract. Agent-based computing is a promising approach for developing applications in complex do-


mains. However, despite the great deal of research in the area, a number of challenges still need to be faced


(i) to make agent-based computing a widely accepted paradigm in software engineering practice, and (ii) to


turn agent-oriented software abstractions into practical tools for facing the complexity of modern


application areas. In this paper, after a short introduction to the key concepts of agent-based computing


(as they pertain to software engineering), we characterise the emerging key issues in multiagent systems


(MASs) engineering. In particular, we show that such issues can be analysed in terms of three different


‘‘scales of observation’’, i.e., in analogy with the scales of observation of physical phenomena, in terms of


micro, macro, and meso scales. Based on this characterisation, we discuss, for each scale of observation,


what are the peculiar engineering issues arising, the key research challenges to be solved, and the most


promising research directions to be explored in the future.


Keywords: multiagent systems, agent-oriented software engineering, intelligence engineering, self-organi-


sation.


1. Introduction


Agents and multiagent systems (MASs) have recently emerged as a powerful tech-
nology to face the complexity of a variety of today’s ICT scenarios. For instance,
several industrial experiences already testify to the advantages of using agents in
manufacturing processes [14, 81], Web services and Web-based computational
markets [43], and distributed network management [9]. In addition, several studies
advise on the possibility of exploiting agents and MASs as enabling technologies for
a variety of future scenarios, i.e., pervasive computing [1, 88], Grid computing [31],
Semantic Web [8].
However, the emergent general understanding is that MASs, more than an


effective technology, represent indeed a novel general-purpose paradigm for software
development [39, 107]. Agent-based computing promotes designing and developing
applications in terms of autonomous software entities (agents), situated in an envi-
ronment, and that can flexibly achieve their goals by interacting with one another in
terms of high-level protocols and languages.
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These features are well suited to tackle the complexity of developing software in
modern scenarios: (i) the autonomy of application components reflects the intrin-
sically decentralised nature of modern distributed systems [88] and can be considered
as the natural extension to the notions of modularity and encapsulation for systems
that are owned by different stakeholders [67]; (ii) the flexible way in which agents
operate and interact (both with each other and with the environment) is suited to the
dynamic and unpredictable scenarios where software is expected to operate [104];
(iii) the concept of agency provides for a unified view of artificial intelligence (AI)
results and achievements, by making agents and MASs act as sound and manageable
repositories of intelligent behaviours [76].
In the last few years, together with the increasing acceptance of agent-based


computing as a novel software engineering paradigm, there has been a great deal of
research related to the identification and definition of suitable models and techniques
to support the development of complex software systems in terms of MASs [34]. This
research, which can be roughly grouped under the term ‘‘agent-oriented software
engineering’’ [39, 97], endlessly proposes a variety of new metaphors, formal mod-
elling approaches, development methodologies and modelling techniques, specifi-
cally suited to the agent-oriented paradigm. Nevertheless, the research is still in its
early stages, and several challenges need to be faced before agent-oriented software
engineering can deliver its promises, becoming a widely accepted and a practically
usable paradigm for the development of complex software systems.
In this paper, we analyse the main open research challenges in agent-oriented


software engineering, i.e., those issues related to MASs engineering that challenge
traditional and current approaches to software engineering, and that call for inno-
vative approaches and solutions. To better organise the presentation, we argue that
different issues may arise depending on the ‘‘scale of observation’’ adopted to model
and build a software system. At one extreme, the micro scale of observation is that
where the system to be engineered has to rely on the controllable and predictable
behaviour of (a typically limited number of) individual agents, as well as on their
mutual interactions. There, the key engineering challenges are related to extending
traditional software engineering approaches toward agent-oriented abstractions. At
the other extreme, the macro scale is the one where a MAS is conceived as a mul-
titude of interacting agents, for which the overall behaviour of the system, rather
than the mere behaviour of individuals, is the key interest, and for which novel
‘‘systemic’’ approaches to software engineering are needed. In between, the meso
scale of observation is that where the need of predictability and control typical of the
micro scale clashes with the emergence of phenomena typical of the macro scale.
Therefore, any engineering approach at the meso scale requires accounting for
problems that are typical of both the micro and the macro scale, and possibly for
new problems specific to the meso scale.
Of course, in this paper, we do not claim to cover all the problems of agent-


oriented software engineering, nor to exhaust the list of potentially interesting
research directions. Still, our discussion aims at sketching a scenario articulated
enough to give readers a clue of the fascinating amount of research work to be
undertaken. In any case, we emphasise that the goal of our discussion is not simply
to advertise the personal viewpoints of the authors. Rather, we have tried to collect
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and organise in a rational and readable way the outcomes of a number of stimulating
discussions that took place during the meetings of the ‘‘Methodologies and Software
Engineering for Agent Systems (MSEAS)’’ SIG [101–103] of the EU-funded Net-
work of Excellence ‘‘Agentlink’’ [52]. While we fully endorse the responsibility for
what we state in this paper, we are at the same time greatly indebted to the partic-
ipants of the MSEAS SIG for having shared with us their opinions and knowledge.
In our turn, with this paper, we hope to be able to transmit to others that knowledge.
The remainder of this paper is organised as follows. Section 2 introduces the key


concepts and motivations behind agent-oriented software engineering research, by
showing the generality of the agent-oriented paradigm and its impact in areas such as
distributed systems engineering and AI. Section 3 represents the core of the paper: it
introduces our ‘‘scale of observation’’ characterisation and, for each scale, it discusses
the main research challenges and the most promising research directions. Section 4
concludes by mentioning some additional research issues that, although not detailed
by this paper, may be worth some considerations and further work by researchers.


2. Agent-oriented software engineering: concepts and driving forces


Other than a technology, agent-based computing can be considered as a new general-
purpose paradigm for software development, which tends to radically influence the
way a software system is conceived and developed, and which calls for new, agent-
specific, software engineering approaches.


2.1. Agent-based computing as a novel software engineering paradigm


The core concept of agent-based computing is, of course, that of an agent. However,
the definition of an agent comes along with a further set of relevant agent-specific
concepts and abstractions.
Generally speaking, an agent can be viewed as a software entity with the following


characteristics [39, 51]:


– Autonomy: an agent is not passively subject to a global, external flow of control in
its actions. That is, an agent has its own internal execution activity (whether a
Java thread or some other sort of goal-driven intelligent engine, this is irrelevant
in this context), and it is pro-actively oriented to the achievement of a specific
task.


– Situatedness: an agent performs its actions while situated in a particular envi-
ronment, whether a computational (e.g., a Web site) or a physical one (e.g., a
manufacturing pipeline), and it is able to sense and affect (portions of) such an
environment.


– Sociality: in the majority of cases, agents work in open operational environments
hosting the execution of a multiplicity of agents, possibly belonging to different
stakeholders (think, e.g., of agent-mediated marketplaces). In these MASs, the
global behaviour derives from the interactions among the constituent agents. In
fact, agents may communicate/coordinate with each other (in a dynamic way and
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possibly according to high-level languages and protocols) either to achieve a
common objective or because this is necessary for them to achieve their own
objectives.


Looking at the above definition, it is clear that a MAS cannot be simply reduced to a
group of interacting agents. Instead, the complete modelling of a MAS requires
explicitly focusing also on the environment in which the MAS and its constituent
agents are situated and on the society that a group of interacting agents give rise to.
Modelling the environment implies identifying its basic features, the resources that
can be found in the environment, and the way via which agents can interact with it
[62]. Modelling agent societies [56] (or agent organisations [33], or agent ecologies
[67], the specific metaphor to be adopted depending on the specific characteristics of
the application goals, and of the operational environment as well) implies identifying
the overall rules that should drive the expected evolution of the MAS and the various
roles that agents can play in such a society [62, 84, 106]. All the above considerations
lead to the very general characterisation depicted in Figure 1-left, whose basic
abstractions and overall architecture totally differ from that of traditional software
engineering approaches (Figure 1-right).
When considering the traditional object-oriented perspective [11], the differences


between the object-oriented and the agent-oriented perspective on modelling and
building a software system are sharp. An object, unlike an agent, is in principle
neither autonomous nor proactive, in that its internal activity can be solicited only
by service requests coming from an external thread of control. In traditional object
applications, there is not any explicit modelling of external ‘‘environment’’: every-
thing is modelled in terms of objects, and objects either wrap environmental
resources in terms of internal attributes, or perceive the world only in terms of other
objects’ names/references. In addition, traditional object-based computing promotes
a perspective on software systems in which components are ‘‘functional’’ or ‘‘service-
oriented’’ entities. A global system architecture is conceived as a static functional
decomposition, where interactions between components/objects are simply an
expression of inter-dependencies [5, 78, 79], and where concepts such as society or
roles simply do not make any sense.
The above considerations make us claim that agent-based computing represents a


brand new software engineering paradigm calling (as better discussed later) for a new
discipline of agent-oriented software engineering (AOSE for short). Of course, we are
aware that objects and components in today’s distributed and concurrent systems are
somewhat removed from the historical definition and are starting to approach our
view of agents. Aspect-oriented programming explicitly aims at overcoming the
intrinsic limitations of functional decomposition [45]. Active objects and reactive
components exhibit at least some degree of autonomy [29]. Context-dependencies in
component-based applications, together with the explicit distinction between active
and passive objects, approach the distinction between agents and their environment
[15]. The possibility, promoted by modern middleware [17, 29, 60], of both estab-
lishing open interactions and modelling interactions that are more articulated than
simple request-response ones, makes complex object/component based systems
appear more like a dynamic society than a static software architecture. In any case,
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the fact that traditional object- and component-based systems are abandoning tra-
ditional abstractions and are starting to adopt others, approaching those of agent-
based computing, is the body of evidence that (i) a novel software engineering
paradigm is needed and (ii) the agent-oriented one is the right one.


2.2. The Promise of AOSE for distributed systems engineering


As outlined above, today’s software engineering approaches are increasingly
adopting abstractions approaching that of agent-based computing. This trend can be
better understood by recognising that the vast majority of modern distributed sys-
tems scenarios are intrinsically prone to be developed in terms of MASs, and that
modern distributed systems are already de facto MASs, i.e., they are indeed com-
posed of autonomous, situated, and social components [107].
As far as autonomy is concerned, almost all of today’s software systems already


integrate autonomous components. At its weakest, autonomy reduces to the ability
of a component to react to and handle events, as in the case of graphical interfaces or
simple embedded sensors. However, in many cases, autonomy implies that a com-
ponent integrates an autonomous thread of execution, and can execute in a proactive
way. This is the case of most modern control systems for physical domains, in which
control is not simply reactive but proactive, implemented via a set of cooperative
autonomous processes or, as is often the case, via embedded computer-based systems
interacting with each other or via distributed sensor networks [28]. The integration in
complex distributed applications and systems of (software running on) mobile
devices can be tackled only by modelling them in terms of autonomous software
components [15]. Internet based distributed applications are typically made up of
autonomous processes, possibly executing on different nodes, and cooperating with
each other – a choice driven by conceptual simplicity and by decentralised man-
agement rather than by the actual request for autonomous concurrent activities.
Today’s computing systems are also typically situated. That is, they have an


explicit notion of the environment where components are allocated and execute, and
with which components explicitly interact. Control systems for physical domains, as
well as sensor networks [28], tend to be built by explicitly managing data from the
surrounding physical environment, and by explicitly taking into account the
unpredictable dynamics of the environment via specific event-handling policies.
Mobile and pervasive computing applications recognise (under the general term of
context-awareness) the need for applications to model explicitly environmental
characteristics – such as, e.g., their position [1] – and environmental data – e.g., as
provided by some embedded infrastructure [15] – rather than to model them
implicitly in terms of internal object attributes. Internet applications and web-based
systems, to dive into the existing Internet environment, are typically engineered by
clearly defining the boundaries of the system in terms of the ‘‘application’’, including
the new application components to be developed, and ‘‘middleware’’ level, as the
environmental substrate in which components are to be embedded [18].
Sociality in modern distributed systems comes in in different flavors: (i) the


capability of components of supporting dynamic interactions, i.e., interaction
established at run-time with previously unknown components; (ii) the somewhat
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higher interaction level, overcoming the traditional client-server scheme; (iii) the
enforcement of some sorts of societal rules governing the interactions. Control
systems for critical physical domains typically run forever, cannot be stopped, and
sometimes cannot even be removed from the environment in which they are
embedded. Nevertheless, these systems need to be continuously updated, and the
environment in which they live is likely to change frequently, with the addition of
new physical components and, consequently, of new software components and
software systems [44, 88]. For all these systems, managing openness and the capa-
bility to automatically re-organise interaction patterns is crucial, as is the ability of a
component to enter new execution contexts in respect of the rules that are expected
to drive the whole execution of the system. With reference to pervasive computing
systems [28], lack of resources, power, or simply communication unreachability, can
make nodes come and go in unpredictable ways, calling for re-structuring of com-
munication patterns, as well as for high-level negotiations for resource provision.
Such issues are even exacerbated in mobile networking [15, 53] and P2P systems [73,
75], where interactions must be made fruitful and controllable despite the lack of any
intrinsic structure and dynamics of connectivity. Similar considerations apply to
Internet-based and open distributed computing. There, software services must sur-
vive the dynamics and uncertainty of the Internet, must be able to serve any client
component, and must also be able to enact security and resource control policy in
their local context, e.g., a given administrative domain [18]. E-marketplaces are the
most typical examples of this class of open Internet applications [27, 57].
In sum, today’s distributed systems can be increasingly assimilated to the general


MAS scheme of Figure 1-left. Thus, the explicit adoption of agent-based concepts in
distributed systems engineering would carry several advantages [39, 67]:


– autonomy of application components, even if sometimes directly forced by the
distributed characteristic of the operational environment, enforces a stronger
notion of encapsulation (i.e., encapsulation of control rather than of data and
algorithms), which reduces the complexity of managing systems with a high and
dynamically varying number of components;


– taking into account situatedness explicitly, and modelling environmental re-
sources and active computational entities in a differentiated way, rather than
being the recognition of a matter of fact, provides for a better separation of
concerns which, in turn, helps reduce complexity;


– dealing with dynamic and high-level interactions (i.e., with societal rather than
with architectural concepts) enables to address in a more flexible and structured
way the intrinsic dynamics and uncertainties of modern distributed scenarios.


2.3. The Promise of AOSE for intelligent systems engineering


MASs have been mainly developed as a concept within the AI research community,
and earlier research in the area disregarded software engineering aspects and focused
only on AI ones. The recent recognition of agent-based computing as a novel soft-
ware engineering paradigm – far from diminishing the importance of AI aspects –
can even bring a renewed general interest to a variety of AI research findings.
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Despite the different definitions and flavors of AI (which we are not going to
discuss here any further), one should never forget that AI is mainly concerned
with building intelligent systems: the very name of ‘‘Artificial Intelligence’’ literally
suggests the notion of artifacts exhibiting intelligent behaviour. Therefore, AI
can be considered as an engineering field (dealing with constructive concerns),
rather than simply a scientific one (dealing with understanding and predicting
intelligent systems behaviour). After all, one of the earliest and most influen-
tial AI papers [54] addresses the problem of how to actually write programs
exhibiting some ‘‘common sense’’: besides showing the constructive concerns of
early AI researchers, this clearly demonstrates how the notion of practical rea-
soning – reasoning about actions – has played a central role in AI from the very
beginning.
Then, it is somewhat disappointing that nearly 30 years of AI research were


conducted by having research groups concentrate on single, isolated aspects of AI
(like, say, artificial vision, knowledge representation, planning), and failed in pro-
ducing a reasonable set of conceptual and practical tools, which could promote the
integration of such a vast amount of research findings into the mainstream practice
of software development. This is where agents are actually becoming a key
abstraction in today’s AI.
The very notion of agents provides a uniform conceptual space where all the


findings of the AI field can be easily framed and related, and eventually find
mainstream acceptance. First, as they are a practical and conceptually affordable
entry point for new students and practitioners interested in AI, i.e., the right place to
experience intelligent behaviours, agents are likely to work as the most natural
vehicle for spreading the results of AI research, as well as their exploitation in real
world application domains. Also, the strong notion of encapsulation promoted by
agents (which includes encapsulation of control) enables the integration of compo-
nents with intelligent behaviour (whatever the model, pattern, or technology actually
used to embody intelligence) in large software systems, with no influence on the
overall system architecture, nor on the overall development process. Clearly, this is
likely to make even the more sceptical engineers more amenable to work with
intelligent components. In addition, agent-oriented abstractions naturally provide
for a new, powerful approach to the construction of intelligent systems, so that
agents can not only pave the way for classical AI achievements toward industrial
systems, but also promote original and more effective ways to solve highly-complex
problems calling for system intelligence.
Correspondingly, the promise of AOSE is twofold. First, drawing from AI find-


ings and making them part of the everyday software engineering practice. Then,
raising the level of complexity of the problems that can be solved by human artifacts,
by allowing artificial systems to incorporate ever-growing ‘‘amounts of intelligence’’
– whatever this could mean both in theory and in practice.


2.4. Current directions in agent-oriented software engineering


A change of paradigm is always a dramatic event in any scientific and engineering
field [50]. As far as software engineering is concerned, the key implication is that the
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design and development of software systems according to a (new) paradigm can by
no means rely on conceptual tools and methodologies conceived for a totally dif-
ferent (old) paradigm. Even if it is still possible to develop a complex distributed
system in terms of objects and client-server interactions, such a choice appears odd
and complicated when the system is a MAS or it can be assimilated to a MAS.1


Rather, a brand new set of conceptual and practical tools – specifically suited to the
abstractions of agent-based computing – is needed to facilitate, promote, and sup-
port the development of MASs, and to fulfil the great general-purpose potential of
agent-based computing.
Researchers in the area of agent-based computing have recognised the above


needs, and a vast amount of research work is now being focused on the above topics.
It is out of the scope of this paper to survey all relevant work in the above areas of
AOSE. A number of excellent and extensive articles have been written for this
purpose [19, 34, 38], and we forward the interested reader to them. Still, a short
summary of the current mainstream research directions is worth reporting.


– Agent modelling. Novel formal and practical approaches to component modelling
are required, to deal with autonomy, pro-activity, and situatedness. A variety of
agent architectures are being investigated, each of which is suitable to model
different types of agents or specific aspects of agents: purely reactive agents [46,
67], logic agents [93], agents based on belief, desire and intentions [47]. Overall,
this research has so far notably clarified the very concept of agency and its dif-
ferent facets.


– MAS architectures. As it is necessary to develop new ways of modelling the
components of a MAS, in the same way it is necessary to develop new ways of
modelling a MAS as a whole. Detaching from traditional functional-oriented
perspectives, a variety of approaches are being investigated to model MASs. In
particular, approaches inspired by societal [56, 62], organisational [105, 106], and
biological metaphors [10, 67], are the subject of the majority of researches and are
already showing the specific suitability of the different metaphors in different
application areas.


– MAS methodologies. Traditional methodologies of software development, driving
engineers from analysis to design and development, must be tuned to match the
abstractions of agent-oriented computing. To this end, a variety of novel meth-
odologies to discipline and support the development process of a MAS have been
defined in the past few years [40, 49, 96, 98, 106], clarifying the various sets of
abstractions that must come into play during MAS development and the duties
and responsibilities of software engineers.


– Notation techniques. The development of specific notation techniques to express
the outcome of the various phases of a MAS development process are needed,
because traditional object- and component-oriented notation techniques cannot
easily apply. In this context, the AUML proposal [6, 59], extending standard
UML toward agent-oriented systems, is the subject of a great deal of research and
it is rapidly becoming a de facto standard.


– MAS infrastructures. To support the development and execution of MASs, novel
tools and novel software infrastructures are needed. In this context, various tools
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are being proposed to transform standard MAS specifications (i.e., AUML
specifications) into actual agent code [36, 71], and a variety of middleware
infrastructures have been deployed to provide proper services supporting the
execution of distributed MASs [7, 15, 57].


Clearly, all of the above work is contributing to increase the acceptance and the
practical usability of the paradigm. Nevertheless, the number of challenging research
problems to be solved and the number of potentially interesting research directions is
much larger than it may appear from the above list.


3. Challenges in AOSE: the micro, macro, and meso scales


A key question that one should ask when facing the development of a MAS (or,
equally, the development of any system in terms of AOSE abstractions and concepts)
is: what does it actually mean to engineer a software system in modern and future
scenarios? A similar question arises when in need of discussing the key challenges and
the promising research directions in AOSE.
Unfortunately, the more computing becomes ubiquitous and pervasive, the more


answering the above question becomes difficult. Computational devices (from high-
end computers to wearables and micro sensors) and the associated software com-
ponents will soon populate all of our physical spaces, homes, offices, and streets. All
these components will interact with each other in the context of dynamic and
complex networks. Also, by considering that the IPv6 addressing scheme will make it
possible in principle to assign an IP address to each and every square millimetre on
the Earth’s surface, the vision is that of an incredibly huge and open network,
connecting billions of computer-based devices. In this perspective, the very concept
of software systems becomes rather blurred. In fact, it is not easy to say what a
software system actually is when: (i) the artifacts to be developed and engineered
(e.g., a finite set of interacting software components) will be deployed in a pre-
existing system of already executing software components; (ii) these artifacts will
interact with a virtually infinite number of other components, in a scenario of
transitive interactions and reciprocal influences that could possibly extend to a
world-wide scale. Clearly, in such a scenario, any logical and physical boundary
enabling the clear definition of the subject of the engineering work vanishes as soon
as the system is deployed or as soon as the engineer (as any good engineer should do)
wonders about the impact that the deployment of her/his artifacts may have on the
surrounding environment. So, the very question raised at the beginning of this
section (what does engineering a software system mean) should be better posed in a
different way. That is: what is the scale of observation at which one should situate the
engineering work?
It is a known fact that our universe is very different when observed from different


perspectives. At our everyday scale of observation, classical mechanics applies, and
relativity concepts – very relevant at cosmological scale – simply have no practical
use. Nor is quantum mechanics relevant, which becomes of some use only at very
small scales of observation or in very peculiar situations. Therefore, any study of our
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universe makes sense only when specifying the scale of observation at which the
study applies. In a very similar way, any effective approach to AOSE requires fixing
the scale of observation, to give meaning to the concept of software systems and to
enable the identification of the issues that have to be faced in their engineering. In
particular, we distinguish here between three different scales of observation, i.e., the
micro, the macro, and the meso scales, each raising very different issues in AOSE.
The identification of these three scales (and the terminology adopted for them)


comes from an analogy with the world of nanoelectronics, MEMS, and molecule
engineering. For the manufacturing of nanometre-size components, quantum phe-
nomena appear and have to be taken into account, since the characteristics and
position of each single atom become relevant. For the manufacturing of micrometre-
size (and over) components, only collective phenomena can be observed, for which
classical physical laws, disregarding the presence of and the behaviour of single
atoms, are more effective. In between, at what is called the meso scale, both the
phenomena of classical and quantum mechanics can be observed, and both are
required to be taken into account for the proper manufacturing of components.
By applying a similar characterisation to MASs, we can identify three different


scales of observation, as follows:


– The micro scale. The micro scale of observation is that which typically applies in
traditional software development processes. Engineers involved in the analysis,
design, and development of a MAS, in which a limited number (e.g., from a few
units to a hundred) of agents have to be defined to interact toward the achieve-
ment of a specific application goal, may typically preserve and enforce a strict
control and understanding over each and every component of the system. A
software system of limited and identifiable size is the actual subject of the engi-
neering work, and the engineers’ approach in building it is that of detailing the
features of each agent they develop, of the mechanisms underlying each inter-
agent interaction, and of each interaction of the agents with their environment.


– The macro scale. The macro scale of observation is that in which the engineering
work relates to understanding and controlling the behaviour of huge software
systems with a very large number of interacting agents (e.g., from several hun-
dreds to billions), possibly distributed over a decentralised network and deep in
dynamic and uncontrollable operational environments. Here, due to the complex
and decentralised nature of the systems subject to the engineering work, it is
possible neither to exert a strict control over each agent and each interaction, nor
to observe at a reasonable and manageable level of detail the individual compo-
nents of the system. Rather, the collective behaviour of the system is what matters.
We emphasise that a macro-scale approach to MAS engineering must be adopted
both for the building of those systems that have been explicitly conceived for
achieving their goals at a collective macro scale – e.g., swarm systems [67] and
sensor networks [28] – as well as for the understanding and control of those
systems that simply grow at a size such that the macro-scale approach becomes
the only feasible one – e.g., global information economies [43], world-wide P2P
systems [73], and the Grid [31].
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– The meso scale. The meso scale of observation is that which typically applies
during the activity of deploying a micro-scale software system into a pre-existing
macro-scale one. For what we previously said about future computing scenarios, a
very limited number of software systems will exist in isolation, and most will be
built to be immersed in an existing networked scenario of high complexity.
Therefore, working on the development of a system only in micro-scale terms will
hardly be enough, and most of the time engineers will have to face the two basic
questions of (i) what will be the impact on my system of it being deployed in an
open and complex scenario and (ii) what will be the impact on the global system
of the deployment of my own systems. In other words, there is a phase in the
process of developing a MAS that requires taking into account both micro-scale
and macro-scale aspects.


A simple example may help to clarify the above concepts. Consider the case of
agent-mediated electronic marketplaces (e.g., auction sites). An engineer may wish to
develop a MAS enabling a user to select specific shopping preferences and to have a
set of agents travel over a world-wide network of auction sites to look for (and
possibly buy) what the user has requested. At the micro scale of observation, the key
issues are that the agents shall do their best to fulfil user requirements, not get
cheated in any way, and get the best offers available on the network. At the other
extreme (i.e., the macro scale of observation), the presence of a global agent-based
information economy, in which prices are dynamically established by agents acting
in auctions, introduces the problem of controlling the global degree of price fluc-
tuations and the potential emergence of instabilities and economic crisis. In between,
at the meso scale, one must ensure that agents being deployed on the network will be
able to effectively interact with the global auction system in such a way that neither
their efficiency will be affected (i.e., by starting buying unsatisfactory goods at
unsatisfactory or totally unpredictable prices) nor the global stability of the system
will be undermined (e.g., by having agents speculate on prices to influence them).


3.1. The micro scale


The micro scale is the subject of the vast majority of AOSE research or, at least, of
those researchers that classically tend to be categorised under the AOSE hat. This
endeavour (which reflects also in the short state of the art summary reported in
section 2.4) is not surprising, because it naturally derives from an endeavour that has
driven software engineering research so far.
Until a few years ago, in fact, the micro one was the only meaningful scale of


observation for software systems. Most software systems were closed, operating in
isolation or, if somewhat open, interacting with the external world according to very
static and predictable patterns of interaction. The duty of engineers was simply that
of trying to build reliable and efficient self-contained software systems, and to ensure
strict control and understanding over each and every component of these systems,
for the sake of effective maintenance.
As a first consequence of this fact, most earlier and current approaches to AOSE


mainly focus on the building of small-size MASs [97], and on the definition of
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suitable models, methodologies [96, 98] and tools [6, 59] for these kinds of systems.
Even though these systems are sometimes claimed to be open, meso-scale and macro-
scale issues are mostly disregarded. As another consequence, most AOSE practice at
the micro scale has focused on trying to apply or extend traditional and well-assessed
methods and tools (e.g., object-oriented ones [6]) to AOSE. Nevertheless, neither
have all the potentially interesting research challenges at the micro scale received
enough attention, nor does the practice of extending traditional methods have to be
considered necessarily the best direction to follow, as we discuss below.


3.1.1. Assessing the advantages of agents in software engineering. The authors,
most of the participants of the MSEAS SIG of Agentlink, and possibly most of the
readers, are already confident about the potential advantages of the agent-oriented
paradigm and about the fact that this is the paradigm to be adopted for the devel-
opment of most complex software systems. However, this is not enough. All the
considerations reported in Section 2 about the potentials of the paradigm need to be
supported by stronger quantitative arguments. Software engineers that are going to
spend money and man-months in the development of a complex software system will
hardly be convinced to shift to a new paradigm (and pay the overhead involved in
such a process) simply because it is conceptually elegant. Instead, they will require
some evidence of the fact that this will help them save money and resources. We
emphasise that we are not referring here to the advantages that agents could bring to
software systems, but to the advantages that agents could bring in the process of
developing software systems.
At the moment, there is very little work that proves, to some extent, the advan-


tages of adopting an agent-oriented approach in software development. For
instance, Cossentino et al. [21] describe the experience of their research group in
building a robotics application according to an AOSE methodology, and they
document in a quantitative way (i.e., man months effort) that the overall efficiency of
the software development process notably improves over different (not specifically
agent-based) approaches. As another example, Cernuzzi and Rossi [16] discuss the
fact that the definition and evaluation of an AOSE methodology should take into
account not only its suitability in matching the peculiar abstractions of agent-based
computing – as most proposed methodologies do [80] – but also its suitability in
facilitating software development and maintenance.
It is our opinion that, besides the justified research efforts in the attempt at


identifying suitable AOSE methodologies for MAS engineering, much work is
needed in the direction of evaluating (in a quantitative more than in a qualitative
way) the agent-based paradigm and the associated methodologies, in order to assess
their actual advantages over existing paradigms in software analysis, design, and
maintenance.


3.1.2. From standard to non-standard and extreme processes. The definition of
agent-specific methodologies is definitely one of the most explored topics in AOSE,
and a large number of AOSE methodologies – describing how the process of building
a MAS should/could be organised – has been proposed in the literature [80].
However, what characterises most of the methodologies proposed so far is that they
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assume a very traditional waterfall model (from analysis to design, implementation,
and maintenance) for organising the process of building a MAS. This raises two key
questions, which are also somewhat related to the previously identified challenge.
First, are we actually sure that the traditional software process model has to apply


to MAS too? How can the abstractions of agent-based computing possibly impact
on the very way one should approach the building of a MAS? In a world of dynamic
and complex software systems, do concepts such as requirements engineering,
analysis, design, implementation, and maintenance still apply in the traditional way?
We do not have any answer at the moment. Still, we think that scientists working in
the area should really interrogate themselves about this problem, and possibly end
up with novel software process models more suited to agent-based computing and
(hopefully) more effective than traditional ones.
Second, it appears rather odd that most proposals for AOSE methodologies adopt


a standard process model when, in the real world of industrial software development,
such a standard model is rarely applied. It is a matter of fact that, in 99% of the
cases, software is developed following a non-structured process: analysis, design, and
implementation, often collapse into the frenetic work of a bunch of technicians and
programmers, directly interacting with clients (to refine typically vague specifica-
tions), and striving to deliver the work on time. In the mainstream community of
software engineering, such a situation is getting properly attributed via the definition
of novel software process models, specifically conceived to give some flavor of
‘‘engineering’’ to such chaotic and frenetic processes (e.g., agile and extreme software
process models). In the area of AOSE, we think that a similar direction should be
explored too, possibly exploiting the fact that the very abstractions of agents may
promote the identification of different and more agile process models (as argued in
the previous paragraph). A first promising approach in that direction is described by
Knublauch [48].


3.1.3. Is AUML enough? The acceptance of a new paradigm can be better pro-
moted if it can be adopted by software engineers with minimal effort, i.e., by letting
them exploit as much as possible of the knowledge they already have, and by
minimising the need to acquire new knowledge and new states of mind. For these
reasons (and also because the same considerations apply to scientists too), a large
number of research efforts are being spent in the area of AOSE to exploit and extend
traditional (e.g., object-oriented) notation and modelling techniques for use in the
context of MASs.
In particular, as we already anticipated in Subsection 2.4, agent-oriented exten-


sions to UML (AUML) are the current subject of a great deal of research [6, 59]. For
instance, extensions to UML diagrams have been proposed to account for the high-
level nature of agent interactions [59] and for the societal aspects intrinsic in MAS
architectures [70]. These extensions, focusing on specific aspects of the agent para-
digm with a set of intuitive and largely familiar diagrams, will turn out to be of great
use toward acceptance of the paradigm. After all, also within the agent research
community, AUML (even if it is neither fully specified nor standardised) is already
becoming a de facto standard: newly proposed AOSE methodologies tend to adopt
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AUML as the basic notation technique and newly proposed interaction patterns in a
variety of applications are usually expressed in terms of AUML diagram.
Despite the current enthusiasm for AUML, we are far from convinced that


AUML is the ultimate answer. Beside the current period of transition, in which
AUML will play an important role, we think that the complexity, dynamics, and
situated nature of modern software systems cannot be effectively dealt with by
notations and modelling techniques originated for static and not situated software
architectures. Whatever extensions will be proposed for AUML, they will intrinsi-
cally carry on the original shortcomings of the original object-oriented proposal. We
are not the only ones thinking this: in the traditional software engineering com-
munity, the shortcomings of standard UML are becoming evident [26], and novel
notations are being explored to account for higher dynamics and complexities.
Accordingly, we think that a great challenge in the area of AOSE will be that of
identifying brand new notations and modelling techniques, conceived from scratch
to suit the specific characteristics of MASs.
We are not stating here that AUML should be abandoned. Simply, we are stating


that, together with AUML, novel proposals should be very welcome and not simply
discarded because they do not conform to widespread standards. The fact that
reasonable proposals in this direction can actually be formulated and effectively
compete with AUML is witnessed by, e.g., the work of Sturm et al. [87], describing a
modified version of OPM specifically suited for MASs.


3.1.4. Exploiting the full potential of formal models. Formal models have always
played a role in the context of software engineering research [55, 66]: from formal
notations for system design to formal frameworks for system verification, research
on formal methods have tried to cover the whole spectrum of engineering practice.
Despite many efforts to show their usefulness in practice and to claim their usability
and success [13, 37], formal methods seem to have mostly participated in the theory
of software engineering rather than in its every day practice: there are far more
university courses on ‘‘Formal Methods and Software Engineering’’ than formal
methods actually used in software engineering best practice.
Whatever is the reason of this, the unprecedented complexity of modern software


systems will even more urgently call for formal methods helping engineers in
designing, testing and verifying applications. Taking a look at the most recent results
[77], the research focus appears to be shifting from providing a global formal
approach for the engineering process as a whole to (i) addressing separate aspects
with specialised formal methods and tools, and (ii) suitably integrating different
formal approaches within the whole engineering process.
In this context, formal methods represent an obvious but fascinating challenge


for AOSE. In particular, agents provide a new opportunity for formal approaches
at the micro scale. At this level of observation, in fact, complexity is typically
addressed not simply by adding new components, but also by increasing the
capabilities of individual systems components. Given the natural encapsulation
provided by agents, this means that suitably formalised agent architectures (like,
say, BDI-like or logic-based agents) could be effectively used to build complex
autonomous components whose behaviour could be modelled using traditional AI
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techniques, like knowledge-based reasoning or first-order logics. Even more,
compositional methods could in principle be used at the micro scale to foresee
critical behaviour of systems (and prevent undesired behaviour) based on the
features of individual agent components. In particular, logic-based agent archi-
tectures seem to be particularly promising, since they could bring to the software
engineering arena all the results that computational logics have achieved in the
last 30 years of research. Several fora already exist that are trying to pave the
way toward this direction [20, 24]. Also, by their very nature, agent-oriented
abstractions represent a conceptual framework promoting the seamless and clean
integration of different and heterogeneous formal approaches. This vision of
agent-oriented methodologies promoting the effective and factual use of formal
methods in the (future) mainstream SE is thus another challenge for AOSE
researchers.


3.1.5. Promoting intelligence engineering. As discussed in Subsection 2.3, intelli-
gent behaviours have mostly been studied in isolation in the first decades of AI
research, with the only exception of robotics research, having somehow assumed
from the very beginning a unitary view of embodied intelligence. Furthermore,
even though AI was born as a constructive discipline, methodological concerns
have only occasionally found their way through AI research. As a result, the
distance between the practice of software engineering and the findings of AI has
always been great.
An obvious challenge for AOSE today is then to provide an affordable way to


introduce the engineering of intelligent behaviours into mainstream software engi-
neering practice. The point is not simply to exploit agents to provide a conceptual
framework for AI techniques to be occasionally used within standard software
engineering practice. Rather, the key challenge for AOSE is to provide a method-
ological approach enabling software engineers to comfortably devise and exploit
selected AI solutions in their everyday practice. As an example, Operations Research
– born as an independent research field long before AI – is today closely related to
AI, and many AI tools are encapsulated and exploited in standard OR techniques.
This provides programmers with a number of structured problems (like travelling
salesman and Knapsack) that can be used as a reference and provide suitable
algorithms for a vast amount of real-world application problems. Analogously, Data
Mining has practically integrated a number of efficient AI techniques (for classifi-
cation, clustering, temporal sequences, . . .) that can be practically exploited within a
multiplicity of different application scenarios, along with some criteria to properly
select between them.
Despite the fact that some AI-related areas already provide engineers with


criteria for technique selection (pre-conditions to engineering methods), such
efforts are again typically performed in isolation, without a global view of the
system engineering issue. What is needed now – representing a challenge for AI
in general, and for AOSE in particular – is an integrated approach, that could
enable the engineering of complex application problems – that is, complex
enough to require some form of system intelligence – to be faced as a whole
issue.
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3.2. The Macro-Scale


The macro-scale of observation deals with engineering the overall behaviour of
large-scale MAS. It implies applying engineering methods at an observation level
that abstracts from the fact that a global system is made up of possibly individually
deployed sub-systems and agents. The immediate consequence of this is that, at the
macro scale, the behaviour of individual agents or individual sub-systems, per se, is
not relevant. What becomes instead relevant is the behaviour of the system as a
whole.
Sceptical readers would be tempted to say that the macro-scale is by no means


related to engineering (i.e., an activity of building something) but it is rather a matter
of scientific investigation (i.e., an activity of observing, studying, and understand-
ing). We agree that, traditionally, dealing with complex systems at the macro scale
has mostly involved such types of scientific activities. However, when human arti-
facts (such as software systems) grow to a level of complexity that makes it
impossible to control them at a micro scale of observation (as is happening with our
networks and distributed systems), we can no longer be satisfied by an activity of
scientific investigation only. Instead, other than understanding these systems, we
must find ways to engineer their behaviour, i.e., to apply rigorous methodologies
enabling us to exert – at least to some extent – some control over these systems and
to direct their behaviour as needed.2


The Internet and the Web are the most sharp examples of this change of per-
spective. A few years ago, when the size of the Web (and of the underlying physical
network of routers) grew dramatically huge and connected, researchers started
investigating the structure and dynamics of such networks, and discovered peculiar
and unexpected aspects [2, 23]. Apart from the purely scientific interest of these
discoveries, the newly acquired knowledge has become a basic background for the
engineering of router topologies, of highly-accessed web sites, of HTTP caches, and
of web indexing algorithms. For instance, it led to the identification of well-founded
methodologies for evaluating the impact of the addition of new routers and new
highways in the Internet.
Coming back to MASs, a large amount of experimental and simulation research


aimed at understanding the behaviour of very large (possibly world wide) MASs is
already available [43, 73, 74]. The next challenges in this area will all be somewhat
related to promoting the emergence of a discipline of macro-scale AOSE.


3.2.1. Measuring a system. Engineering always implies some activity of mea-
suring. At the micro scale, traditional software engineering has widely applied
measuring methods to quantify, e.g., the complexity of a software system, its
robustness, its mean time between failures, etc. Typically, all of these software
metrics were proposed under the basic assumption of having micro-level visibility
over the system’s components. And, as far as the individual components of the
system can be inspected and their behaviour analysed, it is rather clear that
analogous sorts of metrics can be applied to agents too (a specific micro-scale
metric problem emerging at the meso scale, i.e., the measure of trust, will be
analysed in section 3.3).
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At the macro scale, the problem of measuring a system is possibly even more
important. In fact, once we lose visibility and control over the individual compo-
nents, the only way to characterise a system is to introduce some synthetic indicator
of its behaviour, i.e., some metrics able to capture some of its relevant characteristics,
and also to quantitatively compare the behaviour of two systems (or the behaviour
of the same system at different times and under different conditions). Unfortunately,
the lack of micro-scale control makes most past work in the area of software mea-
surement useless, and brand new approaches must be identified.
Some approaches to measure a MAS at the macro level have recently been pro-


posed, motivated by contingent needs of showing specific characteristics of a MAS
under examination. While some of these metrics appear to have a very restricted
applicability scope, others promise to be of a much more general nature. For
instance, Parunak and Brueckner [69] introduce the general concept of ‘‘entropy’’ of
a MAS, to show how a colony of ants globally impacts on the environment in which
it is situated. Roli et al. [74] adopt a compression algorithm to determine – in terms
of compression rate – the degree of overall coordination achieved in a cellular MAS.
Network science and earlier work on Web topology [2] have inspired the definition of
very general macro-scale metrics to determine the connectivity characteristics of a
network of agents.
In our opinion, there is a large amount of work to do to reach a higher under-


standing of what really needs to be measured in MASs (or in specific classes of
MASs) at the macro scale, and of which of these metrics may be of a general nature.
Getting inspiration from thermodynamics, information theory, network science, and
from any science typically having to deal with macro-scale measures may be a good
direction, as it may be starting from scratch in the search of distinguishing agent-
specific macro-scale metrics.


3.2.2. Controlling a system. Measuring a system is very important to understand
and characterise it. However, if the measure is not finalised to some consequent
action, then measuring simply reduces to a scientific activity. Instead, in engineering,
measuring a system is always finalised at ensuring that specific measurable values are
within a pre-defined range, i.e., within the range characterising an acceptable
behaviour of the system. In other words: the measuring of a system is finalised to its
control; the controlling of a system is finalised to preserving specific observable (i.e.,
measurable) behaviours.
There are a variety of macro-scale control tasks that one may wish to enforce in a


large MAS. Let us give a few examples. In a world-wide agent-based information
economy, one may wish to avoid unpredictable large-range price fluctuations [43],
and ensure a reasonable stability of the global price systems. In sensor networks [28]
as well as in Grids [31], one may wish that the various tasks performed by the agents
on the sensors/nodes are properly distributed in a geographic area, and that highly
overloaded or underloaded zones do not emerge. In a large-scale network of
acquaintances, one may wish to ensure that pathological topologies leading to dis-
torted information dissemination do not occur [2, 100]. Unfortunately, enforcing any
type of control at the macro-level, as in the above examples, is indeed a challenging
task.
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Traditional control theory tells us that, once the overall parameters and laws
governing the evolution of a system are known, enforcing active control over it
simply reduces to changing its operational parameters as required. However, in the
area of MASs, this is far from being an easy task. First, in most cases, we have no
way to know the operational parameters and the laws governing a MAS. Second,
even if we did know, the lack of micro-scale control over the components of the
system (decentralised and possibly belonging to different stakeholders) would require
some novel approach to influence the behaviour of the system from ‘‘out of the loop’’
[88], i.e., by adding new components to it or by changing the characteristics of its
operational environment rather than by changing the behaviour of its pre-existing
components.
Some promising specific approaches in this direction are being undertaken. A large


number of experimental studies on global information economies (together with
isomorphic studies performed on human economies) are telling us a lot about the
actual laws governing them, and are paving the way for suitable methodologies and
tools to control them (at least to some extent) [43]. Other studies on large networks
of agents are telling us how and when specific pathological situations (e.g., undesired
global synchronisation and coordination of activities) may occur, and how one can
(at least in principle) avoid them [74].
However, we still lack general-purpose models and tools (if any can be found) to


understand and control at the macro-level the behaviour of large-size MAS.


3.2.3. On the universality of MASs. The very basic question of whether a general
understanding and general control tools for MASs can exist is intriguing and chal-
lenging. A variety of highly-heterogeneous physical systems, when analysed in terms
of their macro properties, exhibit surprisingly similar behaviours [4]. For instance,
phase transitions (i.e., bifurcations and shifts from ordered to chaotic behaviour)
always follow exactly the same laws, and a limited number of attractor classes can be
used to describe the global dynamics of a huge number of physical systems. In other
words, behind the high complexities ruling the macro-scale behaviour of very diverse
physical systems, there appear to be some unifying universal laws.
Given this, one could ask whether similar universal properties may be exhibited by


MASs, and may be used to define general purpose engineering tools. Reasoning
about such a possibility (suggested to us by Van Parunak [68]) is not that weird. The
different types of physical systems exhibiting the same universal behaviour are
typically made up of weakly correlated particles interacting according to some
specific laws. While the degree of correlation may vary from system to system, as
may their specific interaction laws, the overall global behaviour is – for some aspects
– the same. MAS systems too, in general terms, can all be characterised by being
made up of weakly correlated (i.e., autonomous) particles, interacting with each
other according to some specific schemes. So, it would not be a big surprise
(although definitely a scientific and technological breakthrough) to discover that
MASs actually obey the same universal laws of complex physical systems.
In any case, it would be still very exciting to discover that, even if the general laws


of MAS are completely different from those of physical systems, some underlying
universal laws for computational systems of autonomous components existed. Such
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laws could then be used to identify unifying techniques to face (with different
parameters) the macro-scale complexities of a variety of different MASs, from global
information economies, to grids and sensor networks. What the promising directions
to eventually identify such general universal laws are, it is hard to say. Nevertheless,
a better understanding and exploitation of a number of findings in the study of
complex natural and physical systems may be definitely of help.


3.2.4. Sociology, biology, and beyond. In the past few years, natural and social
systems have played a very important role in many areas related to computer
science. Biology acted as a major source of inspiration for the definition of a
variety of novel search heuristics (from genetic algorithms to ant algorithms).
Social systems, and specifically social networks, have played a major role in the
understanding of the behaviour of large computational networks (i.e., the Internet
and the Web).
More recently, motivated both by the successes in the above areas and by the fact


that MASs can be naturally abstracted in ecological or societal terms, the lessons of
biology and sociology have started influencing the development of large-scale dis-
tributed computational systems and of large-scale MASs, with the goal of repro-
ducing in MASs those robust and self-regulating macro-scale behaviours exhibited
by ecological and social systems. For instance, algorithms inspired by ant foraging
can be effectively exploited for mobile agents to find information distributed in a P2P
network [3]. Similarly, the social phenomenon of gossip, which turns out to be
dramatically effective to propagate information in a social network, has been of
inspiration for a variety of novel routing algorithms [22]. In the specific area of
MASs, a variety of other social and natural phenomena (e.g., negotiation-based
interactions [43], social conventions [18, 56, 62, 85], and pheromone-based interac-
tions [82]) have been exploited extensively toward the development of systems with
robust and adaptive macro-scale behaviour. Other than natural and social phe-
nomena, some work also exploits specific classes of physical phenomena to achieve
adaptive macro-scale behaviours. For instance, the Co-Fields approach [53] exploits
virtual gravitational fields to orchestrate the overall movements of a large number of
distributed mobile agents/robots.
In this context, we feel that the above studies – other than being of use for the


building of specific classes of MASs – will be able to provide some general insights on
how large-scale MASs work, and on how they can be effectively controlled with out-
of-the-loop approaches. However, for these insights to be produced in the near
future, (i) a larger variety of phenomena will have to be explored and (ii) novel
formal modelling approaches will have to be produced.
With regard to the first point, there are a number of interesting physical and


biological phenomena that are currently underestimated in the area of AOSE, and
that instead have the potential to be effectively exploited in the building of robust
and adaptive MASs. For instance, the emergence of regular spatial patterns observed
in a variety of physical systems [83] could possibly be exploited to implement novel
and very effective strategies for distributed coordination in large-scale MASs. As
another example, the patterns of distribution of specimen populations, as deriving
from their specific interaction mechanisms [99], could be of use toward the definition
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of adaptive MAS organisations and of effective strategies for dynamic division of
labour.
With regard to the second point, the current lack of a common model of the


different types of natural/biological/physical phenomena that are being exploited in
large-scale MASs, is making it impossible to compare heterogeneous approaches, as
it is making it impossible to document the performed experiences for the sake of
reproducibility and reusability. The possibility of having a common modelling lan-
guage would make it possible to build a catalogue of reusable patterns of global
MASs behaviour. Last but not least, the identification of a common modelling
language would definitely make us very close to the identification (if any) of the
universal laws of MASs at the macro scale.


3.3. The Meso Scale


The meso scale of observation comes into play whenever a (micro-scale) software
system, typically developed for some specific application goals to be achieved in the
context of some (macro-scale) open and complex operational scenario, has to be
evaluated with regard to its actual deployment. We do not mean that meso-scale
issues arise only in the deployment phase, but that they arise whenever studying the
characteristics of a system from the deployment perspective. For instance, consider a
system that has been designed and developed as a micro-scale system, i.e., by
adopting a micro-scale approach, with all its components in their place and working
according to well-defined application goals. The problem is that such a system will be
– sooner or later – immersed for execution in a pre-existing, possibly world-wide,
system, whose macro-scale characteristics can hardly be controlled from the micro
scale. Thus, the clear need to preserve the micro-scale characteristics of the system
has to harmonise with the macro-scale characteristics of the overall system and the
reciprocal influences of the two.
Currently, much research faces the problem of enabling the execution of MASs to


be immersed in an open scenario. These include standardisation efforts for enabling
dynamic and open interoperability [32], models for dynamic and open agent societies
[25, 30], as well AOSE methodologies explicitly conceived to deal with open agent
systems [62, 106]. However, in our opinion, most of this work faces meso-scale issues
with a very restricted perspective, i.e., simply in terms of a slightly extended micro
scale of observation. For instance, the problem of the openness of the systems is, in
most cases, posed simply in terms of how the components of a software system can
‘‘connect’’ with components in the external world, and how they can interact with
them without getting damaged.
In our opinion, the meso scale of observation introduces much more critical issues


than simply enabling interoperability (although this aspect is indeed necessary).
Specifically, as we already anticipated, the key challenges are to face the dual aspects
of: (i) understanding and controlling the impact on a software system of being
immersed in a macro-scale scenario and, vice versa, (i) understanding and controlling
the potential impact that the deployment of a software system may have at a macro
scale. Based on this formulation of the problem, it is rather clear that the meso scale
is the one that poses the most challenging problems to AOSE. In fact, to effectively
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face the above two issues, one should assume: the availability of proper micro-scale
models and tools (e.g., AOSE methodologies and agent-oriented formal methods);
the availability of macro-scale ones (e.g., control methodologies and unifying
models); and the possibility to organise the engineering work by taking them both
into account.
We are tempted to say that the meso scale is so challenging that, besides the above


two very general issues, it is very difficult to precisely identify more specific chal-
lenges and promising research directions. Nevertheless, we try below to go into
details about a few more specific issues, well aware that most of the dimensions of the
meso scale are likely to be largely unidentified.


3.3.1. Identifying the boundaries of a system. When one starts considering the fact
that a software system will become – at deployment time – part of a larger system,
the problem of identifying the boundaries separating the two systems arises. In an
open world where agents can come to life and die at any time, where mobile agents
can roam across network domains according to their own plans, and where the task
to be accomplished by a software system can be delegated to external components
(e.g., middleware services, mediators, brokers), the very concept of boundaries
between systems becomes very weak. In other words, it may be rather unclear what
an engineer should consider as part of its own system (and thus include in its work)
and what should instead simply be considered as something not having to do with its
work.
Some tentative solutions to deal with the boundary problem have been proposed


so far. For instance, a common practice in open agent systems is to wrap any
external entity into an agent that becomes part of the internal system, thus encap-
sulating any boundary effect into a set of well-identified wrapper agents. However,
this practice does not solve the problem, but simply hides it inside some agents. Also,
this practice is simply useless when, as often happens, most of the agents of a system
have to interact with some parts of the external world. A more effective solution is to
enforce all MAS interactions, both internal and external, to take place via some
shared interaction infrastructure – e.g., a blackboard or a tuple space [15, 65]. In this
case, the shared interaction infrastructure acts as a virtual space with well-
defined boundaries and well-identifiable dynamics of interaction across boundaries.
Unfortunately, this solution dramatically clashes with the usual perspective of inter-
agent interactions: agents are typically assumed to be able to directly talk with each
other in a peer-to-peer way, and without the mediation of some shared interaction
space.
Possibly, a more general direction (abstracting from the actual presence of a


shared infrastructure) could be identifying and integrating in AOSE methodologies
usable guidelines for the identification of boundaries, and electing boundary con-
ditions (that is, the modelling of the characteristics and dynamics of the interactions
across boundaries) to a primary abstraction in open MAS development. What these
guidelines should be and how boundary conditions could be modelled we just do not
know. However, this issue directly leads us to the problem of formalisation at the
meso scale.


ZAMBONELLI AND OMICINI274







3.3.2. Formal models for non-formalisable systems. While it seems quite obvious
what role could be played by formal methods at the micro-scale, additional questions
arise when considering the fuzziness of such a concept at the meso-scale. There, in fact,
systems often come to be as unpredictable as at the macro scale, and non-formalisable
as well – either for pragmatic or theoretical causes [95]. Even though parts of the
system might be under the engineer’s control, the external world here comes in across
open boundaries, bringing about burdens of uncertainty and complexity.
Components to account for in modelling may become too many to be represented


at a glance; these components may have been developed by teams having worked
separately on different portions of the system; multiple, heterogeneous and often
dynamic application environments may have to be dealt with; and many different
technologies, languages, paradigms and legacy systems may have to be combined
together in an effective and fruitful way. However, the meso scale is also the one
where software engineers cannot afford to lose control of the components of the
system they are building, despite the intrinsic explosion of complexity. Issues like
security, quality of behaviour, and automated verification are still absolutely critical
for the engineer. Unfortunately, they are unlikely to be suitably addressed without
the help of traditional formal methods. However, it often happens that at least some
critical portions of a system can actually be modelled formally. This is the case for
instance of meso-scale systems exploiting some shared interaction infrastructure.
Shared interaction infrastructures typically encapsulate and embody critical por-


tions of the system behaviour – by providing for knowledge management, security
mechanisms, communication services, etc. – which are usually provided by the
infrastructure to components in the form of services by means of dedicated run-time
abstractions – like daemons, servers, brokers, middle agents, etc. The key point is
that if the shared interaction infrastructure itself comes along with a suitable formal
characterisation, or at least its key run-time abstractions are provided with a formal
characterisation, some system properties can be guaranteed and proved in principle
[61]. In fact, if the dynamic behaviour of critical run-time abstractions shared by the
individual agents constituting a MAS can be modelled and predicted, the corre-
sponding global system behaviour can in principle be designed to be at least partially
predictable independently of the individual (autonomous) behaviours of agents. An
example is for instance discussed by Omicini et al. [63], where coordination
abstractions provided at run-time by the agent coordination infrastructure are
required to be predictable in their dynamics, and formally characterised. This
ensures that some critical system behaviour depending on the governance of agent
interaction can be formally defined at the design stage and be ensured at run-time.
In general, a key challenge for AOSE at the meso scale of observation will be that


of devising formally-defined agent infrastructures, and also of incorporating within
suitable methodologies the associated formal methods and tools. This will allow
engineers to super-impose critical system properties at design time (and preserve
them down to execution time), and prove them formally despite the general non-
formalisability of complex MASs.


3.3.3. Beyond security: infrastructures for trust. The dichotomy between the
intrinsic complexity of software systems and the absence of accessible models to
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make system behaviour both understandable and predictable – a dichotomy which
becomes sharp at the meso scale of observation – raises the key issue of trust between
humans and MASs. The difficulty in trusting systems that cannot be fully understood
and whose behaviour cannot be fully predicted not only affects end-users, but also
(and, in some sense, mostly) the engineers and developers which are responsible for
the design and the actual functioning of such systems. Conceiving trustworthy
models for the engineering of complex systems is of dramatic importance for the
technological progress characterising our information society and is a necessary
condition for the widespread adoption and acceptance of MASs. So, trust becomes
one of the most important ‘‘social’’ issues for MASs, as it already was for human
systems. After all, when considering scenarios such as e-commerce or e-government,
where the edge between human and artificial societies tends to blur, this appears as a
quite natural consequence. In general, all the social issues involved in human soci-
eties, trust in primis, should be faced also in the construction of complex artificial
systems like MASs.
Trust in information technology accounts for two main issues: (i) trust between


humans and systems (in terms of both trust between users and systems, and trust
between designers/engineers and systems), and (ii) trust between systems and systems
(in terms of both trust among system components, and trust among components of
different systems). The interpretation of MASs in terms of societies, promoted by
agent-oriented approaches, makes it possible to face the two issues above within the
same conceptual framework, adopting a uniform approach to explore general
models and solutions.
Correspondingly, the identification of suitable models and technologies going


beyond the mere concerns of security, and fully supporting instead the notion of
trust in artificial systems, becomes a primary challenge for MAS research: work-
shops on trust are already deeply permeating MAS research, trying to address
these concerns [92]. However, this also implies the definition and development of
infrastructures that not only provide for agents and MAS security, but also
explicitly model and embed the notion of trust within suitable abstractions, with
the expressiveness and effectiveness required by complex MAS engineering. As a
trivial example, given an agent and/or a MAS, it is necessary for engineers to be
able to characterise (i.e., measure) it in terms of how much it can be trusted, at any
time in the system life, and to make such information accessible and under-
standable by users. This is relevant especially at the meso scale, where an agent has
to interact in an open and uncertain world, thus making it even more difficult to
understand and predict its course of action, and trust it as well. The issue of
making trust models of heterogeneous sources (psychology, economy, law, . . .)
match technology at the infrastructure level of MAS appears as one of the most
challenging problems for future MAS research.


3.3.4. Empowering social intelligence. At the meso scale of observation, the
complexity of systems no longer allows any system components to be completely
controlled/designed/governed merely as individuals. Correspondingly, at this scale of
observation, intelligence embedded within agents (as in section 1) is often not
enough to build up intelligent systems. The very notion of situated intelligence, when
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seen through the eyes of intelligent systems’ engineers, calls for a suitable design of
what is outside the agents: societies that agents form and where they get deployed,
and environments where agents live [62].
So, the design of intelligent systems seems to require: on the one hand, suitable


design abstractions to support social intelligence, i.e., intelligence exhibited by agent
societies, which cannot directly be ascribed to individual intelligent (component)
agents [18, 106]; on the other hand, suitable infrastructures shaping the agent
environment so as to fully enable and promote the exploitation of both individual
and social intelligence. The former requirement clearly emerges from several AOSE
methodologies, adopting organisational models to describe and design systems in
terms of organisational structure (roles involved), organisational patterns (roles
relationships), and organisational rules (constraints on roles and their interactions)
[106, 42]. The latter requirement comes instead from many application scenarios
characterised by articulated and dynamic organisational structures and coordination
processes, where agent-oriented abstractions have already proved their effectiveness,
like inter-organisation workflow management systems [41, 72], agent-based CSCW
[91] and team-based cooperative military contexts [35].
A key challenge for future AOSE research is then to provide models, technolo-


gies and methodologies for the support of social intelligence. On the one hand, this
means defining suitable social abstractions that could incorporate some form of
higher-level intelligence, governing agent interaction toward global (social) intelli-
gent behaviour. This is, for instance, the case of notions like programmable
coordination services [94] and e-institutions [58]. On the other hand, this also in-
volves enabling and promoting individual agent intelligent activity over the society
structure and dynamics. This would clearly promote controlled self-reconfiguration
and self-adaptation of intelligent systems: in fact, once enabled to inspect the social
structure and dynamics, and allowed to affect it, an intelligent agent can in prin-
ciple reason about the society, make inferences, and possibly plan its evolution, for
instance to fix some undesired behaviour, or to adapt to environmental changes
[64].


4. Conclusions


The area of AOSE is definitely at a very early stage. While an increasing number of
research groups get involved in this topic to explore the implications of developing
complex software systems according to the agent-oriented paradigm, a number of
fascinating challenges are still open to investigation. As we have tried to overview in
this paper, AOSE research cannot simply reduce to defining new agent-specific
development methodologies and to adapt existing notations. This research work is
very important to promote the acceptance of the paradigm, but emerging application
areas such as pervasive and grid computing will require much more than this. In the
near future, software engineers will be asked to produce, deploy and control, very
complex software systems, made up of a possibly very large numbers of agents, to be
immersed in complex environments populated by millions of agents, and able to
behave in a reliable, intelligent, and trustworthy way at any scale of observation. For
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these requirements to be fulfilled, the identification of novel approaches – possibly
along the directions identified in this paper – will be necessary.
Of course, we have not the ambition of having covered, in the few pages of this


paper, all of the possible challenges and research directions. It is very likely that a
variety of other challenging engineering problems not discussed in this paper will
affect the development of agent-based systems, and will call for the exploration of
further promising research directions. For instance, we have not dealt here with the
potential role that evolutionary [86] and connectionist approaches can play in the
engineering of agent-based systems, at both the micro-level and the macro-level. We
have not touched upon issues related to the engineering of user interfaces, although
we are well aware that their scope and importance is increasing dramatically, as
underlined by, e.g., the growing awareness of the relevance of the affective dimension
in the area of emotional agents [90]. We have not been brave enough to hypothesise
that the agent-based paradigm is possibly the right direction to eventually identify a
sound hyper-Turing computational model [39], and that research efforts in that
directions would be valuable. In addition, we have not extensively dealt with the fact
that several future scenarios will not simply deal with intangible agents living in a
cyberspace, but with physical agents – e.g., components of a modular robot [82] or
smart dust [28] – strongly interacting with the physical world and with our everyday
environments. These sorts of interactions will indeed require novel modelling and
engineering approaches, driven by new social and physical issues. Neither we have
dealt with the rapid advances in nano- and bio-technologies [12]. What will happen
when our current concept of an agent will actualise into a bio-mechanical, if not fully
organic, being? How will the engineering issues implied in building a reliable
machine intertwine with the ethical issues implied in being the creators of novel
specimens?
Or maybe we are simply going a bit too far, fantasising on engineering issues for


paradigms to come. For the likes of such as us, an exciting research future.
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Notes


1. The widespread acceptance of agent-based computing as a software engineering paradigm had and still


has to fight against the opinions of those that either consider agents as a pure AI technique (an


endeavour that although originated from the urge to defend the AI research community, may end up
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contributing in leaving it in the ghetto) or simply consider agents as a buzzword to re-sell known


research findings in the area of distributed systems (an endeavour that is mainly driven by quantitative


and implementation-oriented considerations and that fully disregards qualitative and software engi-


neering issues).


2. A similar change of endeavour, from scientific investigation to engineering, is taking place also in other


scientific areas, such as ecology and climatology, where there is a great urge not only for observing and


understanding systems but also for directing their evolution to meet specific goals (e.g., preserving bio-


diversity or preventing catastrophic climate changes).


References


1. H. Abelson, D. Allen, D. Coore, C. Hanson, G. Homsy, T. Knight, R. Napal, E. Rauch,


G. Sussmann, and R. Weiss, ‘‘Amorphous computing,’’ Commun. ACM, vol. 43, no. 5, pp. 43 – 50,


2000.


2. R. Albert, H. Jeong, and A. Barabasi, ‘‘Error and attack tolerance of complex networks,’’ Nature,


vol. 406, pp. 378 – 382, 2000.


3. O. Babaoglu, H. Meling, and A. Montresor, ‘‘Anthill: A framework for the development of agent-


based peer-to-peer systems,’’ in Proceedings of the 22nd International Conference on Distributed


Computing Systems, IEEE CS Press: Vienna (A), 2002, pp. 15 – 22.


4. Y. Bar-Yam, Dynamics of Complex Systems, Perseus Books: Reading (MA), 1992.


5. L. Bass, P. Clements, and R. Kazman, Software Architectures in Practice, (2nd edn.). Addison-


Wesley: Reading (MA), 2003.


6. B. Bauer, J. P. Muller, and J. Odell, ‘‘Agent UML: A formalism for specifying multiagent software


systems,’’ Int. J. Software Eng. Knowl. Eng. vol. 11, no. 3, pp. 207 – 230, 2001.


7. F. Bergenti, G. Rimassa, A. Poggi, and P. Turci, ‘‘Middleware and programming support for agent


systems,’’ in Proceedings of the 2nd International Symposium from Agent Theory to Agent Imple-


mentation, Vienna (A), 2002, pp. 617 – 622.


8. T. Berners-Lee, J. Hendler, and O. Lassila, ‘‘The semantic web’’, Sci. Am., 2001.


9. A. Bieszczad, B. Pagurek, and T. White, ‘‘Mobile agents for network Management,’’ IEEE Commun.


Surv. vol. 1, no. 1, pp. 2 – 9.


10. E. Bonabeau, M. Dorigo, and G. Theraulaz, Swarm Intelligence. From Natural to Artificial Systems,


Oxford University Press: Oxford (UK), 1999.


11. G. Booch, Object-oriented Analysis and Design, (2nd edn.), Reading (MA): Addison-Wesley, 1994.


12. G. Bourianoff, ‘‘The future of nanocomputing,’’ IEEE Comput., vol. 36 no. 8, pp. 44 – 53, 2003.


13. J. P. Bowen and M. Hinchey, ‘‘Seven more myths of formal methods,’’ IEEE Software vol. 12, no. 4,


pp. 34 – 41, 1995.


14. S. Bussmann, ‘‘Agent-oriented programming of manifacturing control tasks,’’ in Proceedings of the


3rd International Conference on Multi-Agent Systems, IEEE CS Press: Paris (F), 1998, pp. 57 – 63.


15. G. Cabri, L. Leonardi, and F. Zambonelli; ‘‘Engineering mobile agent applications via context-


dependent coordination,’’ IEEE Trans. Software Eng. vol. 28, no. 11, pp. 1034 – 1051, 2002.


16. L. Cernuzzi, and G. Rossi, ‘‘On the evaluation of agent oriented methodologies,’’ in Proceedings of


the OOPSLA Workshop on Agent-oriented Methodologies, Seattle (USA), 2002.


17. P. Ciancarini, A. Omicini, and F. Zambonelli, ‘‘Coordination technologies for Internet


agents,’’Nordic J. Comput. vol. 6, no. 3, pp. 215 – 240.


18. P. Ciancarini, A. Omicini, and F. Zambonelli, ‘‘Multiagent systems engineering: The coordination


viewpoint,’’ in Intelligents Agents VI: Agent Theories, Architectures, and Languages, Vol. 1767 of


LNAI, Springer-Verlag, 2000, pp. 250 – 259.


19. P. Ciancarini and M. Wooldridge, ‘‘Agent-oriented software engineering,’’ in Proceedings of the 1st


International Workshop on Agent-Oriented Software Engineering, Vol. 1957 of LNCS, Springer-


Verlag, 2001, pp. 1 – 24.


20. CLIMA IV; ‘‘4th International Workshop ‘Computational Logic in Multi-agent Systems’,’’ Fort


Lauderdale (FL), 2004.


CHALLENGES AND RESEARCH DIRECTIONS 279







21. M. Cossentino, L. Sabatucci, and A. Chella, ‘‘A possible approach to the development of robotic


multi-agent systems,’’ in Proceedings of the 1st IEEE/WIC Conference on Intelligent Agent Tech-


nology, IEEE CS Press: Halifax (CA), 2003.


22. P. Costa, M. Migliavacca, G. P. Picco, and G. Cugola, ‘‘Epidemic algorithms for reliable content-


based publish-subscribe: an evaluation,’’ in Proceedings of the 24th International Conference on


Distributed Computing Systems, IEEE CS Press: Tokio (J), 2004.


23. M. Crovella and A. Bestavros, ‘‘Self-similarity in world wide web traffic: Evidence and causes,’’


ACM Sigmetrics, vol. 12, no. 4, pp. 160 – 169, 1996.


24. DALT 2003, ‘‘1st International Workshop ‘Declarative Agent Languages & Technologies’,’’ Mel-


bourne (AU), 2003.


25. Y. Demazeau and A. C. R. Costa, ‘‘Populations and organizations in open multi-agent systems,’’ in


Proceedings of the 1st National Symposium on Parallel and Distributed AI, Hyderabad (IN), 1996.


26. D. Dori, ‘‘What UML should be: Why significant UML change is unlikely,’’ Communications of the


ACM, vol. 45, no. 11, pp. 82 – 85, 2002.


27. M. Esteva, J. A. Rodriguez-Aguilar, C. Sierra, P. Garcia, and J. L. Arcos, ‘‘On the formal specifi-


cations of agent institutions,’’ in Agent-Mediated Electronic Commerce, Vol. 1991 of LNCS, Springer


Verlag, 2001, pp. 126 – 147.


28. D. Estrin, D. Culler, K. Pister, and G. Sukjatme, ‘‘Connecting the physical world with pervasive


networks,’’ IEEE Pervasive Comput. vol. 1, no. 1, pp. 59 – 69, 2002.


29. P. Eugster, P. A. Felber, R. Guerraoui, and A. Kermarrec, ‘‘The many faces of publish/subscribe,’’


ACM Comput. Surv. vol. 35, no. 2, pp. 114 – 131, 2003.


30. J. Ferber and O. Gutknecht, ‘‘A Meta-Model for the analysis and design of organizations in mul-


tiagent systems’. in Proceedings of the 3rd International Conference on the Multi-Agent Systems, IEEE


CS Press: Paris (F), 1998, pp. 128 – 135.


31. I. Foster and C. Kesselman, The Grid: Blueprint for a New Computing Infrastructure, Morgan


Kaufmann: San Francisco (CA), 1999.


32. Foundation for Intelligent Physical Agents, ‘‘FIPA specifications,’’ 2002. http://www.fipa.org.


33. M. S. Fox, ‘‘An organizational view of distributed systems,’’ IEEE Trans. Syst. Man Cyber. vol. 11,


no. 1, pp. 70 – 80, 1981.


34. M. Gervais, J. Gomez, and G. Weiss, ‘‘A survey on agent-oriented software engineering researches,’’


in: Methodologies and Software Engineering for Agent Systems, Kluwer: New York (NY), 2004.


35. J. Giampapa and K. Sycara, ‘‘Team-oriented agent coordination in the RETSINA multi-agent


systems,’’ in: Proceedings of the 1st International Joint Conference on Autonomous Agents and Mul-


tiagent Systems. ACM Press: Bologna (I), 2002.


36. J. J. Gomez-Sanz and J. Pavon, ‘‘Agent-oriented software engineering with INGENIAS,’’ in Pro-


ceedings of the 3rd Central and Eastern Europe Conference on Multiagent Systems, vol. 2691 of


LNCS, Springer Verlag, pp. 394 – 403.


37. A. Hall, ‘‘Seven myths of formal methods,’’ IEEE Software, vol. 7, no. 5, pp. 11 – 19, 1990.


38. C. Iglesias, M. Garijo, and J. Gonzales, ‘‘A survey of agent-oriented methodologies,’’ in Intelligents


Agents IV: Agent Theories, Architectures, and Languages, vol. 1555 of LNAI, Springer-Verlag, 1999,


pp. 317 – 330.


39. N. R. Jennings, ‘‘An agent-based approach for building complex software systems,’’ Commun. ACM,


vol. 44, no. 4, pp. 35 – 41.


40. T. Juan, A. Pierce, and L. Sterling, ‘‘ROADMAP: Extending the gaia methodology for complex


open systems,’’ in: Proceedings of the 1st ACM Joint Conference on Autonomous Agents and Multi-


Agent Systems, ACM Press: Bologna (I), 2002, pp. 3 – 10.


41. G. Kappel, S. Rausch-Schott, and W. Retschitzegger, ‘‘Coordination in workflow management


systems – A rule-based approach,’’ in: Coordination Technology for Collaboration Application, vol.


1316 of LNCS, Springer Verlag, 1998.


42. E.A. Kendall, ‘‘Role modelling for agent system analysis, design, and implementation,’’ in Pro-


ceedings of the 1st International Symposium on Agent Systems and Applications, IEEE CS Press: Palm


Springs (CA), 1999, pp. 204 – 218.


43. J.Kephart, ‘‘Software agents and the route to the information economy,’’Proc.Natl. Acad. Sci. vol. 99,


no. 3, pp. 7207 – 7213, 2002.


ZAMBONELLI AND OMICINI280







44. J. Kephart and D. M. Chess, ‘‘The vision of autonomic computing,’’ IEEE Comput. vol. 36, no. 1,


pp. 41 – 50, 2003.


45. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J. Loingtier, and J. Irwin, ‘‘Aspect-


oriented programming,’’ in Object-Oriented Programming, vol. 1241 of LNCS, Springer-Verlag,


1997, pp. 220 – 242.


46. J. Kiniry and D. Zimmerman, 1997, ‘‘A hands-on look at Java mobile agents,’’ IEEE Internet


Computing vol. 1, no. 4, pp. 21 – 33, 1997.


47. D. Kinny, M. Georgeff, and A. Rao, 1996, ‘‘A methodology and modelling technique for systems of


BDI agents,’’ in W. Van de Velde and J. W. Perram (eds.), Modelling Autonomous Agents in a Multi-


Agent World, vol. 1038 of LNAI. Springer-Verlag, 7th International Workshop (MAAMAW’96),


22–25 Jan. 1996, Eindhoven, The Netherlands, 1996, pp. 56 – 71.


48. H. Knublauch, ‘‘Extreme programming of multi-agent systems,’’ in Proceedings of the 1st Interna-


tional Joint Conference on Autonomous Agents and Multiagent Systems, ACM Press: Bologna (I),


2002, pp. 704 – 711.


49. M. Kolp, P. Giorgini, and J. Mylopoulos, ‘‘A goal-based organizational perspective on multi-agent


architectures,’’ in Intelligent Agents VIII: Agent Theories, Architectures, and Languages, vol. 2333 of


LNAI, Springer-Verlag, 2002, pp. 128 – 140.


50. T. Kuhn, The Structure of Scientific Revolutions, The University of Chicago: Chicago (IL), 1962.


51. J. Lind, ‘‘Issues in agent-oriented software engineering,’’ in Proceedings of the 1st International


Workshop on Agent-Oriented Software Engineering, vol. 1957 of LNCS, Springer Verlag, 2001.


52. M. Luck, P. McBurney, and C. Priest, Agent Technology: Enabling Next Generation Computing,


Agentlink II: Southampton (UK), 2003.


53. M. Mamei and F. Zambonelli, ‘‘Co-fields: A physically inspired approach to distributed motion


coordination’’. IEEE Pervasive Comput. vol. 3, no. 1, 2004.


54. J. McCarthy, ‘‘Programs with common sense,’’ in M. L. Minsky (ed.), Semantic Information Pro-


cessing, MIT Press: Boston (MA), 1958, pp. 403 – 418.


55. B. Meyer, ‘‘On formalism in specifications,’’ IEEE Software, vol. 2, no. 1, pp. 6 – 26, 1985.


56. Y. Moses and M. Tennenholtz, ‘‘Artificial social systems,’’ Comput. Artif. Intell. vol. 14, no. 3,


pp. 533 – 562, 1995.


57. P. Noriega, Agent-mediated Auctions: The Fishmarket Metaphor, Barcelona (E): Ph.D Thesis, Uni-


versitat Autonoma de Barcelona, 1997.


58. P. Noriega and C. Sierra, ‘‘Electronic institutions: future trends and challenges,’’ in Cooperative


Information Agents VI, vol. 2246 of LNCS, Springer-Verlag, 2002, pp. 14 – 17.


59. J. Odell, H. V. D. Parunak, and C. Bock, ‘‘Representing agent interaction protocols in UML,’’ in


Proceedings of the 1st International Workshop on Agent-Oriented Software Engineering, vol. 1957 of


LNCS, Springer-Verlag, 2001, pp. 121 – 140.


60. OMG, ‘‘CORBA 2.1 Specifications,’’ 1997. www.corba.org.


61. A. Omicini, ‘‘On the semantics of tuple-based coordination models,’’ in Proceedings of the 1999


ACM Symposium on Applied Computing, ACM: San Antonio (TX), 1999, pp. 175 – 182.


62. A. Omicini, ‘‘SODA: Societies and infrastructures in the analysis and design of agent-based sys-


tems,’’ in P. Ciancarini and M. J. Wooldridge (eds.), Agent-Oriented Software Engineering, vol. 1957


of LNCS, Springer-Verlag. 1st International Workshop (AOSE 2000), Limerick, Ireland, 10 June


2000. Revised Papers, 2001, pp. 185 – 193.


63. A. Omicini, S. Ossowski, and A. Ricci, ‘‘Coordination infrastructures in the engineering of multi-


agent systems,’’ in Methodologies and Software Engineering for Agent Systems, Kluwer: New York


(NY), 2004.


64. A. Omicini and A. Ricci, ‘‘Reasoning about organisation: shaping the infrastructure,’’ AI*IA Not-


izie, vol. XVI, no. 2, pp. 7 – 16, 2003.


65. A. Omicini and F. Zambonelli, ‘‘Coordination for Internet application development,’’ Auton. Agents


Multi-Agent Syst., vol. 2, no. 3, pp. 251 – 269, 1999.


66. D. Parnas, ‘‘Predicate logic for software engineering,’’ IEEE Trans. Software Eng., vol. 19, no. 9,


pp. 856 – 862, 1993.


67. H. V. D. Parunak, ‘‘Go to the ant: Engineering principles from natural agent systems,’’ Ann. Oper.


Res., vol. 75, pp. 69 – 101, 1997.


CHALLENGES AND RESEARCH DIRECTIONS 281







68. H. V. D. Parunak, ‘‘Personal Communication,’’ 2003.


69. H. V. D Parunak and S. Brueckner, ‘‘Entropy and self-organization, in multi-agent systems,’’ in


Proceedings of the 5th International Conference on Autonomous Agents, ACM Press: Montreal (CA),


2001, pp. 124 – 130.


70. H. V. D. Parunak and J. Odell, ‘‘Representing social structures in UML,’’ in Proceedings of the 5th


International Conference on Autonomous Agents, ACM Press, 2001, pp. 100 – 101.


71. F. Bergenti and A. Poggi, ‘‘Agent-oriented software construction with UML,’’ in The Handbook of


Software Engineering and Knowledge Engineering - volume 2 - Emerging Technologies, World Sci-


entific: Singapore, 2002, pp. 757 – 769.


72. A. Ricci, A. Omicini, and E. Denti, ‘‘Virtual enterprises and workflow management as agent


coordination issues,’’ Int. J. Coop. Inform. Syst., vol. 11, no. 3/4, pp. 355 – 379, 2002. Special Issue:


Cooperative Information Agents – Best Papers of CIA 2001.


73. M. Ripeani, A. Iamnitchi, and I. Foster, ‘‘Mapping the gnutella network,’’ IEEE Internet Comput.,


vol. 6, no. 1, pp. 50 – 57, 2002.


74. A. Roli, M. Mamei, and F. Zambonelli, ‘‘What can cellular automata tell us about the behaviour of


large-scale agent systems,’’ in Software Engineering for Large Scale Agent Systems, vol. 2603 of


LNCS, Springer-Verlag, 2003.


75. A. Rowstron and P. Druschel, ‘‘Pastry: Scalable, decentralized object location and routing for large-


scale peer-to-peer systems,’’ in Proceedings of the 18th IFIP/ACM Conference on Distributed Systems


Platforms, Heidelberg (D), 2001, pp. 329 – 250.


76. S. Russel and P. Norvig, Artificial Intelligence: A Modern Approach, Prentice Hall/Pearson Educa-


tion International: Englewood Cliffs (NJ), (2nd Edn), 2003.


77. SEFM 2003, ‘‘1st international conference software engineering and formal methods,’’ Brisbane,


Australia, 2003.


78. M. Shaw, R. DeLine, D. Klein, T. Ross, D. Young, and G. Zelesnik, ‘‘Abstractions for software


architecture and tools to support them,’’ IEEE Transactions on Software Engineering, vol. 21, no. 4,


pp. 314 – 335, 1995.


79. M. Shaw and D. Garlan, Software Architectures: Perspectives on an Emerging Discipline, Prentice


Hall, Englewood Cliffs (NJ): Englewood Cliffs (NJ), 1996.


80. O. Shehory and A. Sturm, ‘‘Evaluation of modeling techniques for agent-based systems,’’ in Pro-


ceedings of the 5th International Conference on Autonomous Agents, ACM Press: Montreal (CA),


2001.


81. W. Shen and D. Norrie, ‘‘Agent-based systems for intelligent manufacturing: a state of the art


survey,’’ Int. J. Knowl. Inform. Syst., vol. 1, no. 2, pp. 129 – 156, 1999.


82. W. Shen, B. Salemi, and P. Will, ‘‘Hormone-inspired adaptive communication and distributed


control for CONRO self-reconfigurable robots,’’ IEEE Trans. Robot. Auto., vol. 18, no. 5, pp. 1 – 12,


2002.


83. T. Shinbrot and F. J. Muzzio, ‘‘From noise to order,’’ Nature, vol. 410, pp. 251 – 258, 2002.


84. Y. Shoham and M. Tennenholtz, ‘‘Social laws for artificial agent societies: Off-line design,’’ Artif.


Intell., vol. 73, 1995.


85. J. S. Sichman, R. Conte, C. Castelfranchi, and Y. Demazeau, ‘‘A social reasoning mechanism based


on dependence networks,’’ in Proceedings of the 12nd European Conference on Artificial Intelligence,


Amsterdam (NL), 1994, pp. 188 – 192.


86. C. Sierra, J. Sabater, J. Agustı́, and P. Garcia, ‘‘Evolutionary programming in SADDE,’’ in Pro-


ceedings of the 1st International Joint Conference on Autonomous Agents and Multiagent Systems,


ACM Press: Bologna (I), 2002, pp. 1270 – 1271.


87. A. Sturm, D. Dori, and O. Shehory, ‘‘Single model method for specifying multiagent systems,’’ in


Proceedings of the 2nd International Conference on Autonomous Agents and Multiagent Systems,


ACM Press: Melbourne (AU), 2003, pp. 121 – 128.


88. D. Tennenhouse, ‘‘Embedding the Internet: proactive computing,’’ Commun. ACM, vol. 43, no. 5,


pp. 36 – 42, 2000.


89. C. Teuscher and M. Sipper,‘‘Hypercomputation: Hype or computation?,’’ Commun. ACM, vol. 45,


no. 8, pp. 23 – 24, 2002.


90. R. Trappl, P. Petta, and S. Payr, Emotions in Humans and Artifacts, MIT Press, 2003.


ZAMBONELLI AND OMICINI282







91. A. Tripathi, T. Ahmed, R. Kumar, and S. Jaman, ‘‘A coordination model for secure collaboration,’’


in Process Coordination and Ubiquitous Computing, CRC Press, 2002, pp. 1 – 20.


92. TRUST 2003, ‘‘4th International Workshop on Trust in Open Agent Societies,’’ Melbourne (AU),


2003.


93. W. van der Hoek and M. Wooldridge, ‘‘Towards a logic of rational agency,’’ Logic J. IGPL, vol. 11,


no. 2, pp. 135 – 160, 2003.


94. M. Viroli and A. Omicini, ‘‘Coordination as a service: ontological and formal foundation,’’ Electron


Notes Theor. Comput. Sci., vol. 68, no. 3, 2003.


95. P. Wegner, ‘‘Why interaction is more powerful than computing,’’ Commun. ACM, vol. 40, no. 5,


pp. 80 – 91, 1997.


96. M. Wood, S. A. DeLoach, and C. Sparkman, ‘‘Multiagent system engineering’’, Int. J. Software Eng.


Knowl. Eng., vol. 11, no. 3, pp. 231 – 258, 2001.


97. M. Wooldridge, ‘‘Agent-based software engineering,’’ IEE Proc. Software Eng., vol. 144, no. 1,


pp. 26 – 37, 1997.


98. M. Wooldridge, N. R. Jennings, and D. Kinny, ‘‘The Gaia methodology for agent-oriented analysis


and design,’’ Auton. Agents Multi-Agent Sys., vol. 3, no. 3, pp. 285 – 312, 2000.


99. T. Wootton, ‘‘Local interactions predict large-scale patterns in empirically derived cellular auto-


mata’’, Nature, vol. 413, pp. 841 – 844, 2001.


100. B. Yu and M. P. Singh, ‘‘Searching social networks,’’ in proceedings of the 2nd International Joint


Conference on Autonomous Agents andMultiagent Systems, ACMPress: Melbourne (AU), pp. 65 – 72.


101. F. Zambonelli, ‘‘Methodologies and software engineering for agent systems: SIG introduction and


report of first meeting,’’ Agentlink News, vol. 8, pp. 18 – 19, 2001.


102. F. Zambonelli, ‘‘SIG report: methodologies and software engineering for agent systems,’’ Agentlink


News, vol. 13, pp. 16 – 17, 2003.


103. F. Zambonelli, F. Bergenti, and G. D. Marzo, ‘‘SIG report: methodologies and software engineering


for agent systems,’’ Agentlink News, vol. 9, pp. 23 – 25, 2002.


104. F. Zambonelli, N. Jennings, A. Omicini, and M. Wooldridge, ‘‘Agent-oriented software engineering


for internet applications,’’ in Coordination of Internet Agents: Models, Technologies, and Applica-


tions, Springer-Verlag: Berlin (D), 2001a, pp. 326 – 346.


105. F. Zambonelli, N. Jennings, and M. Wooldridge, ‘‘Organizational abstractions for the analysis and


design of multi-agent systems,’’ in Proceeding of the 1st International Workshop on Agent-Oriented


Software Engineering, vol. 1957 of LNCS, Springer-Verlag, 2001b, pp. 253 – 252.


106. F. Zambonelli, N. Jennings, and M. Wooldridge, ‘‘Developing multiagent systems: The Gaia


methodology,’’ ACM Trans. Software Eng. Meth., vol. 12, no. 3, pp.417 – 470, 2003.


107. F. Zambonelli and H. V. D. Parunak, ‘‘Toward a change of paradigm in computer science and


software engineering: A synthesis,’’ Knowl. Eng. Rev., 18, 2004.


CHALLENGES AND RESEARCH DIRECTIONS 283






