
Exploiting DOLCE, SUMO-OWL, and OpenCyc
to Boost the Ontology Matching Process

Technical Report DISI-TR-08-08, Revised Version,
Computer Science Department,

DISI, Università degli Studi di Genova, Italy, 2008

Viviana Mascardi
DISI, Università degli Studi di Genova,

Via Dodecaneso 35, 16146, Genova, Italy,
E-mail: viviana.mascardi@unige.it

Angela Locoro
DIBE, Università degli Studi di Genova,

Via All’Opera Pia 11a, 16145 Genova, Italy,
E-mail: angela.locoro@unige.it

Paolo Rosso
Natural Language Engineering Lab., DSIC,

Universidad Politécnica de Valencia,
Camino de Vera s/n, 46022, Valencia Spain,

E-mail: prosso@dsic.upv.es

Abstract

This technical report describes a set of algorithms for exploiting upper ontolo-
gies (DOLCE, SUMO-OWL, and OpenCyc) as bridges in the ontology matching
process, and discusses experimental results. The experiments demonstrate that
when our “structural matching method via upper ontology” uses an upper ontol-
ogy with a sufficient number of entities (OpenCyc, SUMO-OWL), the recall is
significantly improved and the precision is kept (at least with OpenCyc). Instead,
the “non structural matching method” via OpenCyc and via SUMO-OWL gives a
precision greater than the one obtained with the “non structural direct alignment”,
and a comparable recall. The “mixed method” that combines the results of both
structural direct alignment and structural alignment via upper ontologies, gives the
best average recall and F-measure.

1



1 Introduction
“Ontology matching” is the process of finding correspondences between entities be-
longing to two or more ontologies. The output of this process, named “ontology align-
ment”, may be computed by using different techniques and is used to cope with the
semantic and syntactic heterogeneity of information represented by means of ontolo-
gies, in order to identify couples of entities with related meaning, belonging to two
different ontologies.

An upper ontology is “an attempt to create an ontology which describes very gen-
eral concepts that are the same across all domains” [15]. Few upper ontologies exist:
BFO [7], Cyc [9], DOLCE [6], GFO [8], PROTON [3], Sowa’s ontology [12], and
SUMO [10]. They vary in dimension, ranging from the 30 classes of Sowa’s ontology
to the 300,000 of Cyc, in representation language (OWL [14], KIF [1], First Order
Logic), in structure (monolithic vs. decomposed into modules), and in developed ap-
plications. Nevertheless, all of them describe general concepts (also named “classes”)
and share the aim to have a large number of ontologies accessible under them. Some
of them, such as Cyc and SUMO, also provide domain-dependent sub-ontologies inte-
grated with the upper one.

This technical report describes a set of algorithms for exploiting upper ontologies
as bridges in the ontology matching process and discusses experimental results. We
have chosen to run our experiments with DOLCE, SUMO-OWL (a restricted version
of SUMO translated into OWL), and OpenCyc (the open version of Cyc), because
they are the largest and most used upper ontologies. The experiments demonstrate that
when our “structural matching method via upper ontology” uses an upper ontology
with a sufficient number of entities (OpenCyc, SUMO-OWL), the recall is significantly
improved and the precision is kept (at least with OpenCyc). Instead, the “non structural
matching method” via OpenCyc and via SUMO-OWL gives a precision greater than
the one obtained with the “non structural direct alignment”, and a comparable recall.
The “mixed method” that combines the results of both structural direct alignment and
structural alignment via upper ontologies, gives the best average recall and F-measure.

The report is organised in the following way: Section 2 describes the algorithms we
have designed for implementing the ontology matching via upper ontologies, Section
3 describes the tests we have carried out and their results, and Section 4 concludes.

2 Our Algorithms for Ontology Matching via Upper
Ontologies

In order to use upper ontologies as bridges in the ontology matching process, we im-
plemented many algorithms.

Uo_match is based on three functions: aggregate(a, a′), parallel_match(o, o′,
res, par), and merge(a, a′), where o and o′ are ontologies, a and a′ are alignments,
res are external resources, and par are parameters. All the three functions return an
alignment.

Aggregate(a, a′) produces the alignment obtained by making the union of all the
correspondences in a and a′, and choosing the correspondence with highest confidence

2



measure, in case the same correspondence1 belongs to both a and a′.
Parallel_match(o, o′, res, par) computes an alignment between o and o′ by ap-

plying substring, n-gram [2], SMOA [13], and language-based methods in parallel, as
suggested in [5, Chap. 5.1], and aggregating them. The only external resource we use is
WordNet (res = {WordNet}), which is given in input to the language-based method,
and the only parameter is a configurable threshold in [0, 1] used for discarding corre-
spondences that are not relevant, since their confidence is lower than it (par = {th}).
In order to simulate the parallelism of the aggregation process, aggregate is initially
called on the first two alignments obtained by running the first two matching algo-
rithms; the output is then aggregated with the third alignment, and so on.

Merge(a, a′) computes the alignment a′′ in such a way that a correspondence
〈id, c, c′, r, conf〉 belongs to a′′ iff ∃ cu such that 〈id1, c, cu, r, conf1〉 ∈ a, 〈id2, c

′,
cu, r, conf2〉 ∈ a′, and conf = conf1 ∗ conf2. In our algorithm the inputs of merge,
a and a′, are alignments between o and the upper ontology u, and o′ and u, respec-
tively. Thus, the second concept cu in the correspondences belongs to u. If both c ∈ o
and c′ ∈ o′ correspond to the same concept cu ∈ u, then c and c′ are related via r with
confidence conf1 ∗ conf2. The choice of conf1 ∗ conf2 as confidence of the resulting
alignment ensures that the confidence remains in [0, 1], and that initial high confidences
lead to a resulting confidence which is still high, whereas at least one low confidence
leads to a low resulting confidence.
The uo_match(o, o′, u, res, par) function just calls

merge
(parallel_match(o, u, res, par),
parallel_match(o′, u, res, par))

with res = {WordNet} and par = {th}. The th parameter has been set to 0.5 in our
experiments, and u is an upper ontology.

Besides the parallel_match function, we have implemented the structural_paral-
lel _match function that adds to the output alignment those correspondences 〈id, c, c′, r,
conf〉 such that

• either c is identical to one of c′’s super-concepts (or vice versa, c′ is identical to
one of the super-concepts of c),

• or c and c′ have two super-concepts, say s ∈ o and s′ ∈ o′ respectively, identical.

In a similar way, we have implemented a structural_merge function that merges
two alignments considering correspondences involving super-concepts into account.
We have prefixed the names of these functions with structural because they look at
the structure of the matched ontologies.

Structural_merge takes a decay factor df ∈ [0, 1], used to measure the “confi-
dence decay” as we consider relations that involve super-concepts. In our experiments,
df has been set to 0.5. It also takes the upper ontology u used as the reference ontol-
ogy for computing a and a′ as input, since it must be navigated in order to find the
super-concepts of a given concept.

1The “same” apart from the correspondence identifier, which usually will not be the same.

3



Structural_merge(a, a′, u, df) computes the alignment a′′ between o and o′ via
u in such a way that a correspondence 〈id, c, c′, r, conf〉 belongs to a′′ if either

• ∃ cu such that 〈id1, c, cu, r, conf1〉 ∈ a, 〈id2, c
′, cu, r, conf2〉 ∈ a′, and conf =

conf1 ∗ conf2, or

• ∃ cu, c′
u such that 〈id1, c, cu, r, conf1〉 ∈ a, 〈id2, c

′, c′
u, r, conf2〉 ∈ a′, c′

u is a
super-concept of cu in u, and conf = conf1 ∗ conf2 ∗ df (note the confidence
decay multiplicative factor), and vice versa.

• ∃ cu, c′
u such that 〈id1, c, cu, r, conf1〉 ∈ a, 〈id2, c

′, c′
u, r, conf2〉 ∈ a′, cu and

c′
u have a common super-concept in u, and conf = conf1 ∗ conf2 ∗ df2 (note

the power factor applied to the confidence decay).

The structural_uo_match function is defined as

structural_merge(
parallel_match(o, u,WordNet, th),
parallel_match(o′, u,WordNet, th),
{u}, {df}).

The structural_uo_match uses the parallel_match function for computing the
alignments, and not the structural_parallel_match one. The exploitation of the
structure is demanded to the merging stage. The reason why we have also defined
a structural_parallel_match function is that we want to compare the matching via
upper ontology results and the direct match results in the case where both functions
exploit structural information, and in the case where both do not. Thus, in our experi-
ments, we have compared the results of uo_match with those of parallel_match, and
the results of structural_uo_match with those of structural_parallel_match.

For gaining in efficiency by reusing the results obtained by running uo_match,
structural_uo_match has been implemented in the following way:

• it creates an alignment between o and o′ via u by looking for mappings between

– concepts belonging to o and super-concepts of concepts belonging o′;

– vice versa, concepts belonging to o′ and super-concepts of concepts be-
longing o;

– super-concepts of concepts in o and super-concepts of concepts in o′.

• it aggregates the alignment obtained with the uo_match, and the alignment ob-
tained as above.

A mixed_match algorithm obtained by aggregating the alignment output by the
structural_parallel_match algorithm (direct matching exploiting structure), and the
one output by the structural_uo_match algorithm (matching via upper ontology, ex-
ploiting structure), has also been implemented.

Our algorithms accept input ontologies expressed in OWL. For their implementa-
tion we have extended the Align API version 3.1, delivered on February, the 5th, 2008,

4



and available form http://alignapi.gforge.inria.fr/ under GNU Lesser Gen-
eral Public License. Among the methods offered by this API, we have used:

• StringDistAlignment, that provides the subStringDistance, ngramDis-
tance, and smoaDistance string metric methods.

• JWNLAlignment, that computes a substring distance between the entity names
of the first ontology and the entity names of the second ontology expanded with
WordNet 2.0 synsets.

We have implemented a SubSupClassAlignment method that finds correspondences
between c ∈ o and c′ ∈ o′ by looking at string equality between one of them, and
one super-concept of the other one, or between super-concepts of both. We have also
implemented the methods for alignment aggregation and merge.

We created reference alignments that only match concepts, and we discarded corre-
spondences between individuals and between properties from the alignments computed
by our algorithms. The reason of our choice is that finding correspondences between
properties in an accurate way would require to take their domain and range into ac-
count. The Align API version 3.1 that we used for computing similarity measures can-
not take domain, range, and class into account in the correct way. This also explains our
choice of discarding property restrictions when exploring the sub- and super-classes,
and considering only subClassOf relations with simple entities used as their property
values.

In order to discard property restrictions when exploring the sub- and super-classes,
we pre-processed the ontologies given in input to our algorithms, and eliminated prop-
erty restrictions. Also, the easiest and most efficient way to discard correspondences
involving properties and individuals from the alignments computed by our algorithms,
was to pre-process the input ontologies and eliminate properties and individuals from
them. We used the JENA OWL parser, http://jena.sourceforge.net/, for the
pre-processing activities.

3 Experimentation
As indicators for measuring how good an alignment is, we have used precision, recall
and F-measure adapted for ontology alignment evaluation [4].

The methodology that we have followed for carrying out our tests is aimed at ensur-
ing the reproducibility of our experiments by reusing existing ontologies and existing
APIs. It may be summarised in the following steps:

1. By exploiting the SWOOGLE Semantic Web Search Engine, http://swoogle.
umbc.edu/, we have chosen 17 ontologies represented in OWL and available
online. Only one of them has been reduced by hand to make it more tractable.
The other 16 ones are exactly those that can be downloaded from the URLs listed
in Table 1, and that we last accessed on February, 25th, 2008.

2. We have chosen 3 upper ontologies to use in our tests: SUMO-OWL, Cyc (in its
open version, OpenCyc) and DOLCE. We have downloaded the OWL versions

5



of OpenCyc and DOLCE from http://www.cyc.com/2004/06/04/cyc and
http://www.loa-cnr.it/ontologies/DLP_397.owl respectively. Our last
access dates back to February, 25th, 2008. We have used an OWL transla-
tion of the SUO-KIF implementation of SUMO available from http://www.

ontologyportal.org. The translation was performed using Sigma [11]. It
contains restricted versions of SUMO, MILO, and all the domain ontologies but
the terrorism and airport ones. SUMO-OWL is an order of magnitude smaller
than the original SUMO represented in KIF, if one just counts terms, and it is
even smaller if one looks at all the axioms necessarily lost in any translation
from KIF to OWL. Our experiments do not involve the original SUMO ontol-
ogy, but a lossy translation of it.

3. Using the JENA OWL parser, we have pre-processed all the 17 chosen ontolo-
gies and the 3 upper ontologies, and we have eliminated property restrictions,
individuals, and properties.

4. We have designed the 10 tests to run, each one consisting of two ontologies
to match and we have created the reference alignment for each test. All the
reference alignments are available at http://www.disi.unige.it/person/
MascardiV/Software/OntologyMatchingViaUpperOntology.html.

5. For each test, we have run the following algorithms:

• direct alignment without exploiting structure;

• direct alignment exploiting structure;

• alignment via SUMO-OWL, OpenCyc, and DOLCE without exploiting
structure;

• alignment via SUMO-OWL, OpenCyc, and DOLCE exploiting structure;

• mixed alignment obtained by aggregating the structural alignment via SUMO-
OWL, OpenCyc, and DOLCE and the structural direct one.

6. For each test, and for each algorithm run within the test, we have computed:

• number of correspondences found by the algorithm;

• number of correct correspondences found by the algorithm;

• precision;

• recall;

• F-measure.

We exploited the library of evaluators provided by the Align API 3.1 for com-
puting them.

7. We have aggregated the obtained results by identifying, for each test, the al-
gorithms that allow us to get the best precision, the best recall, and the best
F-measure, and by computing the average advantage of using upper ontologies.

6



Table 1 provides a summary of the ontologies used in our tests, including the up-
per ones. C stands for the total number of concepts, O stands for object properties,
namely properties that link individuals to individuals, D stands for data properties,
namely properties that link individuals to data values, and I stands for the number of
individuals, or instances of the classes.

Table 2 describes the algorithms that allowed us to obtain the best precision, the
best recall, and the best F-measure for each test. Dir stands for “direct alignment”, NS
means “no structure”, S means “with structure”, and M means “mixed”. Sometimes,
different algorithms led to the same result. In those cases we listed them all.

In seven tests out of ten, the best precision was obtained by methods that exploit
non structural matching via upper ontologies. The best recall is always obtained by the
mixed method. In two tests, the same best recall was obtained by the exploitation of
structural matching via upper ontologies. The best F-measure is always obtained by
methods that exploit upper ontologies. In only one test, the same best F-measure was
obtained by direct matching methods too.

The exploitation of OpenCyc ensures a very good precision, while good recall and
F-measures can be obtained by both OpenCyc and SUMO-OWL in a comparable num-
ber of tests.

Table 3 synthesises the average advantage in using upper ontologies vs. not using
them. Each column refers to the comparison of the results obtained by using a given
upper ontology (first element of the column’s name) and a given method (second ele-
ment of the column’s name: again, NS means “no structure”, S means “with structure”,
and M means “mixed”), and those obtained by performing the direct alignment with
the same method (with or without structure respectively).

For example, cell ((DOLCE, NS), Precision) reports the average difference in
precision between aligning ontologies using DOLCE without exploiting the ontology
structure, and performing the direct alignment without exploiting the structure. If we
identify the precision obtained using DOLCE without structure in experiment i with
p(DOLCE, NoStruct, i), and the precision obtained by performing the direct align-
ment without structure in experiment i with p(Direct, NoStruct, i), then

(DOLCE,NS,Prec.) =
Σ10

i=1(p(DOLCE,NoStruct, i)− p(Direct,NoStruct, i))
10

When the “mixed method” is used, we have compared its results with those of the
direct alignment that obtains the best F-measure on that test.

4 Conclusions
In this paper we described a set of algorithms for exploiting upper ontologies as bridges
in the ontology matching process, and we discussed the results of our experiments.
These experiments have been carried out following a rigorous methodology that makes
them easily reproducible: the three upper ontologies that we chose, SUMO-OWL,

7



OpenCyc and DOLCE, are available on the web, as well as the seventeen ontologies
used as inputs for our ten tests, and the ten reference alignment we built by hand; our
alignment algorithms extend an existing free API; all the assumptions and simplifica-
tions we made are clearly stated and motivated.

The results of our tests may be summarised in the following way:

1. Very small upper ontologies like DOLCE do not possess enough information to
properly act as bridges; their usage leads to very poor results.

2. OpenCyc and SUMO-OWL are large and detailed enough and give comparable
results. OpenCyc performs better than SUMO-OWL, but algorithms that use it
are less efficient than those that use SUMO-OWL, due to its dimensions.

3. If the usage scenario prevents the developer from performing a direct alignment,
exploiting structural matching via upper ontologies is a valid alternative for im-
proving the recall (with both SUMO-OWL and OpenCyc), keeping the same pre-
cision (with OpenCyc). Instead, if precision is more important than recall, the
best matching method is the non structural one via OpenCyc and SUMO-OWL.

4. If the usage scenario allows the application developer to exploit both direct align-
ment and alignment via upper ontologies, the mixed method always gives the
best recall, even if with a non negligible loss in precision. However, if we agree
that F-measure synthesises the good features of the algorithm, mixed methods
via SUMO-OWL and OpenCyc have the highest average F-measure, and thus
should be considered the best ones.

It must be noted that our results do not apply to the original SUMO upper ontology
implemented in KIF, but to the SUMO-OWL version obtained by lossy translation. We
could not compare the original SUMO directly with DOLCE and OpenCyc because
we needed all input ontologies represented in the same language for running our ex-
periments. Since SUMO in KIF is definitely larger than SUMO-OWL, it is likely that
it would have performed much better. A similar consideration holds for the use of
OpenCyc in our experiments: the full, commercial version of Cyc would have proba-
bly given better results. We preferred OpenCyc because it is free and allows everybody
to reproduce our experiments.

Acknowledgements
We are grateful to A. Pease that provided us with the translation of SUMO into SUMO-
OWL.
This work has been partly supported by the “Iniziativa Software” CINI-FinMeccanica
project.

References
[1] American National Standard. KIF Knowledge Interchange Format – draft pro-

posed American National Standard (dpANS) NCITS.T2/98-004, 1998.

8



[2] E. Brill, S. Dumais, and M. Banko. An analysis of the askmsr question-answering
system. In Conference on Empirical Methods in Natural Language Processing,
EMNLP 2002, Proceedings, 2002.

[3] N. Casellas, M. Blázquez, A. Kiryakov, P. Casanovas, M. Poblet, and R. Ben-
jamins. OPJK into PROTON: Legal domain ontology integration into an upper-
level ontology. In R. Meersman and et al., editors, WORM 2005, 3rd International
Workshop on Regulatory Ontologies, Proceedings, volume 3762 of Lecture Notes
in Computer Science, pages 846–855. Springer, 2005.

[4] H. H. Do, S. Melnik, and E. Rahm. Comparison of schema matching evalua-
tions. In A. B. Chaudhri, M. Jeckle, E. Rahm, and R. Unland, editors, Web,
Web-Services, and Database Systems, NODe 2002 Web and Database-Related
Workshops, 2002, Revised Papers, volume 2593 of Lecture Notes in Computer
Science, pages 221–237. Springer, 2002.

[5] J. Euzenat and P. Shvaiko. Ontology Matching. Springer, 2007.

[6] A. Gangemi, N. Guarino, C. Masolo, A. Oltramari, and L. Schneider. Sweeten-
ing ontologies with DOLCE. In A. Gómez-Pérez and V. R. Benjamins, editors,
Knowledge Engineering and Knowledge Management. Ontologies and the Se-
mantic Web, 13th International Conference, EKAW, Proceedings, volume 2473 of
Lecture Notes in Computer Science, pages 166–181. Springer, 2002.

[7] P. Grenon, B. Smith, and L. Goldberg. Biodynamic ontology: Applying BFO
in the biomedical domain. In D. M. Pisanelli, editor, Ontologies in Medicine,
volume 102 of Studies in Health Technology and Informatics, pages 20–38. IOS
Press, 2004.

[8] H. Herre, B. Heller, P. Burek, R. Hoehndorf, F. Loebe, and H. Michalek. General
formal ontology (GFO): A foundational ontology integrating objects and pro-
cesses. part i: Basic principles. Technical report, Research Group Ontologies
in Medicine (Onto-Med), University of Leipzig, 2006. Version 1.0, Onto-Med
Report Nr. 8, 01.07.2006.

[9] D. Lenat and R. Guha. Building large knowledge-based systems. Addison Wesley,
1990.

[10] I. Niles and A. Pease. Towards a standard upper ontology. In C. Welty and
B. Smith, editors, FOIS 2001, 2nd International Conference on Formal Ontology
in Information Systems, Proceedings, pages 2–9. ACM Press, 2001.

[11] A. Pease. The Sigma ontology development environment. In F. Giunchiglia,
A. Gomez-Perez, A. Pease, H. Stuckenschmidt, Y. Sure, and S. Willmott, edi-
tors, Workshop on Ontology and Distributed Systems, ODS 2003, Proceedings,
volume 71 of CEUR-WS, 2003.

[12] J. F. Sowa. Knowledge Representation: Logical, Philosophical, and Computa-
tional Foundations. Brooks Cole Publishing, 1999.

9



[13] G. Stoilos, G. B. Stamou, and S. D. Kollias. A string metric for ontology align-
ment. In Y. Gil, E. Motta, V. R. Benjamins, and M. A. Musen, editors, 4th In-
ternational Semantic Web Conference, ISWC 2005, Proceedings, volume 3729 of
Lecture Notes in Computer Science, pages 624–637. Springer, 2005.

[14] W3C. OWL Web Ontology Language Overview – W3C Recommendation 10
February 2004 , 2004.

[15] Wikipedia. Upper ontology – Wikipedia, the Free Encyclopedia, 2008. [Online;
accessed 30-March-2008].

10



URL C O D I

SUMO-
OWL

SUO-KIF version available from www.
ontologyportal.org; the OWL transla-
tion performed with Sigma is not available on the
Web

4,393 757 2 4,412

OpenCyc www.cyc.com/2004/06/04/cyc 26,965 4,854 1 62,469

DOLCE www.loa-cnr.it/ontologies/DLP_
397.owl

242 322 4 12

Agent 212.119.9.180/Ontologies/0.2/
agent.owl

130 75 38 139

Bibtex oaei.ontologymatching.org/2004/
Contest/304/onto.rdf

15 0 40 2

Biosphere sweet.jpl.nasa.gov/ontology/
biosphere.owl

88 0 0 0

Ecology wow.sfsu.edu/ontology/rich/
EcologicalConcepts.owl

157 35 2 80

Food silla.dongguk.ac.kr/jena-owl1/
food

65 8 0 57

Geofile www.daml.org/2001/02/geofile/
geofile-ont.daml

89 21 4 131

HL7_RBAC
lsdis.cs.uga.edu/projects/
meteor-s/wsdl-s/ontologies/HL7_
RBAC.owl

60 24 10 16

Ka protege.cim3.net/file/pub/
ontologies/ka/ka.owl

96 60 32 0

MPEG7 dmag.upf.es/ontologies/2003/03/
MPEG7Genres.rdfs

349 1 0 0

Restaurant guru-games.org/ontologies/
restaurant.owl

164 27 29 32

Resume

statistic.gunadarma.
ac.id/research/
WorkGroupInformationSystem/
DownLoad/onto_colection/resume.
owl

167 27 35 46

Space 212.119.9.180/Ontologies/0.3/
space.owl

165 17 4 0

Subject www.library.yale.edu/
ontologies/subject.owl

171 0 0 0

Top-bio www.co-ode.org/ontologies/
basic-bio/top-bio.owl

65 65 2 1

Travel
lsdis.cs.uga.edu/projects/
meteor-s/downloads/Lumina/
ontology/travelontology.owl

84 100 112 0

Vacation www.guru-games.org/ontologies/
vacation.owl

32 10 0 324

Vertebrate

www.co-ode.org/
ontologies/basic-bio/
basic-vertebrate-gross-anatomy.
owl *

19 0 0 0

Table 1: Matched Ontologies; * Vertebrate has been reduced by hand

11



o o’ Best Precision Best Recall Best F-measure
TEST 1 Ka Bibtex OpenCyc, NS SUMO-OWL, M SUMO-OWL, S
TEST 2 Biosphere Top-bio Dir, NS; Dir, S SUMO-OWL, M SUMO-OWL, M

TEST 3 Space Geofile OpenCyc, NS SUMO-OWL, M;
OpenCyc, M OpenCyc, M

TEST 4 Restaurant Food OpenCyc, NS OpenCyc, S; Open-
Cyc, M

OpenCyc, S; OpenCyc,
M

TEST 5 MPEG7 Subject OpenCyc, NS OpenCyc, M;
DOLCE, M

SUMO-OWL, NS;
OpenCyc, NS

TEST 6 Travel Vacation Dir, NS; Dir, S SUMO-OWL, M SUMO-OWL, M

TEST 7 Resume Agent SUMO-OWL,
NS OpenCyc, M OpenCyc, M

TEST 8 Resume HL7_RBAC OpenCyc, NS SUMO-OWL, M
SUMO-OWL, NS;
OpenCyc, NS; Open-
Cyc, S

TEST 9 Ecology Top-bio Dir, NS; Dir, S SUMO-OWL, M
Dir, NS; Dir, S;
SUMO-OWL, M;
OpenCyc, M

TEST 10 Vertebrate Top-bio OpenCyc, NS OpenCyc, S; Open-
Cyc, M OpenCyc, S

Table 2: Algorithm that gives the best precision, recall and F-measure in each test

SUMO-
OWL,
NS

OpenCyc,
NS

DOLCE,
NS

SUMO-
OWL,
S

OpenCyc,
S

DOLCE,
S

SUMO-
OWL,
M

OpenCyc,
M

DOLCE,
M

Prec. 0.097 0.157 -0.145 -0.021 -0.004 -0.162 -0.089 -0.070 -0.158
Rec. -0.013 -0.019 -0.027 0.028 0.030 -0.031 0.066 0.070 0.020
F-m. -0.011 -0.018 -0.049 0.000 0.014 -0.053 0.016 0.024 -0.023

Table 3: Average advantage in using upper ontologies

12


