
Coo-AgentSpeak: Cooperation in AgentSpeak through Plan Exchange

Davide Ancona
DISI, Universit̀a di Genova, Italy

davide@disi.unige.it

Viviana Mascardi
DISI, Universit̀a di Genova, Italy

mascardi@disi.unige.it

Jomi F. Ḧubner
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Abstract

This paper brings together two recent contributions to
the area of declarative agent-oriented programming, made
feasible in practice by the recent introduction of an in-
terpreter for a BDI programming language. The work on
Coo-BDI has proposed an approach to plan exchange which
applies to BDI agents in general. The other contribution is
the introduction of special illocutionary forces for plan ex-
change between AgentSpeak agents. This has been imple-
mented in Jason, an interpreter for an extended version of
AgentSpeak(L). Jason also provides mechanisms that allow
the specification of plan permissions, which are important
in the cooperation context. This paper shows how elaborate
plan exchange can take place between AgentSpeak agents
implemented with Jason. It also discusses an application in
which plan sharing is essential.

1. Introduction

Various agent-oriented programming languages have ap-
peared in the literature since Shoham’s seminal work [12].
Typically, these languages concentrate on the programming
of one individual autonomous agent, leaving it completely
for the user to work out ways of developing multi-agent sys-
tem where those agents interact. However, the advantage
of the agent-oriented approach to software development re-
sides precisely in the fact that computational systems for
dynamic and complex scenarios can be designed more eas-
ily by relying on various autonomous agents coordinating
their actions.

On the other hand, agent-oriented software engineering
approaches (see, e.g., [14]) have focused mainly on soci-
etal aspects of building multi-agent systems, such as groups
and roles, taking for granted the development of individ-
ual agents and the cognitive aspects of such agents. One

of the first agent programming languages to move towards
a more societal approach is ConcurrentMETATEM, where
agents are specified directly in linear temporal logic: see
their recent work on a general notion of groups [6]. There
are sophisticated ways of developing teams of agents, such
as STEAM [10] for example, but these are not program-
ming languages as such, and do not have the same formal
basis (e.g., formal semantics) as do most agent-oriented pro-
gramming languages.

In this work, we are interested in an important aspect
of the necessary support for future work on programming
teams of agents where each agent is programmed in an
agent-oriented programming language. We consider here
the necessary means for autonomous agents to exchange
plans, so that agents can increase their know-how by ob-
taining plans from other agents that might have the specific
know-how in question. To the best of our knowledge, this
issue has not been dealt with by other agent-oriented pro-
gramming languages such as Dribble [13], 3APL [7], and
ConGolog [5].

Our start point is Coo-BDI, an approach to cooperation
for BDI agents by plan exchange, developed by Ancona
and Mascardi and reported in [1]. In this paper, that ap-
proach is applied specifically to a BDI agent-oriented pro-
gramming language called AgentSpeak(L), in the context
of Jason[3], an interpreter for that language recently made
available. AgentSpeak(L) was devised by Rao [11] and later
extended and formalised by Bordini and colleagues [2, 4].
In [9], the operational semantics of AgentSpeak(L) was ex-
tended to account for speech-act based communication, in-
cluding special illocutionary forces for the communication
of plans.Jasonimplements the operational semantics given
in [4] as well as the extensions in [9]. This gives the nec-
essary formal and practical basis for plan exchange among
BDI agent in the way required by the approach presented in
this paper.

This paper is organised as follows. In the next section, we
summarise Coo-BDI, an approach to plan exchange among



BDI agents. Section 3 describesJason, a fully-fledged inter-
preter for an extended version of AgentSpeak(L); only the
features that are relevant for the work here are discussed.
Then, in Section 4 we described a scenario which shows
the importance of plan exchange for BDI agents; the sce-
nario is that of a PDA used to assist visitors in museums,
galleries, etc. That scenario is used in Section 5, where we
present Coo-AgentSpeak, the instantiation of Coo-BDI for
AgentSpeak(L) in particular, and discuss how these ideas
can be made practical inJason with just minor changes.
The paper assumes that the reader is familiar with the BDI
architecture and also with the AgentSpeak(L) language.

2. Coo-BDI: Cooperation in BDI Agent Lan-
guages

Coo-BDI (Cooperative BDI, [1]) extends traditional BDI
agent-oriented programming languages in many respects.
As in the traditional BDI setting, Coo-BDI agents are char-
acterised by an event queue, a mailbox, a plan library, a be-
lief base, and a set of intentions. The main extensions of
Coo-BDI involve the introduction ofcooperationamong
agents for the retrieval of external plans for a given trig-
gering event; the extension of plans withaccess specifiers;
the extension ofintentionsto take into account the exter-
nal plan retrieval mechanism; and the modification of the
Coo-BDI engine(i.e., the interpreter) to cope with all these
issues.

The version of Coo-BDI described here is different from
the one described in [1] for two main reasons.

1. Enhancement of the flexibility and expressive
power of Coo-BDI.The granularity of the cooperative
strategy has been refined, so that it becomes possible to
apply different strategies to different kinds of plan, in-
stead of having a unique cooperative policy for all the
plans. Plans have been extended so as to include the
plan source (namely, the agent that originally “owned”
the plan).

2. Compliance with AgentSpeak andJason. In order to
facilitate the integration of Coo-BDI and AgentSpeak,
implemented by means of theJason interpreter, the
distinction between “external events” and “desires”
discussed in [1] has been abandoned: only AgentSpeak
“events”, which correspond to Coo-BDI “desires”, are
considered now. Plans have been adapted to the syn-
tax supported byJason: constructs such at the invari-
ant, and success and failure actions have been dropped,
as well as branches in bodies. Messages exchanged be-
tween agents have been modified in order to comply
with the syntax supported by AgentSpeak inJason.

The description of some issues of Coo-BDI which are not
particularly relevant for this work have been omitted or sim-
plified for the sake of conciseness or clarity.

Cooperation strategy.The cooperation strategy of an agent
Ag includes the set of agents with which it is expected to
cooperate, the plan retrieval policy, and the plan acquisition
policy. The cooperation strategy may evolve during time, al-
lowing greater flexibility and autonomy to the agents, and is
modelled by three functions:

• trusted (Te,TrustedAgentSet), where Te is a (not
necessarily ground) trigger andTrustedAgentSetis the
set of agents thatAg will contact in order to obtain
plans relevant forTe.

• retrievalPolicy (Te,Retrieval), whereRetrieval
may assume the valuesalways and noLocal ,
meaning that relevant plans for the triggerTemust be
retrieved from other agents in any case, or only when
no local relevant plans are available, respectively.

• acquisitionPolicy (Te,Acquisition), where Ac-
quisitionmay assume the valuesdiscard , add and
replace meaning that, when a relevant plan forTeis
retrieved from a trusted agent, it must be used and dis-
carded, or added to the plan library, or used to update
the plan library by replacing all the plans triggered by
Te.

Plans. Besides the standard components which constitute
BDI plans, Coo-BDI plans also have asourcewhich deter-
mines the first owner of the plan, and anaccess specifier
which determines the set of agents with which the plan can
be shared. The source may assume two values:self (the
agent possesses the plan) andAg (the agent was originally
from Ag). The access specifier may assume three values:
private (the plan cannot be shared),public (the plan
can be shared with any agent) andonly (TrustedAgentSet)
(the plan can be shared only with the agents contained in
TrustedAgentSet).

Intentions. Intentions are characterised by “standard” com-
ponents plus components introduced to manage the external
plan retrieval mechanism:

• the relevant plans which have been already collected
for the management of the current goal; and

• the set of identifiers of those agents which are still ex-
pected to cooperate for the management of the current
goal.

Intentions may be eitheractiveor suspended. They are sus-
pended when the management of their topmost plan caused
the generation of a subgoal, and the retrieval of relevant
plans for that subgoal is not yet completed.



Coo-BDI engine.The engine for Coo-BDI departs from the
classical BDI one, and is characterised by four macro-steps:

1. processing the mailbox;

2. processing the event queue;

3. processing suspended intentions;

4. processing active intentions.

Before describing these four steps, we need to explain the
mechanism for retrieving relevant plans, which is involved
in steps 1 and 2 above. This mechanism starts when a new
event enters the event queue. To keep the management of
internal and external events homogeneous, we assume that,
as soon as an external event enters the event queue, a new,
empty intention is associated with it. The plan retrieval
mechanism consists of four sequential steps:

(a) The intention associated with the event (Te) is sus-
pended.

(b) The local relevant plans for the event are generated and
associated with the intention.

(c) According to the cooperation strategy, the setS of the
agents expected to cooperate for handling the event is
defined.

(d) If S 6= {}, a plan request for the eventTe (i.e., a mes-
sage withachieve as illocutionary force andsend-
PlansFor (Te) as propositional content) is created
and sent to all the agents inS.

Now we can describe in more detail the four steps of the
Coo-BDI engine.

1. Processing the mailbox: when an agent receives an
achieve message withsendPlansFor (Te) con-
tent from another agentAg, it sends toAg its lo-
cal plans which are both relevant for that event and
sharable withAg. On the other hand, when an agent re-
ceives an answer to a request for plans handling a cer-
tain event (tellHow message with a planP as con-
tent), it checks if the answer is still valid and if so it
updates the intention associated with the event to in-
clude the plan just obtained.

2. Processing the event queue: after an event has been se-
lected, the mechanism for retrieving plans triggered by
that event is started.

3. Processing suspended intentions: the management of
suspended intentions consists of looking for all sus-
pended intentions which can be resumed. When an in-
tention is resumed, the set of applicable plan instances
is generated from the set of relevant plans associated
with the intention, one applicable plan instance is se-
lected and pushed on top of the corresponding inten-
tion stack. If the set of applicable plans is empty, the
event for which plans had been collected cannot be

managed and the corresponding intention is destroyed.
The plans retrieved from cooperating agents may be
discarded, or added to the plan library or used to re-
place local plans with a unifying triggering event ac-
cording to the acquisition policy related to the trigger-
ing event.

4. Processing active intentions: active intentions are man-
aged as in the BDI architecture.

3. About Jason

A recent development in the practical aspects of
AgentSpeak is the first release ofJason, an interpreter for
an extended version of AgentSpeak(L), which allows agents
to be distributed over the net through the use of SACI
[8]. Jason is availableOpen Sourceunder GNU LGPL
at http://jason.sourceforge.net [3]. It imple-
ments the operational semantics of AgentSpeak(L) as given
in [4]. It also implements the extension of that operational
semantics to account for speech-act based communication
among AgentSpeak agents, as proposed in [9]. This, and
other mechanisms available inJasonallow us to implement
in practice the ideas of plan sharing described in the previ-
ous section.

Besides interpreting the original AgentSpeak(L) lan-
guage, some of the feature available inJason, which are
relevant for this work are:

• speech-act based inter-agent communication (and be-
lief annotations on information sources);

• annotations on plan labels, which can be used by elab-
orate (e.g., decision theoretic) selection functions;

• the possibility to run a multi-agent system distributed
over a network (using SACI);

• fully customisable (in Java) selection functions, trust
functions, and overall agent architecture (perception,
belief-revision, inter-agent communication, and act-
ing);

• straightforward extensibility by user-defined internal
actions, which are programmed in Java;

The idea ofinternal actionswas introduced in [2]. They
are actions (procedures) that are run internally by the agent;
that is, they do not change the environment, thus they can be
executed immediately without requiring an extra interpreta-
tion cycle. In fact, they can appear both in the context and
in the body of a plan. Syntactically, they are differentiated
from other actions by having a character ‘. ’ somewhere in
the action symbol (i.e., the action name). The atom to the
left of ‘ . ’ is a library name, and to the right the name of an
action withing that library. This can be useful for users to
organise internal actions they create themselves (inJason,



this is done in Java). An empty library name (i.e., an ac-
tion name starting with ‘. ’) makes reference to the stan-
dard library, which is provided withJason. One particu-
larly important internal action available in the standard li-
brary is.send( ag, ilf , l) , whereag is an agent’s name,
ilf is the illocutionary force, andl is a literal inJason’s no-
tation [3].

Of particular interest are the first two items. One of the
illocutionary forces proposed in [9] for AgentSpeak inter-
agent communication isTellHow . That papers give a pre-
cise formalisation of this illocutionary force, which is used
when the sender (s) intends the receiver (r) to add the con-
tent of the message to its plan library, rather than belief
base. Suppose agents executes the following internal ac-
tion while executing a plan:

.send( r, TellHow ,P)

whereP is, e.g., a logical variable instantiated with a string
that can be parsed into an AgentSpeak(L) plan. Then, when
r receives that message, after checking whethers is a
trusted information source, the plan parsed from the con-
tent of the message will be added tor’s plan library. This
provides the first essential requirement for allowing the so-
phisticated plan sharing approach of Coo-BDI to be imple-
mented in practice usingJason.

A second requirement is the availability of some mech-
anism for associating plan with a list of properties; in this
case, the list of plan access specifiers, for example, need to
be explicitly associated with plans. Fortunately,Jason im-
plements a mechanism which makes the implementation of
such specifiers straightforward. InJason, plans have labels,
as proposed in [2], but instead of labels being simply atoms,
they can be any predicate with annotations. Predicate “an-
notations” was introduced in [9], to be used in the agent’s
belief base for recording the sources of information (given
that inter-agent communication for AgentSpeak was intro-
duced in that paper). This extended syntax for predicates is
as follows:ps(t1, . . . , tn)[a1, . . . , am], whereps is a predi-
cate symbol of arityn, t1, . . . , tn are terms, and them an-
notationsa1, . . . , am are also terms, all of which must be
ground. Although originally defined to be used in predicates
in the belief base,Jasonalso uses these extended predicates
in plan labels. Although a plan label can be any predicate
with annotations, it is suggested that users write labels as a
predicate of arity 0 (i.e., an atom) with annotations, if nec-
essary. So, for example, typical plan labels (with an arbi-
trary plan) would be:

aPlanLabel -> +b(X) : c(t) <- a(X).

anotherLabel[chanceSuccess(.7),
usualPayoff(.9),
anyOtherProperty] ->
+b(X) : c(t) <- a(X).

It is then up to the user-defined selection functions to use
such information in a plan’s label according to the particular
requirements of the given application. InJason, the inter-
preter is implemented in Java, and customisations to various
parts of the interpreter can be done by the user by redefining
standard methods in the classes that read the AgentSpeak
source code; these Java classes are automatically generated
by Jason. In particular, for using plan properties in ways
that are application-specific, the programmer can redefine
the following method:

public Option selectOption(List optList) {
}

which is called in the AgentSpeak(L) interpretation cycle
whenever a list of relevant and applicable plans1 are ob-
tained for the event being handled at that reasoning cycle.
The default option selection function simply returns the first
option in the JavaList passed on parameter (the options
are inserted in the list in the order the plan appear in the
AgentSpeak(L) code).

Note that the plan properties annotated in the plan la-
bel are copied when instances of a plan are placed in the
set of intentions. Because of that, plan properties can be
dynamically changed by programmers by executing certain
Java methods from within an internal action. This provides
a very interesting mechanism for the implementation of so-
phisticated selection functions, yet maintaining a neat nota-
tion in the agent programs.

Together withselectOption , the selectEvent
andselectIntention customisable methods inJason
correspond to the three selection functions that are assumed
as given in the AgentSpeak abstract interpreter [11, 2]. Be-
sides these, another customisable function isselectMes-
sage , which was introduced in [9]. It is used for program-
mers to customise the choice of a message from the agent’s
“mail box” to be processed in the current reasoning cycle
(the default function just chooses the first in the queue).

One final characteristic ofJason that is relevant here
is the configuration option on what to do in case there is
no applicable plan for a relevant event. If an event is rel-
evant, it means that there are plans in the agent’s plan li-
brary for handling that particular event (representing that
handling that event is normally a desire of that agent). If
it happens that none of those plans are applicable at a cer-
tain time, this can be a problem as the agent does not know
how to handle the situation at that time. Ancona and Mas-
cardi [1] discussed how this problem is handled in various

1 In BDI terminology, an “option” is one of the alternative courses of
actions an agent know to achieve a desire (i.e., a goal). The one par-
ticular course of action it commits to is referred to as the “intended
means” for achieving that desires; at that point the chosen course of
action is intended by the agent. In AgentSpeak(L), the idea of an “op-
tion” translates into the set of plans that are relevant (for the event that
was selected) and alsoapplicableat that moment in time.



agent-oriented programming languages. InJason, a config-
uration option is given to users, which can be set in the file
where the various agents and the environment composing
a multi-agent system are specified. The option allows the
user to state, for events which have relevant but not applica-
ble plans, whether the interpreter should discard that event
altogether (events=discard ) or insert the event back
at the end of the event queue (events=requeue ). One
of the few modifications that were required forJason to
cope with Coo-AgentSpeak (which will be presented in the
next section) was a third configuration option that is avail-
able to the users. When Coo-AgentSpeak is to be used, the
option events=retrieve must be used in the config-
uration file. This makesJason call the user-definedse-
lecOption function even when no applicable plans ex-
ist for an event. This way, part of the Coo-BDI approach
can be implemented by providing a specialselectOp-
tion function which takes care of retrieving plans exter-
nally, whenever appropriate.

4. A Sample Scenario

The scenario we shall use in the remainder of this pa-
per has its roots in an application area that has recently be-
come very popular: the adoption of Personal Digital Assis-
tants (PDAs) for visiting museums, galleries or cities.

A PDA used in that context should deliver content, in dif-
ferent media such as video, sound, and image, according to
the museum room where it is currently located. However,
because of their limited hardware resources, PDAs may not
be able to keep internally the codes for all the appropri-
ate media players required during a visit, and they certainly
cannot keep all the needed multimedia data. They need to
cooperate with other PDAs and software/media providers
to ensure the best guidance is given to the visitor, accord-
ing to his/her preferences. When the PDA agent downloads
movies or other media, it keeps them in memory only dur-
ing the time that is needed to show them to the user, and then
discards them. Thus, the PDA will never have the movies
themselves permanently in its internal disk, and it makes
sense to configure it to always download movies rather than
keep them internally, due to resource limitations.

Features such as reacting to the location in the museum,
autonomously choosing the content to be shown to the user,
and achieving the user’s specific goals, make the use of
BDI-based languages very suitable for modelling such PDA
agents. The main obstacle to the adoption of a BDI approach
is that existing BDI systems do not support any form of re-
source sharing. For the PDA technology to be really effec-
tive, dynamic downloading of code and content is a fun-
damental aspect. A more flexible BDI approach, in partic-
ular allowing the retrieval of plans as they become neces-
sary, could solve the problem of the limited computational

resources of a PDA for such applications, with the advan-
tage of a high-level approach for the modelling of more au-
tonomous devices.

In the examples we use in the next section, PDAs
contain an agent which refers tocodeProvider and
dataProvider agents to download code for the me-
dia player, and multimedia data, respectively. Of course,
codeProvider and dataProvider agents reside on
servers situated in appropriate points in the museum. At
the start of the visit, PDA agents contain the plans that
are needed for cooperating with thecodeProvider and
dataProvider agents, and for adapting possible mu-
seum tours to the user’s preferences. During the visit, they
temporary acquire plans for playing particular media, and,
finally, at the end of the visit the PDA agents are reset and
loose all the acquired plans.

5. Coo-AgentSpeak: Extending
AgentSpeak with Cooperation

In order to achieve the goal of building an interpreter
for AgentSpeak extended with the cooperation mechanisms
supported by Coo-BDI, we exploit the features offered by
Jasonwhich are most suitable for the implementation of co-
operative plan exchange. There are four main tasks to be ac-
complished:

1. in order to define thecooperation strategyof
Coo-AgentSpeak agents, we need to include three
more “given” functions2 to the specification of each
agent, in the same way thattrust andpower func-
tions were added to agent specifications in [9];

2. including access specifiers and sources to plans;

3. keeping track of the events associated with intentions
that were suspended because the agent needs to wait
for an external plan retrieval to finish (i.e., that some
other agent sends the plans it needs to carry further
that intention);

4. customisingJason’s interpreter to make the mecha-
nism for retrieving external relevant plans transparent
to the developer, as it is in Coo-BDI.

In the remainder of this section we show in more de-
tail how the tasks above can be accomplished. In order to
make the presentation clearer, we will use a running exam-
ple based an the PDA application described in the previous
section.

2 These functions are “given” in the sense that they are part of the inter-
preter of AgentSpeak yet are normally provided by the programmer,
unless the default ones can be used; any sophisticated agent is likely
to need application-specific versions of these functions.



5.1. Cooperation strategy

The cooperation strategy can be easily expressed in
Coo-AgentSpeak as a set of “system” (i.e., reserved) be-
liefs in the belief base. These beliefs define three functions:

• cooAS planSources (Te,[Id1,. . .,Idn]),

• cooAS retrievalPolicy (Te, Retrieval), and

• cooAS acquisitionPolicy (Te, Acquisition),

corresponding to those introduced in Section 2.
A PDA agent which respects the requirements ex-

pressed in Section 4 could be configured with the follow-
ing Coo-AgentSpeak cooperation strategy:

• cooAS_planSources("+!playMovie(Movie)",
[codeProvider])

cooAS_planSources("+!playSound(Sound)",
[codeProvider])

cooAS_planSources("+!retrieveData(Data)",
[dataProvider])

• cooAS_retrievalPolicy("+!playMovie(Movie)",
noLocal)

cooAS_retrievalPolicy("+!playSound(Sound)",
noLocal)

cooAS_retrievalPolicy("+!retrieveData(Data)",
always)

• cooAS_acquisitionPolicy("+!playMovie(Movie)",
add)

cooAS_acquisitionPolicy("+!playSound(Sound)",
replace)

cooAS_acquisitionPolicy("+!retrieveData(Data)",
discard)

Note the difference in the acquisition policy for playing
movies and sounds. We are assuming that just a single appli-
cation is needed for playing movies, hence once the corre-
sponding plan has been downloaded, it will be present in the
PDA agent’s plan library until the end of the visit (add pol-
icy). On the contrary, we assume that thedataProvider
agent contains audio files with different formats each one
needing a specific application which, for memory space lim-
its, cannot coexist in the same PDA. For this reason are-
place strategy is used to acquire plans for playing sound.

5.2. Plans

Jason already provides the means for including arbi-
trary annotations in plan labels; Coo-AgentSpeak can adopt
Jason’s syntax for plans without requiring any further ex-
tension. We can take advantage ofJason“plan label anno-
tation” feature to specify in all plan labels acooAS struc-
ture of arity one; the argument ofcooAS is a list which con-
tains (at least for the time being) two terms,accSpec and
source , both of arity one.

The argument ofaccSpec may range over

private | public | only( TrustedAgentsSet)

while the argument ofsource may range over

self | id
The meaning of these atoms is as explained in Section 2.

Thus, for the PDA application, we can have
Coo-AgentSpeak plans such as the following one:

p1[cooAS([accSpec(public),source(self)])] ->
+!playMovie(Movie)
: moviePlayerInstalled(MoviePlayerCodeRef)
<- !start(MoviePlayerCodeRef, Movie).

The example above shows a plan that belongs to the
codeProvider agent. It is a public plan (termacc-
Spec(public) ), owned by the codeProvider
agent itself (term source(self) ), and is used
to play a movie (the triggering event is+!play-
Movie(Movie) ). In case a movie player is be-
lieved to be installed (plan contextmoviePlay-
erInstalled(MoviePlayerCodeRef) ) it
is sufficient to start the movie player executable
code with the movie as its argument (plan body
!start(MoviePlayerCodeRef, Movie) ).

Other similar plans must be defined with the appropriate
courses of action for the PDA agent in case the media play-
ers are not installed, for the PDA to start playing a movie,
and so on.

5.3. Intentions

We need to keep track of which intentions are waiting for
the arrival of a certain plan from another agent. The simplest
way to implement this extension inJasonis to use anad hoc
structure which is kept in the belief base. The advantage of
having this information in the belief base is that agents can
change the Coo-AgentSpeak information dynamically (e.g.,
but the execution of special user-defined internal actions in
the agent’s plans).

We represent the relation among intentions (which are
unequivocally related to events, so we will use events as
identifiers for our convenience) and an external plan request
using the system beliefs of the following form:

cooAS suspendedIntention( MsgID, Ev ) .

The information contained in this relation will be used
when theselectMessage function of the agent receives
a message in reply to the message sent with a request for a
plan. The unique SACI message identifier (MsgID ) is reg-
istered, so that the intention that was suspended in connec-
tion with that plan request can be activated again.

5.4. Engine

We now discuss the Coo-AgentSpeak engine, according
to the following macro-steps defined by the Coo-BDI ap-
proach.



1. Processing the mailbox:there are two types of mes-
sages which must be processed before any other. They
are the requests for plans, and the answers to these
requests. TheselectMessage method provided by
Jasonis customised so that it gives priority to types of
messages; between the two, precedence should be given
to the answers received for the agent’s plan requests3.

(a) Once a message of type 〈achieve,
Ag, cooAS sendPlansFor( Te) 〉 is se-
lected for being handled, the special event
+!cooAS sendPlansFor (Te, Ag) enters the
event queue of the receiver. The way this event is man-
aged as explained in item 2 below (processing the event
queue).

(b) Once a message of type〈tellHow, Ag, P〉 is se-
lected for being processed, it is possible to activate again
the suspended intentions that were waiting for that mes-
sage (identified by a uniqueMsgID), and the plan library
can be updated according to theacquisitionPol-
icy of the triggering event of that plan. The informa-
tion on which intention is suspended, waiting forMs-
gID, in recorded in the special Coo-AgentSpeak system
predicatecooAS suspendedIntention .

2. Processing the event queue:in this step we must con-
sider two situations.

(a) A special event+!cooAS sendPlansFor (Te, Ag)
generated by the reception of a plan request is
selected. The way these special events are gen-
erated were explained above. TheselectEvent
method provided byJason can be customised so
that it always selects+!cooAS sendPlansFor (Te,
Ag) events first (only!startExternalPlanRe-
trieval (Te) has higher priority). A system plan is
provided by Coo-AgentSpeak whose triggering event
is +!cooAS sendPlansFor(Te, Ag) and whose
body searches for all relevant plans forTe (this is ac-
complished by a special internal action implemented
specifically for this purpose, making use of the unifica-
tion algorithm used inJasonto check which plans in the
plan library are relevant), and executes a.send( Ag,
tellHow, P) action for each relevant planP re-
trieved.

(b) If a normal eventTe is selected, two cases may oc-
cur. If the retrieval strategy forTe is noLocal and
either Te has (locally) relevant and applicable plans
or there are no trusted agent forTe, then no re-
quest for external plans is issued and the computa-

3 Note that this is the behaviour of theselectMessage as provided
by Coo-AgentSpeak. As this methods can be overridden at the indi-
vidual agent level, the user can further customise these methods so as
to give the agent more autonomy to only give priority to helping other
agents by sending plans when it can afford to do so.

tion continues in the same way as in the implemen-
tation of AgentSpeak. Otherwise, external plans need
to be retrieved. In Coo-AgentSpeak, theselecOp-
tion method provided byJason is customised so
that, in this situation, it generates a new internal goal
!startExternalPlanRetrieval (Te). The se-
lectEvent method provided byJasonis customised
so that it always selects!startExternalPlanRe-
trieval( Te) events first. Also, a system plan is pro-
vided by Coo-AgentSpeak (to be included in the agents’
plan libraries) whose triggering event is+!startEx-
ternalPlanRetrieval(Te) goal and whose con-
text is cooAS planSources(Te,AgList) , and
the plan body calls the.send( Ag, achieve,
cooAS sendPlansFor( Te)) action for each agent
Ag in AgList (wherecooAS planSources is as de-
fined above.

3. Processing suspended intentions: in
Coo-AgentSpeak, this step is performed together with
the handling of messages, as described above. Noth-
ing special is required for this step of Coo-BDI when
applied toJason.

4. Processing active intentions:this step is the same as
in AgentSpeak. See the rulesAction, Achieve, Test1,
Test2, AddBel, DelBel in the appendix of [9].

Finally, we show how steps 1 and 2 above work
in our PDA example. Let us start from the situation
where a PDA agentPDA1 selects the normal event
Te=+!playMovie(movie1) , and let us assume that
PDA1 has no relevant plans forTe; according to the
strategy specified in the example of Section 5.1, agent
codeProvider is the only known source of plans forTe,
therefore the intention forTe is suspended and the new in-
ternal goal

!startExternalPlanRetrieval(
"+!playMovie(movie1)")

is generated. Then the internal goal is selected from the
event queue and the only relevant plan that is found is the
system plan specifically designed for handling this event.
An instance of that plan is obtained by substituting the vari-
ablesTe and AgList in its triggering event withplay-
Movie(movie1) and[codeProvider] , respectively.
Then the action

.send(codeProvider,achieve,
cooAS sendPlansFor(playMovie(movie1)))

is executed and thecodeProvider agent receives in its
mailbox the following message:
〈achieve,PDA1,
cooAS sendPlansFor(playMovie(movie1)) 〉.
The message is processed by generating an event:
Te’=+!cooAS sendPlansFor(
playMovie(movie1),PDA1)



which is, then, selected; the only applicable plan for
agent codeProvider whose triggering event unifies
with Te’ is the system plan designed for handling special
events such asTe’. Its execution collects all plans avail-
able in agentcodeProvider whose triggering events
unify with playMovie(movie1) . If we assume that
there exists just one such planP, then codeProvider
performs the action.send(PDA1,tellHow, P) . Sub-
sequently,PDA1 selects, from its mailbox, the message
<tellHow,codeProvider, P> and, finally, it can per-
manently addP to its plan library, activate the suspended in-
tention forplayMovie(movie1) , and playmovie1 to
the museum visitor.

6. Conclusions

In this paper, we have shown how Coo-BDI, a sophis-
ticated mechanism for plan exchange among BDI agents,
can be applied to AgentSpeak(L), and made practical by
using an interpreter for it calledJason. The ability to ex-
change plans is essential for the development of multi-agent
systems using agent-oriented programming languages. It al-
lows agents to change their know-how over time, account-
ing both for adaptation as well as limited computational re-
sources (e.g., when agents cannot keep a large number of
plans at a time in their plan libraries). To the best of our
knowledge, this is the first such mechanism put in place
for an agent-oriented programming languages. We expect
the Coo-AgentSpeak extensions to be available withJason
(also asOpen Source) in the near future.

Future work should address the development of large
scale multi-agent systems, so that we can further assess the
adequacy of our ideas in such context. Also, by using SACI
“yellow pages” functionalities, we can improve the mech-
anism for retrieving the necessary plans so that agents do
not need to worry which agents to ask for the plans they
need. We believe that with the future development of this
approach, very sophisticated teams of autonomous agents
can be implemented, having the advantage of agents be-
ing specified with an agent-oriented programming language
that has formal semantics, and that is inspired by the well
known BDI architecture for cognitive agents.
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