
Reasoning About Agents’ Interaction Protocols
Inside DCaseLP

M. Baldoni1, C. Baroglio1, I. Gungui2, A. Martelli1,
M. Martelli2, V. Mascardi2, V. Patti1, and C. Schifanella1

1 Dipartimento di Informatica,
Università degli Studi di Torino, Italy

{baldoni, baroglio, mrt, patti, schi}@di.unito.it
2 Dipartimento di Informatica e Scienze dell’Informazione,

Università degli Studi di Genova, Italy
1995s133@educ.disi.unige.it, {martelli, mascardi}@disi.unige.it

Abstract. Engineering systems of heterogeneous agents is a difficult
task; one of the ways for achieving the successful industrial deployment
of agent technology is the development of engineering tools that support
the developer in all the steps of design and implementation. In this work
we focus on the problem of supporting the design of agent interaction
protocols by carrying out a methodological integration of the MAS pro-
totyping environment DCaseLP with the agent programming language
DyLOG for reasoning about action and change.

1 Introduction

Multiagent Systems (MASs) involve heterogeneous components which have dif-
ferent ways of representing their knowledge of the world, themselves, and other
agents, and also adopt different mechanisms for reasoning. Despite heterogene-
ity, agents need to interact and exchange information in order to cooperate or
compete not only for the control of shared resources but also to achieve their
aims; this interaction may follow sophisticated communication protocols.

For these reasons and due to the complexity of agents’ behavior, MASs are
difficult to be correctly and efficiently engineered; even developing a working
prototype may require a long time and a lot of effort. In this paper we present
an ongoing research aimed at developing a “multi-language” environment for en-
gineering systems of heterogeneous agents. This environment will allow the pro-
totype developer to specify, verify and implement different aspects of the MAS
and different agents inside the MAS, choosing the most appropriate language
from a given set. In particular, the discussion will be focused on the advan-
tages of integrating an agent programming language for reasoning about actions
and change (using the language DyLOG [9, 7]) into the DCaseLP [4, 21, 29] MAS
prototyping environment.

The development of a prototype system of heterogeneous agents can be car-
ried out in different ways. The “one-size-fits-all” solution consists of developing

J. Leite et al. (Eds.): DALT 2004, LNAI 3476, pp. 112–131, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Reasoning About Agents’ Interaction Protocols Inside DCaseLP 113

all the agents by means of the same implementation language and to execute
the obtained program. If this approach is adopted, during the specification stage
it would be natural to select a language that can be directly executed or easily
translated into code, and to use it to specify all the agents in the MAS. The other
solution is to specify each “view” of the MAS (that includes its architecture, the
interaction protocols among agents, the internal architecture and functioning of
each agent), with the most suitable language in order to deal with the MAS’s
peculiar features, and then to verify and execute the obtained specifications in-
side an integrated environment. Such a multi-language environment should offer
the means not only to select the proper specification language for each view
of the MAS but also to check the specifications exploiting formal validation
and verification methods and to produce an implementation of the prototype
in a semi-automatic way. The prototype implementation should be composed of
heterogeneous pieces of code created by semi-automatic translations of hetero-
geneous specifications. Moreover, the multi-language environment should allow
these pieces of code to be seamlessly integrated and capable of interacting.

The greater complexity associated with the latter solution is proportional to
the advantages it gives with respect to the former. In particular, by allowing
different specification languages for modeling different aspects of the MAS, it
provides the flexibility needed to describe the MAS from different points of view.
Moreover, by allowing different specification languages for the internal architec-
ture and functioning of each agent, it respects the differences existing among
agents, namely the way they reason and the way they represent their knowledge,
other agents, and the world. Clearly, this solution also has some drawbacks in
respect to the former. The coherent integration of different languages into the
same environment must be carefully designed and implemented by the environ-
ment creators, who must also take care of the environment maintenance. It must
be emphasized that the developer of the MAS does not have to be an expert of
all the supported languages: he/she will use those he/she is more familiar with,
and this will lead to more reliable specifications and implementations.

DCaseLP (Distributed CaseLP, [4, 21, 29]) integrates a set of specification
and implementation languages in order to model and prototype MASs. It de-
fines a methodology which covers the engineering stages, from the requirements
analysis to the prototype execution, and relies on the use of UML and AUML
(Agent UML, [6]) not only during the requirements analysis, but also to de-
scribe the interaction protocols followed by the agents. The choice of UML
and AUML, initially developed for documentation purposes, to represent in-
teraction protocols in DCaseLP is motivated by the wide support that it is
obtaining from the agent research community. Even if AUML cannot be consid-
ered a standard agent modeling language yet, it has many chances to become
such, as shown by the interest that both the FIPA modeling technical commit-
tee (http://www.fipa.org/activities/modeling.html) and the OMG Agent
Platform Special Interest Group (http://www.objs.com/agent/) demonstrate
in it. Quoting [31]: “The successful industrial deployment of agent technology
requires techniques that reduce the inherent risks in any new technology and



114 M. Baldoni et al.

there are two ways in which this can be done: presenting a new technology as
an extension of a previous, well-established one, or providing engineering tools
that support industry-accepted methods of technology deployment.” We can say
that by choosing a UML-based language we place DCaseLP in the line of both
the proposed strategies.

In DCaseLP, UML and AUML are used to describe the public interaction
protocols, which can be animated by creating agents whose behavior adheres to
the given protocols. The idea of translating UML and AUML diagrams into a
formalism and check their properties by either animating or formally verifying
the resulting code is shared by many researchers working in the agent-oriented
software engineering field [24, 30, 35]. We followed an animation approach to
check that the interaction protocols produced during the requirement specifi-
cation stage are the ones necessary to describe the system requirements and,
moreover, that they are correct. The “coherence check” is done by comparing
the results of the execution runs with the interaction specification [4]. Despite
its usefulness, this approach does not straightforwardly allow the formal proof of
properties of the resulting system a priori: indeed, a key issue in the design and
engineering of interaction protocols, that DCaseLP does not currently address.
One possible extension in the line of [25] is the integration of formal methods to
perform validation tests, i.e., to check the coherence of the AUML description
with the specifications derived from the analysis. To this aim, it is possible to
rely on works that give to AUML sequence diagrams a semantics based on Petri
Nets [22, 23, 12]. Validation tests, however, are just one side of the problem. In
fact, another kind of a priori verification that is very important for the MAS
designer is to check properties of specific implementations, obtained on the basis
of the public protocol description.

One step in this direction is to exploit the characteristic of DCaseLP of being
a multi-language development environment and to integrate a language, DyLOG
[9, 7], which, being based on computational logic, can be exploited both as an
implementation language and for verifying properties. DyLOG is a logic-based
agent language that includes a fully integrated “communication kit”, that al-
lows the implementation of interaction protocols as agent conversation policies
based on speech acts, and it supports reasoning about interaction properties.
In the language reasoning about the conversations, defined by a protocol im-
plementation, basically means to check if there is a conversation after whose
execution a given set of properties holds. This characteristic can for instance be
exploited to determine which protocol, from a set of available ones, satisfies a
goal of interest, and also to compose many protocols for accomplishing complex
tasks. In this perspective, DyLOG is particularly interesting because there is a
conformance relation between DyLOG implementations of interaction protocols
and AUML sequence diagrams: in fact it is possible to prove in a formal way if
every conversation generated by a DyLOG program is correct w.r.t. a specifica-
tion expressed by AUML diagrams [8]. After proving desired properties of the
interaction protocols, the developer can animate them thanks to the facilities
offered by DCaseLP, discussed in Section 2.



Reasoning About Agents’ Interaction Protocols Inside DCaseLP 115

So far, the integration of DyLOG into DCaseLP is a methodological integration:
it extends the set of languages supported by DCaseLP during the MAS engi-
neering process and augments the verification capabilities of DCaseLP, without
requiring any real integration of the DyLOG working interpreter into DCaseLP
(see Section 4). Nevertheless, DyLOG can also be used to directly specify agents
and execute them inside the DCaseLP environment, in order to exploit the dis-
tribution, concurrency, monitoring and debugging facilities that DCaseLP offers.

2 The DCaseLP Environment

DCaseLP is a prototyping environment where agents specified and implemented
in a given set of languages can be seamlessly integrated. It provides an agent-
oriented software engineering methodology to guide the developer during the
analysis of the MAS requirements, its design, and the development of a working
MAS prototype. The methodology is sketched in Figure 1. Solid arrows represent
the information flow from one stage to the next one. Dotted arrows represent
the iterative refinement of previous choices. The first release of DCaseLP did not
realize all the stages of the methodology. In particular, as we have pointed in last
section, the stage of properties verification was not addressed. The integration
of DyLOG into DCaseLP discussed in Section 4 will allow us to address also
the verification phase. The tools and languages supported by the first release of

Knowledge
specification

Role model
specification

Execution of the 
prototype

Prototype 
implementation

Verification

Prototype
testing

Verification of 
specifications

Translation of speci− 
fications into code

specification

specification
Design

specification

Analysis

Architecture

Agent class

Agent instance

Properties 
verification

Fig. 1. DCaseLP’s methodology

DCaseLP, discussed in [29, 4], included UML and AUML for the specification of
the general structure of the MAS, and Jess [27] and Java for the implementation
of the agents.

DCaseLP adopts an existing multi-view, use-case driven and UML-based
method [5] in the phase of requirements analysis. Once the requirements of the



116 M. Baldoni et al.

application have been clearly identified, the developer can use UML and/or
AUML to describe the interaction protocols followed by the agents, the general
MAS architecture and the agent types and instances. Moreover, the developer
can automatically translate the UML/AUML diagrams, describing the agents in
the MAS, into Jess rule-based code. In the following we will assume that AUML
is used during the requirements analysis stage, although the translation from
AUML into Jess is not fully automated (while the translation from pure UML
into Jess is).

The Jess code obtained from the translation of AUML diagrams must be
manually completed by the developer with the behavioral knowledge which was
not explicitly provided at the specification level. The developer does not need
to have a deep insight into rule-based languages in order to complete the Jess
code, since he/she is guided by comments included in the automatically gener-
ated code. The agents obtained by means of the manual completion of the Jess
code are integrated into the JADE (Java Agent Development Framework, [26])
middle-ware. JADE complies with the FIPA specifications [16] and provides a set
of graphical tools that support the execution, debugging and deployment phases.
The agents can be distributed across several machines and can run concurrently.
By integrating Jess into JADE, we were able to easily monitor and debug the
execution of Jess agents thanks to the monitoring facilities that JADE provides.

A recent extension of DCaseLP, discussed in [21], has been the integration of
tuProlog [36]. The choice of tuProlog was due to two of its features:

1. it is implemented in Java, which makes its integration into JADE easier, and
2. it is very light, which ensures a certain level of efficiency to the prototype.

By extending DCaseLP with tuProlog we have obtained the possibility to
execute agents, whose behavior is completely described by a Prolog-like the-
ory, in the JADE platform. For this purpose, we have developed a library of
predicates that allow agents specified in tuProlog to access the communication
primitives provided by JADE: asynchronous send, asynchronous receive, and
blocking receive (with and without timeout). These predicates are mapped onto
the corresponding JADE primitives. Two predicates for converting strings into
terms and vice-versa are also provided, in order to allow agents to send strings
as the content of their messages, and to reason over them as if they were Prolog
terms.

A developer who wants to define tuProlog agents and integrate them into
JADE can do it without even knowing the details of JADE’s functioning. An
agent whose behavior is written in tuProlog is, in fact, loaded in JADE as an
ordinary agent written in Java. The developer just needs to know how to start
JADE.

3 Interaction Protocols in DyLOG

Logic-based executable agent specification languages have been deeply investi-
gated in the last years [3, 17, 13, 9, 28]. In this section we will briefly recall the



Reasoning About Agents’ Interaction Protocols Inside DCaseLP 117

main features of DyLOG, by focussing on how the communicative behavior of an
agent can be specified and on the form of reasoning supported.

DyLOG is a high-level logic programming language for modeling rational
agents, based on a modal theory of actions and mental attitudes where modal-
ities are used for representing actions, while beliefs model the agent’s internal
state. We refer to a mentalistic approach, which is also adopted by the standard
FIPA-ACL [16], where communicative actions affect the internal mental state of
the agent. More recently, some authors have proposed a social approach to agent
communication [34], where communicative actions affect the “social state” of the
system, rather than the internal states of the agents. The social state records the
social facts, like the permissions and the commitments of the agents, which are
created and modified along the interaction. The dissatisfaction to the mentalistic
approach is mostly due to the difficulty of verifying that an agent acts according
to a commonly agreed semantics, because it is not possible to have access to
the agents’ private mental state [37], a problem known as semantics verification.
The growing interest into the social approach is motivated by the fact that it
overcomes this problem by exploiting a set of established commitments between
the agents, that are stored as part of the MAS social state. In this framework it
is possible to formally prove the correctness of public interaction protocols with
respect to the specifications outcoming from the analysis phases; such proof can
be obtained, for instance, by means of model checking techniques [32, 37, 19, 10]
(but not only, e.g., [11]).

When one passes from the public protocol specification to its implementation
in some language (e.g. Java, DyLOG), a program is obtained which, by defini-
tion, relies on the information contained in the internal “state” of the agent for
deciding which action to execute [20]. In this perspective, the use of a declara-
tive language is helpful because it allows the proof of properties of the specific
implementation in a straightforward way. In particular, the use of a language
that explicitly represents and uses the agent internal state is useful for proving
to which extent certain properties depend on the agent mental state or on the
semantics of the speech acts. For instance, in our work we perform hypothet-
ical reasoning about the effects of conversations on the agent mental state, in
order to find conversation plans which are proved to respect the implemented
protocols, achieving at the same time some desired goal, and we can prove the
conformance of an implemented protocol w.r.t. its specification in AUML.

3.1 DyLOG in Brief

Intuitively, DyLOG [9, 7] allows the specification of rational agents that reason
about their own behavior, choose courses of actions conditioned by their mental
state and can use sensors and communication for obtaining fresh knowledge. The
agent behavior is described by a domain description, which includes, besides
a specification of the agent initial beliefs, a description of the agent behavior
plus a communication kit (denoted by CKitagi), that encodes its communicative
behavior. Atomic actions are either world actions, affecting the world, or mental
actions, i.e., sensing and communicative actions producing new beliefs and then



118 M. Baldoni et al.

affecting the agent mental state. Complex actions are defined through (possibly
recursive) definitions, given by means of Prolog-like clauses and by action opera-
tors from dynamic logic, like sequence “;”, test “?” and non-deterministic choice
“∪”. The action theory allows coping with the problem of reasoning about com-
plex actions with incomplete knowledge and in particular to address the temporal
projection and planning problem in presence of sensing and communication.

Communication is supported both at the level of primitive speech acts and at
the level of interaction protocols. Thus, the communication kit of an agent agi

is defined as a triple (ΠC ,ΠCP ,ΠSget): ΠC is a set of laws defining precondition
and effects of the agent speech acts; ΠCP is a set of procedure axioms, specifying
a set of interaction protocols, and can be intended as a library of conversation
policies, that the agent follows when interacting with others; ΠSget is a set of
sensing axioms for acquiring information by messages reception.

Speech acts are represented as atomic actions with preconditions and effect
on agi’s mental state, of form speech act(agi, agj , l), where agi (sender) and agj

(receiver) are agents and l (a fluent) is the object of the communication. Effects
and preconditions are modeled by a set of effect and precondition laws. We use
the modality � to denote such laws, i.e., formulas that hold always, after every
(possibly empty) arbitrary action sequence.

A DyLOG agent has a twofold representation of each a speech act: one holds
when it is the sender, the other when it is the receiver. As an example, let us
define the semantics of the inform speech act within the DyLOG framework:

a) �(BSelf l ∧ BSelfUOtherl ⊃ 〈inform(Self,Other, l)〉�)
b) �([inform(Self,Other, l)]MSelfBOtherl)
c) �(BSelfBOtherauthority(Self, l) ⊃ [inform(Self,Other, l)]BSelfBOtherl)
d) �(� ⊃ 〈inform(Other, Self, l)〉�)
e) �([inform(Other, Self, l)]BSelfBOtherl)
f) �(BSelfauthority(Other, l) ⊃ [inform(Other, Self, l)]BSelf l)

In general, for each action a and agent agi, [aagi ] is a universal modality (〈aagi〉
is its dual). [aagi ]α means that α holds after every execution of action a by
agent agi, while 〈aagi〉α means that there is a possible execution of a (by agi)
after which α holds. Therefore clause (a) states executability preconditions for
the action inform(Self,Other, l): it specifies the mental conditions that make
the action executable in a state. Intuitively, it states that Self can execute an
inform act only if it believes l (we use the modal operator Bagi to model the
beliefs of agent agi) and it believes that the receiver (Other) does not know l. It
also considers possible that the receiver will adopt its belief (the modal operator
Magi is defined as the dual of Bagi , intuitively Magiϕ means the agi consid-
ers ϕ possible), clause (b), although it cannot be certain about it -autonomy
assumption-. If agent Self believes to be considered a trusted authority about
l by the receiver, it is also confident that Other will adopt its belief, clause (c).
Since executability preconditions can be tested only on the Self mental state,
when Self is the receiver, the action of informing is considered to be always
executable (d). When Self is the receiver, the effect of an inform act is that



Reasoning About Agents’ Interaction Protocols Inside DCaseLP 119

Self will believe that l is believed by the sender (Other), clause (e), but Self
will adopt l as an own belief only if it thinks that Other is a trusted authority,
clause (f).

DyLOG supports also the representation of interaction protocols by means
of procedures, that build on individual speech acts and specify communication
patterns guiding the agent communicative behavior during a protocol-oriented
dialogue. Formally, protocols are expressed by means of a collection of proce-
dure axioms of the action logic of the form 〈p0〉ϕ ⊂ 〈p1〉〈p2〉 . . . 〈pn〉ϕ, where p0

is the procedure name the pi’s can be i’s speech acts, special sensing actions
for modeling message reception, test actions (actions of the form Fs?, where
Fs is conjunction of belief formulas) or procedure names 1. Each agent has a
subjective perception of the communication with other agents; for this reason,
given a protocol specification, we have as many procedural representations as
the possible roles in the conversation (see example in the next section).

Message reception is modeled as a special kind of sensing action, what we
call get message actions. Indeed, from the point of view of an individual agent
receiving a message can be interpreted as a query for an external input, whose
outcome cannot be predicted before the actual execution, thus it seems natural
to model it as a special case of sensing. The get message actions are defined by
means of inclusion axioms, that specify a finite set of (alternative) speech acts
expected by the interlocutor.

DyLOG allows reasoning about agents’ communicative behavior, by support-
ing techniques for proving existential properties of the kind “given a protocol
and a set of desiderata, is there a specific conversation, respecting the protocol,
that also satisfies the desired conditions?”. Formally, given a DyLOG domain
description Πagi

containing a CKitagi with the specifications of the interaction
protocols and of the relevant speech acts, a planning activity can be triggered by
existential queries of the form 〈p1〉〈p2〉 . . . 〈pm〉Fs, where each pk (k = 1, . . . , m)
may be a primitive speech act or an interaction protocol, executed by our agent,
or a get message action (in which our agent plays the role of the receiver). Check-
ing if the query succeeds corresponds to answering to the question “is there an
execution of p1, . . . , pm leading to a state where the conjunction of belief for-
mulas Fs holds for agent agi?”. Such an execution is a plan to bring about Fs.
The procedure definition constrains the search space.

Actions in the plan can be speech acts performed or received by agi, the
latter can be read as the assumption that certain messages will be received
from the interlocutor. The ability of making assumptions about which message
(among those foreseen by the protocol) will be received is necessary in order to
actually build the plan. Depending on the task that one has to execute, it may
alternatively be necessary to take into account all of the possible alternatives that
lead to the goal or just to find one of them. In the former case, the extracted
plan will be conditional, because for each get message it will generally contain

1 For sake of brevity, sometimes we will write these axioms as 〈p0〉ϕ ⊂
〈p1; p2; . . . ; pn〉ϕ.



120 M. Baldoni et al.

many branches. Each path in the resulting tree is a linear plan that brings about
Fs. In the latter case, instead, the plan is linear.

4 Integrating DyLOG into DCaseLP to Reason About
Communicating Agents

Let us now illustrate, by means of examples, the advantages of adding to the
current interaction design tools of DCaseLP the possibility of converting AUML
sequence diagrams into a DyLOG program. In the first DCaseLP release, AUML
interaction protocols could be only translated into Jess code, which could not be
formally verified but just executed. The use of DyLOG bears some advantages: on
the one hand it is possible to automatically verify that a DyLOG implementation
is conformant to the AUML specification (see below), moreover, it is also possible
to verify properties of the so obtained DyLOG program. Property proof can be
carried out using the existing DyLOG interpreter, implemented in Sicstus [1].

Besides the methodological integration, DyLOG can be also integrated in a
physical way. Recently we have begun a new implementation in Java of the lan-
guage, based on tuProlog [36]. A visual editor based on Eclipse is also being
implemented; the editor will allow the designer to write DyLOG programs in
a graphical and intuitive way, the designer will also have the possibility of ex-
porting them in OWL [33] for realizing Semantic Web applications like the one
described hereafter. Once the physical integration will be completed, it will be
possible to animate complete DyLOG agents into DCaseLP. This will mean that
agents specified in Jess, Java, DyLOG, will be able to interact with each other
inside a single prototype whose execution will be monitored using JADE.

In the rest of this section, however, we deal with the methodological integra-
tion. Let us suppose, for instance, to be developing a set of interaction protocols
for a restaurant and a cinema that, for promotional reasons, will cooperate in
this way: a customer that makes a reservation at the restaurant will get a free
ticket for a movie shown by the cinema. By restaurant and cinema we here mean
two generic service providers and not a specific restaurant and a specific cinema.
In this scenario the same customer will interact with both providers. The devel-
oper must be sure that the customer, by interacting with the composition (by
sequentialization) of the two protocols, will obtain what desired. Figure 2 shows
an example of AUML protocols, for the two services; (i) and (ii) are followed by
the cinema, (iii) by the restaurant. This level of representation does not allow
any proof of properties because is lacking of a formal semantics. Supposing that
the designed diagrams are correct, the protocols are to be implemented. It is de-
sirable that the correctness of the implementation w.r.t. the AUML specification
can be verified. If the protocols are implemented in DyLOG, this can actually
be done. In [8] we, actually, show that, given an AUML protocol specification
and a DyLOG implementation, it is possible to prove if the latter will never
produce conversations that are not foreseen by the protocol. This problem is
known as conformance verification. Briefly, with reference to Figure 3, this can
be done by turning the problem into a problem of verification of the inclusion of



Reasoning About Agents’ Interaction Protocols Inside DCaseLP 121

CINEMACUSTOMER

queryIf(available(Movie))

X

refuseInform(available(Movie))

inform(~available(Movie))

inform(available(Movie))

yes_no_query

[available(Movie)]
queryIf(cinema_promo)

X

refuseInform(cinema_promo)

inform(~cinema_promo)

inform(cinema_promo)

[available(Movie),cinema_promo]
inform(ft_number) 

[available(Movie),cinema_promo]
inform(reservation(Movie))

yes_no_query

CINEMACUSTOMER

yes_no_query(available(Movie))

[available(Movie)]
yes_no_query(cinema_promo)

[available(Movie),~cinema_promo]
yes_no_query(pay_by(c_card))

[available(Movie),~cinema_promo,
pay_by(c_card)]inform(cc_number) 

[available(Movie,~cinema_promo,
pay_by(c_card)]inform(reservation(Movie))

(i) (ii)

RESTAURANTCUSTOMER

yes_no_query(available(Time)

[available(Time)]
inform(reservation(Time))

[available(Time)]
inform(cinema_promo)

[available(Time)]
inform(ft_numeber)

(iii)

Fig. 2. AUML sequence diagrams representing the interactions between customer and
provider: (i) and (ii) are followed by the cinema service, (iii) is followed by the restau-
rant. Formulas in square brackets represent preconditions to speech act execution

the language of all the sequences generated by the implementation L(GpDyLOG
)

in the language of all the sequence generated by the AUML sequence diagram
L(GpAUML

). In particular, we have studied the dependence of conformance on
the agent private mental state and on the semantics of speech acts, proposing
three degrees of conformance, at different levels of abstraction. The strongest of
the three, protocol conformance, is proved to be decidable and tractable, and if
it holds also the other degrees (which depend at some extent on the the agent
mental state) hold.

Let us describe one possible implementation of the two protocols in a Dy-
LOG program. Each implemented protocol will have two complementary views
(customer and provider) but for the sake of brevity, we report only the view
of the customer. It is easy to see how the structure of the procedure clauses
corresponds to the sequence of AUML operators in the sequence diagrams. The
subscripts next to the protocol names are a writing convention for representing
the role that the agent plays; so, for instance, Q stands for querier, and C for
customer. The customer view of the restaurant protocol is the following:



122 M. Baldoni et al.

Fig. 3. Conformance verification of a DyLOG implementation w.r.t. an AUML protocol:
the problem is interpreted as the verification of language inclusion

(a) 〈reserv restC(Self, Service, T ime)〉ϕ ⊂
〈yes no queryQ(Self, Service, available(Time)) ;

BSelfavailable(Time)? ;
get info(Self, Service, reservation(Time)) ;
get info(Self, Service, cinema promo) ;
get info(Self, Service, ft number)〉ϕ

(b) [get info(Self, Service, F luent)]ϕ ⊂ [inform(Service, Self, F luent)]ϕ

Procedure (a) is the protocol procedure: the customer asks if a table is available
at a certain time, if so, the restaurant informs it that a reservation has been
taken and that it gained a promotional free ticket for a cinema (cinema promo),
whose code number (ft number) is returned. Clause (b) shows how get info can
be implemented as an inform act executed by the service and having as recipient
the customer. The question mark amounts to check the value of a fluent in
the current state; the semicolon is the sequencing operator of two actions. The
cinema protocol, instead, is:

(c) 〈reserv cinemaC(Self, Service, Movie)〉ϕ ⊂
〈yes no queryQ(Self, Service, available(Movie)) ;

BSelfavailable(Movie)? ;
yes no queryI(Self, Service, cinema promo) ;

¬BSelfcinema promo? ;
yes no queryI(Self, Service, pay by(c card)) ;

BSelfpay by(c card)? ;
inform(Self, Service, cc number) ;
get info(Self, Service, reservation(Movie))〉ϕ



Reasoning About Agents’ Interaction Protocols Inside DCaseLP 123

(d) 〈reserv cinemaC(Self, Service, Movie)〉ϕ ⊂
〈yes no queryQ(Self, Service, available(Movie)) ;

BSelfavailable(Movie)? ;
yes no queryI(Self, Service, cinema promo) ;

BSelfcinema promo? ;
inform(Self, Service, ft number) ;
get info(Self, Service, reservation(Movie))〉ϕ

Supposing that the desired movie is available, the cinema alternatively ac-
cepts credit card payments (c) or promotional tickets (d). We can verify if the
two implementations can be composed with the desired effect, by using the rea-
soning mechanisms embedded in the language and answering to the query:

〈reserv restC(customer, restaurant, dinner) ;
reserv cinemaC(customer, cinema, movie)〉

(Bcustomercinema promo ∧ Bcustomerreservation(dinner)∧
Bcustomerreservation(movie) ∧ BcustomerBcinemaft number)

This query amounts to determine if it is possible to compose the interaction
so to reserve a table for dinner (Bcustomerreservation(dinner)) and to book a
ticket for the movie movie (Bcustomerreservation(movie)), exploiting a promo-
tion (Bcustomercinema promo). The obtained free ticket is to be spent (Bcustomer

Bcinema ft number), i.e., customer believes that after the conversation the cho-
sen cinema will know the number of the ticket given by the selected restaurant.
If the customer has neither a reservation for dinner nor one for the cinema or a
free ticket, the query succeeds, returning the following linear plan:

queryIf(customer, restaurant, available(dinner)) ;

inform(restaurant, customer, available(dinner)) ;

inform(restaurant, customer, reservation(dinner)) ;
inform(restaurant, customer, cinema promo) ;
inform(restaurant, customer, ft number) ;
queryIf(customer, cinema, available(movie)) ;

inform(cinema, customer, available(movie)) ;

queryIf(cinema, customer, cinema promo) ;
inform(customer, cinema, cinema promo) ;
inform(customer, cinema, ft number) ;
inform(cinema, customer, reservation(movie))

This means that there is first a conversation between customer and restaurant
and, then, a conversation between customer and cinema, that are instances of
the respective conversation protocols, after which the desired condition holds.
The linear plan, will, actually lead to the desired goal given that some assump-
tions about the provider’s answers hold. In the above plan, assumptions have
been outlined with a box. For instance, an assumption for reserving a seat at a
cinema is that there is a free seat, a fact that can be known only at execution
time. Assumptions occur when the interlocutor can respond in different ways
depending on its internal state. It is not possible to know in this phase which



124 M. Baldoni et al.

the answer will be, but since the set of the possible answers is given by the pro-
tocol, it is possible to identify the subset that leads to the goal. In the example
they are answers foreseen by a yes no query protocol (see Figure 2 (i) and [7]).
Returning such assumptions to the designer is also very important to understand
the correctness of the implementation also with respect to the chosen speech act
ontology.

Using DyLOG as an implementation language is useful also for other purposes.
For instance, if a library of protocol implementations is available, a designer
might will to search for one that fits the requirements of some new project.
Let us suppose, for instance, that the developer must design a protocol for a
restaurant where a reservation can be made, not necessarily using a credit card.
The developer will, then, search the library of available protocol implementa-
tions, looking for one that satisfies this request. Given that search service is
a procedure for searching in a library for a given category of protocol, a pro-
tocol fits the request if there is at least one conversation generated by it after
which ¬Bservicecc number; such a conversation can be found by answering to
the existential query:

〈search service(restaurant, Protocol) ; Protocol(customer, service, time)〉
(Bcustomer¬Bservicecc number ∧ Bcustomerreservation(time))

which means: find a protocol with at least one execution after which the cus-
tomer is sure that the provider does not know his/her credit card number and
a reservation has been taken.

5 Generating and Executing Jess Agents That Adhere
to the AUML Protocols

From the AUML sequence diagrams represented in Figure 4, and by defining two
more AUML diagrams that provide information on the classes and instances of
agents that will be involved in the MAS (“class diagram” and “agent diagram”,
see [4, 29]) we can automatically generate the Jess code for the given agent
classes. Here, by “agent class” we mean a group of agents that share the same
role (in the restaurant + cinema example the roles are customer, cinema and
restaurant) and the same internal structure (in the restaurant + cinema example
agents are conceptualized using mental attitudes, thus we can assume that their
internal structure is based on a BDI-style architecture). The code for the program
that characterizes each class must be completed by adding the conditions under
which a message can be sent. In the diagrams in Figure 4, these conditions
appear just above the message which labels each arrow, thus the developer can
easily add them to the Jess code. Once the code is completed, the developer must
define the initial state of the agent instances. The information about the initial
state cannot be found in the diagrams in Figure 4, since these diagrams describe
general patterns of interaction between roles, rather than between instances of
agents, and they abstract from the details that characterize the agents’ state.

As an example, the Jess rule shown in Table 1 is taken from the program of the
agents that play the Cinema role. It manages the situation in which the Cinema



Reasoning About Agents’ Interaction Protocols Inside DCaseLP 125

agent has received a queryIf(available(Movie)) message from an agent playing the
role of Customer, and that there are seats available for Movie. In this case an
inform(available(Movie)) message is to be sent to the Customer agent2. The bold
font indicates the part of code added by the developer. The added code, (seats
?movie ?s) and (> ?s 0), allows to retrieve the seats available for movie, and
to verify that they are more than zero.

Table 1. Jess rule for the Cinema agent class

(defrule E 2 1 1
(state E 1 ?cid)
(seats ?movie ?s)
(¿ ?s 0)

=>
(assert (state E 2 1 1 ?cid))
(retract-string

(str-cat ”(state E 1 ” ?cid ” )”))
(send (assert (ACLMessage

(communicative-act inform)
(role-sender Cinema) (role-receiver Customer)
(conversation-id ?cid) (content (available ?movie))))) )))

The developer will be interested in configuring simulation runs which differ
from the initial state of the agents involved, and check that, whatever the initial
state may be, the interaction protocols are always followed and the properties
verified using DyLOG are always satisfied. For each simulation run, once the
initial state of the agents has been defined, the Java classes for interfacing Jess
and JADE can be automatically created and the resulting JADE prototype can
be executed.

The agent’s state determines the protocol diagram branch that will be fol-
lowed in a simulation run. As an example, let us suppose that the customer
agent Customer 1 sends a queryIf(available(the lord of the rings)) request to the
cinema agent Cinema 1. If the current state of Cinema 1 includes the informa-
tion (seats ?the lord of the rings 2), the client request can be accepted and the
number of available seats for the “The Lord of the Rings” movie is updated
consequently. Cinema 1 will then ask to Customer 1 if it adheres to the pro-
motional offer of a free ticket. Since Customer 1 adheres to the offer, it will
issue an inform(cinema promo) message followed by the number of its free ticket.
The interaction ends when Cinema 1 confirms the reservation by sending an in-
form(reservation(the lord of the rings)) message to Customer 1.

2 The syntax of messages used in both Figure 4 and this paragraph is Prolog-like,
while Jess uses a Lisp-like syntax with variables preceeded by a question mark.
Messages can be easily converted from the Prolog-like syntax to the Lisp-like one,
and vice-versa.



126 M. Baldoni et al.

Let us also suppose that, besides Customer 1, in the MAS there are two more
customer agents, namely Customer 2, which does not adhere to the promotional
offer, and Customer 3, which adheres to the promotional offer. Both of them
want to buy a ticket for the “The Lord of the Rings” movie. Customer 2 asks
if there are available seats to Cinema 1 and gets the information that there is
one. Cinema 1 considers this seat as reserved, and thus, when Customer 3 asks for
available seats, it answers that there are no more left: the ones initially possessed
by Cinema 1 have already been issued to Customer 1 and Customer 2.

The performatives of messages exchanged between Cinema 1 and Customer 1
can be seen in Figure 4 which shows the output of the JADE Sniffer agent.
Figure 5 shows the details of the message that Cinema 1 sends to Customer 3 to
inform it that there are no seats left.

Fig. 4. Interactions between three customers interested in the “The Lord of the Rings”
movie, and a cinema

By running the prototype a sufficient number of times starting from as many
different agents’ initial states as possible, all the possible evolutions of the MAS
should be observed. If the software engineer who captured the requirements
of the system using the AUML diagrams of Figure 4 forgot to describe some
interaction patterns or described them incorrectly, and the verification carried
out by means of DyLOG did not allow to discover these deficiencies, the prototype
execution may help the developer in completing (resp. correcting) the missing
(resp. incorrect) interaction patterns.



Reasoning About Agents’ Interaction Protocols Inside DCaseLP 127

Fig. 5. Details of the last message sent by Cinema 1 to Customer 3

The possibility to both verify some properties of a set of AUML diagrams by
means of their translation into DyLOG, and animate the diagrams by creating
a simulation of a MAS, helps the MAS engineer in the task of developing a
real MAS that is correct w.r.t. the initial requirements. Once the simulation of
the MAS works properly, the real MAS can be obtained by substituting the
agents developed using Jess, with agents that show the same behavior but are
developed using Java3. A prototype of the MAS that includes only Java agents,
is very close to a final implementation. Java agents can easily act as interfaces
towards existing services, databases or the Web thus allowing the integration of
legacy software and data and the interaction with Web services.

The integration of DyLOG inside DCaseLP, although just methodological, is
a step forward towards achieving the goal of making DCaseLP a truly multi
lingual environment, where agents that are heterogeneous in both the language
they are specified/implemented and in their internal architecture4 are used in
the different stages of the engineering process.

3 The substitution should be carried out in such a way that the internal and social
behavior of the Java agents is exactly the same as the one of the Jess agents. For
the moment, techniques and tools for proving the correctness of the substitution are
not provided with the DCaseLP environment: the MAS developer must ensure this
correctness by him-/herself.

4 The agents of the restaurant + cinema example have a BDI-like architecture, but
simpler reactive or proactive agents could be specified/implemented as well using
Jess and Java.



128 M. Baldoni et al.

6 Conclusions and Related Work

AOSE does not yet supply solid and complete environments for the seamless in-
tegration of heterogeneous specification and implementation languages, nonethe-
less, some interesting results have already been achieved with the development
of prototypical environments for engineering heterogeneous agents. Just to cite
some of them, the AgentTool development system [2] is a Java-based graphical
development environment to help users analyze, design, and implement MASs. It
is designed to support the Multiagent Systems Engineering (MaSE) methodology
[14], which can be used by the system designer to graphically define a high-level
system behavior. The system designer defines the types of agents in the system
as well as the possible communications that may take place between them. This
system-level specification is then refined for each type of agent in the system.
To refine the specification of an agent, the designer either selects or creates an
agent’s architecture and then provides detailed behavioral specification for each
component in such architecture. Zeus [38] is an environment developed by British
Telecommunications for specifying and implementing collaborative agents, fol-
lowing a clear methodology and using the software tools provided by the environ-
ment. The approach of Zeus to the development of a MAS consists of analysis,
design, realization and runtime support. The first two stages of the methodology
are described in detail in the documentation, but only the last two stages are
supported by software tools. The description of other prototyping environments
can be found starting from the UMBC Web Site (http://agents.umbc.edu)
and following the path Applications and Software, Software, Academic,
Platforms. The reader can refer to [15] for a comparison between some of them,
including the predecessor of DCaseLP (CaseLP).

In respect to the existing MAS prototyping environments, DCaseLP stres-
ses the aspect of multi-language support to cope with the heterogeneity of both
the views of the MAS and the agents. This aspect is usually not considered in
depth, and this is the reason why we opted to work with DCaseLP rather than
with other existing environments. In particular, in this paper we have focused on
the methodological integration of the agent logic-based implementation language
DyLOG into the MAS prototyping environment DCaseLP, with the main aim of
exploiting the formal methods supported by DyLOG in order to reason about
agent protocol-driven interactions.

A methodology for integrating DyLOG into DCaseLP has been proposed that
is based on the semi-automatic generation of a DyLOG implementation from an
AUML sequence diagram, in a similar way as it has been done for the AUML →
Jess translation [4]. Such an integration allows to support the MAS developer
in many ways. In fact, by means of this integration we add to DCaseLP the
ability of verifying properties of the implemented protocols during the design
phase of the MAS; this feature is not offered by DCaseLP (without DyLOG)
since protocols can only be translated into Jess code and executed. The ability
of reasoning about possible interactions is very useful in many practical tasks.
In this paper we have shown a couple of examples of use: selection of already
developed protocols from a library and verification of compositional properties.



Reasoning About Agents’ Interaction Protocols Inside DCaseLP 129

In recent work, part of the authors have used formal methods for proving
other kinds of properties of the interaction protocols implemented in DyLOG. In
particular, we have faced the conformance problem, which amounts to determine
if a given protocol implementation respects a protocol specification (in our case
the specification language is AUML). In [8] we have, in fact, proposed three def-
initions of conformance, characterized by different levels of abstraction from the
agent private mental state, we have shown that by interpreting the conformance
test as a problem of language inclusion, protocol conformance (the strongest of
the three) is actually decidable and tractable (see Figure 3).

In the future, we mean to study the application of other techniques derived
from the area of logic-based protocol verification [18] where the problem of prov-
ing universal properties of interaction protocols (i.e., properties that hold after
every possible execution of the protocol) is faced. Such techniques could be ex-
ploited to perform the validation stage [25] in order to check the coherence of
the AUML description with the specifications derived from the analysis. This is
usually done by defining a model of the protocol (AUML) and expressing the
specification by a temporal logic formula; thus model checking techniques test if
the model satisfies the temporal logic formula.

Acknowledgement

This research is partially supported by MIUR Cofin 2003 “Logic-based develop-
ment and verification of multi-agent systems (MASSiVE)” national project.

References

1. Advanced logic in computing environment. Available at http://www.di.unito.

it/~alice/.
2. AgentTool development system. http://www.cis.ksu.edu/ sdeloach/ai/projects/

agentTool/agentool.htm.
3. K. Arisha, T. Eiter, S. Kraus, F. Ozcan, R. Ross, and V.S. Subrahmanian. IM-

PACT: a platform for collaborating agents. IEEE Intelligent Systems, 14(2):64–72,
1999.

4. E. Astesiano, M. Martelli, V. Mascardi, and G. Reggio. From Requirement Spec-
ification to Prototype Execution: a Combination of a Multiview Use-Case Driven
Method and Agent-Oriented Techniques. In J. Debenham and K. Zhang, edi-
tors, Proceedings of the 15th International Conference on Software Engineering
and Knowledge Engineering (SEKE’03), pages 578–585. The Knowledge System
Institute, 2003.

5. E. Astesiano and G. Reggio. Knowledge Structuring and Representation in Re-
quirement Specification. In Proceedings of SEKE 2002. ACM Press, 2002.

6. AUML Home Page. http://www.auml.org.
7. M. Baldoni, C. Baroglio, A. Martelli, and V. Patti. Reasoning about self and others:

communicating agents in a modal action logic. In C. Blundo and C. Laneve, editors,
Theoretical Computer Science, 8th Italian Conference, ICTCS’2003, volume 2841
of LNCS, pages 228–241, Bertinoro, Italy, October 2003. Springer.



130 M. Baldoni et al.

8. M. Baldoni, C. Baroglio, A. Martelli, V. Patti, and C. Schifanella. Verifying proto-
col conformance for logic-based communicating agents. In J. Leite and P. Torroni,
editors, Pre-Proc. of 5th Int. Workshop on Computational Logic in Multi-Agent
Systems, CLIMA V, pages 82–97, Lisbon, Portugal, September 2004.

9. M. Baldoni, L. Giordano, A. Martelli, and V. Patti. Programming Rational Agents
in a Modal Action Logic. Annals of Mathematics and Artificial Intelligence, Special
issue on Logic-Based Agent Implementation, 41(2-4):207–257, 2004.

10. J. Bentahar, B. Moulin, J. J. Ch. Meyer, and B. Chaib-Draa. A computational
model for conversation policies for agent communication. In J. Leite and P. Torroni,
editors, Pre-Proc. of 5th Int. Workshop on Computational Logic in Multi-Agent
Systems, CLIMA V, pages 66–81, Lisbon, Portugal, September 2004.

11. A. Bracciali, P. Mancarella, K. Stathis, and F. Toni. On modelling declaratively
multiagent systems. In Proceedings of the Workshop on Declarative Agent Lan-
guages and Technologies (DALT’04), LNCS 3476, Springer-Verlag (2005). In this
volume.

12. L. Cabac and D. Moldt. Formal semantics for AUML agent interaction protocol
diagrams. In Proceedings of Agent-Oriented Software Engineering (AOSE), 2004.

13. G. De Giacomo, Y. Lespérance, and H. J. Levesque. CONGOLOG, a concurrent
programming language based on situation calculus. Artificial Intelligence, 121:109–
169, 2000.

14. S. A. DeLoach. Methodologies and Software Engineering for Agent Systems, chapter
The MaSE Methodology. Kluwer Academic Publisher, 2004. To appear.

15. T. Eiter and V. Mascardi. Comparing Environments for Developing Software
Agents. AI Communications, 15(4):169–197, 2002.

16. FIPA Specifications. http://www.fipa.org.

17. M. Fisher. A survey of concurrent METATEM - the language and its applications.
In D. M. Gabbay and H.J. Ohlbach, editors, Proc. of the 1st Int. Conf. on Temporal
Logic (ICTL’94), LNCS 827, pages 480–505. Springer-Verlag, 1994.

18. L. Giordano, A. Martelli, and C. Schwind. Specifying and Verifying Systems of
Communicating Agents in a Temporal Action Logic. In A. Cappelli and F. Turini,
editors, Proc. of the 8th Conf. of AI*IA, LNAI 2829, Springer-Verlag, 2003.

19. L. Giordano, A. Martelli, and C. Schwind. Verifying communicating agents by
model checking in a temporal action logic. In J. Alferes and J. Leite, editors, 9th
European Conference on Logics in Artificial Intelligence (JELIA’04), LNAI 3229,
pages 57–69, Lisbon, Portugal, Sept. 2004. Springer-Verlag.

20. F. Guerin and J. Pitt. Verification and Compliance Testing. In M.P. Huget, editor,
Communication in Multiagent Systems, LNAI 2650, pages 98–112. Springer-Verlag,
2003.

21. I. Gungui and V. Mascardi. Integrating tuProlog into DCaseLP to engineer
heterogeneous agent systems. Proceedings of CILC 2004. Available at http:

//www.disi.unige.it/person/MascardiV/Download/CILC04a.pdf.gz.

22. G. Gutnik and G. Kaminka. A scalable Petri Net representation of interaction
protocols for overhearing. In Proceedings of the Third International Joint Confer-
ence on Autonomous Agents and Multiagent Systems (AAMAS), volume 3, pages
1246–1247, 2004.

23. G. Gutnik and G.A. Kaminka. A comprehensive Petri Net representation for
multi-agent conversations. Technical Report 2004/1, Bar-Ilan University, 2004.

24. M-P. Huget. Model checking agent UML protocol diagrams. Technical Report
ULCS–02–012, CS Department, University of Liverpool, UK, 2002.



Reasoning About Agents’ Interaction Protocols Inside DCaseLP 131

25. M.P. Huget and J.L. Koning. Interaction Protocol Engineering. In M.P. Huget, ed-
itor, Communication in Multiagent Systems, LNAI 2650, pages 179–193. Springer,
2003.

26. JADE Home Page. http://jade.cselt.it/.
27. Jess Home Page. http://herzberg.ca.sandia.gov/jess/.
28. J. Leite, A. Omicini, P. Torroni, and P. Yolum, editors. Proceedings of the Work-

shop on Declarative Agent Languages and Technologies (DALT’04), LNCS 3476,
Springer-Verlag (2005). This volume.

29. M. Martelli and V. Mascardi. From UML diagrams to Jess rules: Integrating OO
and rule-based languages to specify, implement and execute agents. In F. Bucca-
furri, editor, Proceedings of the 8th APPIA-GULP-PRODE Joint Conference on
Declarative Programming (AGP’03), pages 275–286, 2003.

30. H. Mazouzi, A. El Fallah Seghrouchni, and S. Haddad. Open protocol design
for complex interactions in multi-agent systems. In C. Castelfranchi and W. L.
Johnson, editors, Proceedings of the First International Joint Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS 2002), pages 517–526. ACM
Press, 2002.

31. J. Odell, H. V. D. Parunak, and B. Bauer. Extending UML for agents. In Pro-
ceedings of the Agent-Oriented Information System Workshop at the 17th National
Conference on Artificial Intelligence. 2000.

32. L. R. Pokorny and C. R. Ramakrishnan. Modeling and verification of distributed
autonomous agents using logic programming. In Proceedings of the Workshop on
Declarative Agent Languages and Technologies (DALT’04), LNCS 3476, Springer-
Verlag (2005). In this volume.

33. C. Schifanella, L. Lusso, M. Baldoni, and C. Baroglio. Design and development of
a visual environment for writing dylog, 2004. Submitted.

34. M. P. Singh. A social semantics for agent communication languages. In Proc. of
IJCAI-98 Workshop on Agent Communication Languages, Berlin, 2000. Springer.

35. F. Stolzenburg and T. Arai. From the specification of multiagent systems by stat-
echarts to their formal analysis by model checking: Towards safety-critical appli-
cations. In M. Schillo, M. Klusch, J. Müller, and H. Tianfield, editors, Proceedings
of the First German Conference on Multiagent System Technologies, LNAI 2831,
pages 131–143. Springer-Verlag, 2003.

36. tuProlog Home Page. http://lia.deis.unibo.it/research/tuprolog/.
37. C. Walton. Model checking agent dialogues. In Proceedings of the Workshop on

Declarative Agent Languages and Technologies (DALT’04), LNCS 3476, Springer-
Verlag (2005). In this volume.

38. ZEUS Home Page. http://more.btexact.com/projects/agents.htm.


