Integrating tuProlog into DCaseLP to Engineer
Heterogeneous Agent Systems

Ivana Gungui and Viviana Mascardi

Dipartimento di Informatica e Scienze dell'Informazione — DISI,
Universi@a di Genova, Via Dodecaneso 35, 16146, Genova, ltaly.
1995s133@educ.disi.unige.it, mascardi@disi.unige.it

Abstract. Scrivo due righe e te le mando verso le 14; tu inseriscile QUI

1 Introduction

Multiagent Systems (MASSs) involve heterogeneous components which have different
ways of representing their knowledge about the world, about themselves, and about
other agents, and which adopt different mechanisms for reasoning about this knowl-
edge. Despite heterogeneity, agents need to interact and exchange information in order
to cooperate or compete for the control of shared resources; this interaction may follow
sophisticated communication protocols.

For these reasons and due to the complexity of agents behaviour, MASs are diffi-
cult to be correctly and efficiently engineered. Even developing a working prototype
may require a long time and a lot of different skills. In fact, the prototype can involve
agents that would better be modelled and implemented using a language based on Horn
clauses, agents that would be easily defined using an expert system-like language, and
others that should be directly implemented in some implementation language, in order
to access existing software packages or the web. Moreover, some general aspects of
the MAS can be better specified using ad-hoc specification languages. For example, the
MAS architecture, the internal agent architecture and the interaction protocols among
agents can be easily specified using graphical tools and languages.

The development of a prototype system of heterogeneous agents can be carried
on in different ways. A first -trivial- solution consists of developing all the agents by
means of the same implementation language and to execute the obtained program. If
this approach is adopted, during the specification stage it would be natural to select a
specification language that can be directly executed or easily translated into code, and
to specify all the agents in the MAS using it. An opposite solution would be to spec-
ify each “view” of the MAS (including the MAS architecture, the interaction protocols
among agents, the internal architecture and functioning of each agent) using the most
suitable language in order to deal with the MAS’s peculiar features, and to verify, exe-
cute, or animate the obtained specifications inside an integrated environment. Such an

* Parts of this document appear in the manuscript “Reasoning about Communicating Agents
inside DCaseLP” by M. Baldoni, C. Baroglio, I. Gungui, A. Martelli, M. Martelli, V. Mascardi,
V. Patti, C. Schifanella. Submitted.

environment should offer the means to select the proper specification language for each
view of the MAS, and to check the specifications. This check may be carried out thanks
to formal validation and verification methods or by producing an executable code and
runinng the prototype thus obtained.

Despite its greater complexity, the last solution has many advantages over the first,
trivial one.

1. By allowing the use of different specification languages for each view of the MAS,
it supports the progressive refinement of specificatitorsexample, the specifica-
tion of an interaction protocol performed during the early analysis stage does not
need to be as detailed as the complete specification of an agent performed during
the detailed design stage; details can be progressively added while the engineering
process goes on.

2. By allowing the use of different specification languages for the internal architecture
and functioning of each agerit,respects the differences existing among agents
namely the way they reason and the way they represent their knowledge, the other
agents, and the world.

3. By allowing different implementation languages to be integrated inside the same
running prototypeit allows the direct implementation of some of the agesitip-
ping the specification stage.

4. In case more than one language fits the requirements of an agent/view under speci-
fication,it allows the developer to choose the language he/she knows best and likes
thus leading to more reliable specifications and implementations.

Currently, solid and complete environments that allow the integration of hetero-
geneous specification and implementation languages in a seamless way do not exist
yet, but some preliminary steps have been made in this direction, and some initial re-
sults have already been achieved with the development of prototypical environments for
engineering heterogeneous agents. DCaselLP (Distributed CaseLP), integrates a set of
specification and implementation languages in order to model and prototype MASs and
defines a methodology which covers the engineering stages from requirements analysis
to prototype execution, which relies on the use of AUML both at the requirement anal-
ysis level and for describing theteraction protocoldollowed by the agents. Although
the first release of DCaselLP [10,1] demonstrates that the concepts underlying the “inte-
grated environment for engineering heterogeneous MAS” can be put into practice and
can give interesting results, it suffers from two limitations that affect its applicability:

1. it does not provide the means to re-use the code and instruments already developed
for the ancestor of DCaselLP, CaseLP [11]; and

2. it does not provide tools and languages for reasoning about properties of the inter-
actions occurring among the agents.

The last limitation can be addressed by translating AUML interaction protocols
into the DyLOG language for reasoning about actions and changes [7,4,6], and then
integrating DyLOG into DCaseLP [5], while the first limitation can be overcome by
extending DCaseL P with the ability to integrate agents specifyied as Prolog theories, as
discussed in this paper.

The structure of the paper is the following: Section 2 overviews the DCaseLP envi-
ronment and discusses the outcomes of integrating an existing Prolog implementation,
tuProlog, into DCaseLP, while Section 3 discusses the technical details of this integra-
tion. Section 4 shows an example of use of DCaseLP extended by tuProlog; conclusions
follow.

2 The DCaseLP environment

DCaselLP is a prototyping environment where agents specified and implemented in a
given (and fairly limited!) set of languages can be seamlessly integrated. DCaseLP pro-
vides an agent-oriented software engineering methodology to guide the MAS developer
during the analysis of the MAS requirements, the MAS design, and the development of
a working MAS prototype. The methodology is sketched in Figure 1. Solid arrows rep-
resent the information flow from one step to the next one. Dotted arrows represent the
iterative refinement of previous choices. The first release of DCaselLP did not face all
the stages of the methodology. In particular, the verification stage was not addressed.
The integration of tuProlog into DCaseLP discussed in Section 3 will allow us to ad-
dress also the verification phase.

Knowledge
specification
Role model
specification
Architecture
(specification
Agent class
specification
L
(Agent instance = Vi
) I specification I "
’y
Verificati Verification of g
erification specifications
.
Translation of speci— | '
fications into code :,’
i
!\
Prototype | Execution of the g
testi prototype

Fig. 1. DCaseLP methodology.

Design N ‘:

Prototype
implementation

DCaselP is the result of the effort to re-implement CaselLP [11] in order to over-
come its main limitations, namely:

1. its centralization,
2. its poor support to concurrency, and
3. its lack of adherence to existing standards.

The tools and languages supported by the first release of DCaselLP, discussed in
[10,1], are represented in Figure 2 by means of the darker boxes. Lighter boxes repre-
sent the desired extensions with respect to that release. Some of these extensions have
already been made, while some are currently being made, and some are just part of our
future work.

Which knowledge characterizes the application?

Which roles are involved in the application? Requirements

analysis

Design
UML 9

(specification
languages)

development

[JADE] (implementation
languages +

underlying
platform)
Y

Fig. 2. Tools and languages supported by DCaseLP, first release.

DCaseLP adopts an existing multiview, use-case driven and UML-based method
[2,3] in the phase of requirements analysis.

Once the requirements of the application have been clearly identified, the developer
can use UML and its Agent-oriented extension AUML to describe the interaction pro-
tocols followed by the agents, the general MAS architecture and the agent types and
instances. Moreover, the developer can also automatically create the rule-based code
for the agents in the MAS in such a way that the UML/AUML specification is satisfied.

In the following we will assume that AUML is used during the requirements analysis
stage, although the translation from AUML into rule-based code is not fully automated
(while the translation from pure UML into code is).

The rule-based language used for the implementation of DCaselLP agents is Jess
[9]. The Jess code obtained from the translation of AUML diagrams must be manually
completed by the developer with the behavioral knowledge which was not explicitly
provided at the specification level. The developer does not need to have a deep insight
in rule-based languages in order to complete the Jess code, since he/she is guided by
comments included in the automatically generated code. In this way, a developer who
is not confident with rule-based languages can concentrate on the AUML specification
and make a little effort to complete the rule-based code in order to make it executable.

On the other hand, the developer who prefers to define agents in a declarative language,
can skip the AUML specification stage and directly write the Jess code.

The choice of Jess as the language for implementing agents was lead by two con-
siderations:

1. being a rule-based language, Jess is suitable for representing both the event-driven
and the goal-driven behaviors of the agents;

2. being implemented in Java, Jess can be easily integrated into the FIPA-compliant
JADE platform.

JADE (Java Agent Development Framework, [8]) is both a middle-ware that com-
plies with the FIPA specifications [13] and a set of graphical tools that support the
debugging and deployment phases. The agents can be distributed across several ma-
chines and they can run concurrently. The adoption of JADE as the underlying platform
for implementing DCaseLP was a must in order to overcome the three limitations of
CaseLP. In fact, JADE is distributed, allows the concurrent execution of agents, and is
FIPA-compliant. By integrating Jess into JADE, we were able to easily monitor and de-
bug the execution of Jess agents thanks to the monitoring facilities that JADE provides.
The experiments carried out with the first release of DCaseLP were on a single machine
(see Figure 2: there is only one dark box labelled with “PC” under the JADE box).

The possibility of running the prototype allowed the first release of DCaseLP to
demonstrate its ability in checking the coherence of the AUML diagrams produced dur-
ing the requirements analysis step. Performing such a check is a well known and still
open problem that we could face without additional effort. Nevertheless, that release
still suffered from one limitation: it was not able to integrate any Prolog implemen-
tation. The ancestor of DCaseLP, namely CaselLP, is implemented in Sicstus Prolog
[12], and a lot of work has been done to study and define semi-automatic translators
from high-level specification languages into CaseLP agents, namely agents described
in Sicstus Prolog extended with communication primitives. Limited support to formal
verification of specifications — completely missing in DCaseLP —is indeed provided by
CaseLP. Without the integration of Prolog into DCaseLP, all that work would have been
lost. Recently, we have extended DCaselLP with the ability to integrate agents speci-
fyied as Prolog theories. Section 3 discusses how we have integrated an existing Prolog
implementation, tuProlog [14], into DCaseLP. The choice of tuProlog was due to two
of its features:

1. itis implemented in Java, which makes its integration into JADE easier, and
2. itis very light, which ensures a certain level of efficiency to the prototype.

The integration of tuProlog into DCaselLP has been completed at the beginning of
April 2004. Due to the syntactic differences existing between Sicstus Prolog and tuPro-
log, CaselLP agents specified using Sicstus Prolog cannot be simply treated as if they
were DCaselLP agents specified using tuProlog: a translation step from “Sicstus Pro-
log for CaseLP agents” to “tuProlog for DCaseLP agents” is necessary. We guess that
this translation step can be easily automatized, thus allowing us to re-use the tools de-
veloped for CaselLP inside DCaseLP, but, for lack of time, we did not start working
at its implementation. Always due to lack of time, we did not verify the ability to run

JADE, Jess and tuProlog agents as part of the same, heterogeneous, MAS. At the time
of writing, we have only developed some examples (one of which is discussed in Sec-
tion 4) that demonstrate that tuProlog agents are able to interact with both tuProlog and
JADE agents by taking advantage of the underlying communication middleware pro-
vided by JADE, and that the execution of the resulting MAS can be monitored using
the tools offered by JADE. When the translat&i¢stus Prolog— tuProlog’ will be

ready, and when the compatibility between Jess and tuProlog agents will be fully estab-
lished, DCaseLP will be closer than now to the integrated environment for engineering
heterogeneous MASs envisaged in Section 1. In particular,

1. It will support the progressive refinement of specificatidies example, the in-
teractions among agents belonging to the MAS and among internal components
of the same agent will be specified in some suitable language (AUML, other lan-
guages provided by CaseLP), will be then formally verified, and will be finally
implemented by adding all the details needed by the MAS or by the single agent to
work.

2. It will respect the differences existing among ageats agent which reasons in a
goal-driven, backward fashion will be easily defined by means of a tuProlog theory;
a rule-based agent will be better defined using Jess.

3. It will allow the direct implementation of some of the agedsDE agent are basi-
cally Java agents and thus they are implemented agents, rather than specified agents.

4. It will allow the developer to choose the language he/she knows best andifikes
will provide a large bunch of languages to choose from.

3 Integrating tuProlog into DCaseLP

The integration of tuProlog into DCaseLP has been carried out in order to provide the
developer of the MAS with a way to define the behavior of an agent by means of another
declarative language besides Jess, and to re-use the code and instruments previously
developed for CaseLP. To do so, tuProlog has been integrated into JADE.

JADE includes a specific package to develop Java agents and a programmer’s guide
containing implementation guidelines that the developer should follow to code his/her
agents in Java. Any Java class that extends the class Agent defined in the package
jade.core of JADE can be considered as a JADE agent. To add tuProlog in DCaseLP,
three Java classes have been defined in a package nafiadADE :

1. the classladeShell42P , which represents a tuProlog agent in JADE;

2. the classJadeShell42PGui that provides an additional GUI at the loading of
the agent; and

3. the classTuJadeLibrary , which is a tuProlog library (developed in Java) nec-
essary to a tuProlog agent in order to communicate in the JADE platform.

As the name of the class wants to suggédatjeShell42P behaves as a shell
for a tuProlog engine. To executeladeShell42P agent in JADE, the programmer
has to give in input the name of a file containing a tuProlog theory that represents
the behavior of the agent (Figure 3). The cldadeShell4d2PGui differs from the

theory

JadeSheII42P[‘rJ

Fig. 3. JADE shell for a tuProlog engine.

classJadeShell42P in the fact that, when loaded in JADE, it does not need in the
command line the name of the theory file: it loads the pop-up window shown in Figure
4 with which the user can browse the file system and select from the list of files the
one containing a tuProlog theory to be used as behaviour of the agent. Such tuProlog

ki B3

Loak in; I) last2

| tuPInd ADE
tuprolog.ico
E_] theary.pl

File: name: Ithqu.!_p| Open

Files of type: [Tuttifle (%) - Cancel |

Fig. 4. Window for theory selection.

theory file has only one restriction: it has to begin with the definition of a predicate
calledmain/0 . When a tuProlog agent is loaded in JADE, it first creates a tuProlog
engine containing the standard tuProlog libraries and then extends it by loading the ad
hoc tuProlog library named@uJadeLibrary . The behavior of any tuProlog agent is

to use the tuProlog engine, created during their initialization phase, always to solve the
predicatemain . A typical main predicate will call predicates to read a new message,
handle it and do some actions (as the update of the agent’s knowledge and message
delivery) according to the previous steps.

The goal’s demonstration is not visible to the programmer: if he/she wants to be
informed of the variable’s bindings made during the resolution, he/she has to explicitly
write the variables on the standard output or in some files that he/she can subsequently
go and read. The only explicit information which is provided to the user regards the
failure of the goal’'s demonstration and other situations which raise an error during the

resolution process. To make this information visible, the packaigmJADE defines
the Java clas&rrorMsg that is used by the tuProlog agents to pop-up a window
diplaying error and failure messages, like the one shown in Figure 5.

Error Solving The 'main' Goal 0Of Agent Test Ei

[Failure solving the rmain goal of agent Test,

Fig. 5. Window for error and failure messages.

The Java clas3adeShell42P defines the inner classhell42PBehaviour
(namedShell42PBehaviourGui in the classladeShell42PGui) that extends
the Java clasSyclicBehaviour defined in the packagade.core.behaviours
of JADE.

Shell42PBehaviour implements the only behavior ofladeShell42P agent:
it is executed forever, in other words, every time the agent is scheduled by the JADE’s
scheduler, it tries to fullfill only one activity, that is, the resolution of the guoain .

The Shell42PBehaviour models a cyclic task and cannot be interrupted while ex-
ecuting its action method. The result is the same as if the agent perfornvelila *
true do main ”statement, wittmain being dealt with as an atomic action.

The Java clas§uJadeLibrary is the core class regarding the communication of
the tuProlog agents in JADE. This library defines the predicsgesl andreceive
they are the directives implementing the sending and receiving of the FIPA compliant
and asynchronous messages to and from agents of a JADE platfornsemtieand
receive predicates simply invoke theend andreceive methods of the JADE
agents, therefore they allow communication among tuProlog agents but also among
ordinary JADE agents and tuProlog agents.

The arguments of theend predicate are: the performative, the content and the
JADE address/list of addresses of the receiver/receivers of the message to send. The
arguments of theeceive predicate are: the performative, the content and the JADE
address of the sender of the message received. Actually, since JADE agents have the
possibility to stop their activity while waiting for a message to arrive in their messages
gueue, th&uJadeLibrary also defines twblocking _receive predicates: one
without a timeout and the other one with a timeout. These predicates correspond to the
blockingReceive method of an ordinary JADE agent.

Finally, TuJadeLibrary defines two predicates for converting strings into terms
and vice-versa, namgihck andunpack . They allow tuProlog agents to send strings
as the content of their messages, and to reason over them as if they were Prolog terms.

4 Example

To show how DCaseLP can be used to develop a working MAS prototype, we use a
simple example drawn from a distributed marketplace scenario.

In our marketplace, there are two ageritsiyerl andbuyer2) that want to
buy some fruit (oranges, apples and kiwi) from three agesgef , sellerl and
seller2). Agentbuyerl , buyer2 ,sellerl andseller2 are all tuProlog agents,
while seller is an ordinary JADE agent.

The agents that sell fruit can receive two kind of messages from the buyers:

1. arequest for price: the ACLMessage received has the perfornREG@IESENd
the contenprice(Fruit) , whereFruit is oranges or apples or kiwi;

2. a request for buying: the ACLMessage received has the performRE@UEST
and the conteribuy(Fruit, Amount) , WhereFruit is oranges or apples or
kiwi, while Amount is the quantity of fruit that the buyer wants to buy.

A seller replies to a price request made by a buyer by sendilgE@RMACLMes-
sage that has the conterice(Fruit, Price) , WhereFruit is oranges or ap-
ples or kiwi andPrice is the corresponding price.

The reply to a request for buying depends on whether or not the seller has enough
fruit to sell: in case the quantity of fruit that the buyer is willing to buy is less or equal to
the one possessed by the seller, the seller will send the buyNF&IRMACLMessage
with the contenbought(Fruit) , to inform the buyer that the fruiruit has been
sold. On the other hand, if the seller does not own enough fruit, it sends the buyer an
INFORMACLMessage with the contenb _more(Fruit) , so the buyer will know it
can no longer buyruit from that seller.

At the beginning, the buyers send a request for the price of all the fruit to all the
sellers. Once they know the prices of the fruit, they send requests for buying the fruit to
the agents that sell at the cheapest price that fruit. The buyers keep sending messages
requesting to buy fruit until they have money or the sellers have enough fruit to sell.

To give the flavor of how a tuProlog agent looks like, Figure 6 shows a piece of
the tuProlog theory associatedidoyerl . Themain predicate defines three activities
which consist in handling incoming messages, asking the price of the fruit to seller
(this activity will be performed only once) and buying fruit. After the definition of
the main , the initial state of the buyer agent is definédiyerl possesses no fruit,
buys oranges in stocks of 2 kilos, apples in stocks of 3 kilos and kiwin in stocks of
12 kilos, and has 200 Euro to spend. The list of addresses of the seller agents follow
(sellers _addresses(]...])), together with other information that we do not
show for sake of conciseness.

Handling messages consists of receiving one of them (call toetteive pred-
icate provided by th@uJadeLibrary and introduced in Section 3) and transform-
ing its content, which is a string, into a Prolog term (call to the user-defined predi-
cateselect). Theselect predicate calls theinpack predicate provided by the
TuJadeLibrary in order to transform the string that represents the content of the
message into a term, and calls the user-defiredtlle predicate on the message per-
formative, the obtained term, and the message sender.

We only illustrate the case that the message received had cbotggtit(Goods)

The buyer agent knows the price®bods (factprice(S,Goods,P)) and it knows

the amount of quantity dboods it bought (factbuys(goods(Goods),quantity(Q))).
Since he succeeded in buyi@pods, it must update both the possessed amount of
Goods and the remaining money (calls to standard Prolog predicatesct |, is

andassert). Similar definitions of the predicateandle are provided for the other
kinds of message that the buyer agent can receive.

The ordinary JADE agenseller , is characterised by a Java code partly shown in
Figure 7. TheSeller class extends the JADEgent class. The behavior of the seller
agentis a cyclic behavioclass SellBehaviour extends CyclicBehaviour
which continuously checks for a messagesg = myAgent.receive()) and, if
the message is present, handle# it(tnsg '= null) handleMsgs(msg)).

Once all the agents have been specified using tuProlog or JADE, they can be loaded
into JADE and the execution of the obtained prototype can start. JADE offers the possi-
bility to follow the communication between the agents by means of the “sniffer” agent
whose output is shown in Figure 8.

PER IVANA: cambia la figura dello sniffer in modo che ci siano i 5 agenti, e
poi cancella questa parte di testo!!!

The state of the agents’ mailboxes can be inspected thanks to the introspector agent.
Figure 9 shows the state of the mailboxiafyer2 . This screenshot has been taken at
the beginning of the simulation; all tHlFORMmessages showed there are answers to
price requests previously issuedlmyyer2 to the seller agents.

Details on the messages exchanged can also be inspeced. Figure 10 shows the re-
quest for the price of kiwi sent biyuyer2 tosellerl . Figure 11 shows the answer
to this request.

The execution and monitoring of the prototype carried out by exploiting the tools
provided by JADE, allow the developer to see that the agents work well with respect to
their intended behavior. The output of the sniffer agent allows to verify that the mes-
sages are exchanged in the expected order (for example, that all the buyers ask for the
price of fruit first, and start buying fruit afterwards), while the detailed views of the
messages allow to verify that the content of replies is consistent with the content of re-
guests. Without the integration of tuProlog into JADE, verifying the correct working of
communicating agents implemented in Prolog could only be done by hand: the devel-
oper had to put breakpoints in its code or he/she had to write messages on the standard
output or on afile in order to follow what was going on during the prototype execution.
CaselLP offers graphical debugging tools more sophisticated than this “by-hand” in-
spection. Nevertheless, the adoption of the instruments already provided by a standard,
FIPA-compliant and open-source platform, represents an improvement with respect to
the use of proprietary instruments offered by CaseLP.

5 Conclusions and futute work

Scrivo poche riche dopo pranzo e te le mando verso le 14. Tu inseriscile QUI

References

1. E. Astesiano, M. Martelli, V. Mascardi, and G. Reggio. From Requirement Specification to
Prototype Execution: a Combination of a Multiview Use-Case Driven Method and Agent-
Oriented Techniques. In J. Debenham and K. Zhang, ediwogeedings of the 15th In-
ternational Conference on Software Engineering and Knowledge Engineering (SEKE’03)
pages 578-585. The Knowledge System Institute, 2003.

11.

12.

13.
14.

. E. Astesiano and G. Reggio. Knowledge Structuring and Representation in Requirement
Specification. IrProceedings of SEKE 200A2CM Press, 2002.

. E. Astesiano and G. Reggio. Tight Structuring for Precise UML-based Requirement Specifi-
cations: Complete Version. Technical Report DISI-TR-03-06, DISI, UnigedsiGenova,

Italy, 2003.

. M. Baldoni, C. Baroglio, L. Giordano, A. Martelli, and V. Patti. Reasoning about com-
municating agents in the semantic web. In F. Bry, N. Henze, and J. Maluszynski, editors,
Proceedings of the 1st International Workshop on Principle and Practice of Semantic Web
Reasoning (PPSWR 200®rages 84-98. Springer-Verlag, 2003. Volume 2901 of LNCS.

. M. Baldoni, C. Baroglio, I. Gungui, A. Martelli, M. Martelli, V. Mascardi, V. Patti, and
C. Schifanella. Reasoning about communicating agents inside DCaseLP. Sumbitted, 2004.

. M. Baldoni, C. Baroglio, A. Martelli, and V. Patti. Reasoning about interaction protocols
for web service composition. In M. Bravetti and G. Zavattaro, edit®receedings of the
1st International Workshop on Web Services and Formal Methods (WS-FM. Hl8dyier
Science Direct, 2004. Electronic Notes in Theoretical Computer Science.

. M. Baldoni, L. Giordano, A. Martelli, and V. Patti. Programming rational agents in a modal
action logic. Annals of Mathematics and Artificial Intelligence, Special issue on Logic-Based
Agent Implementation. To appear.

. F. Bellifemine, G. Caire, A. Poggi, and G. Rimassa. JADE — a white paper. Available at
http://jade.cselt.it/papers/WhitePaperJADEEXP.pdf , 2003.

. Jess home pagéittp://herzberg.ca.sandia.gov/jess/ .

. M. Martelli and V. Mascardi. From UML diagrams to Jess rules: Integrating OO and rule-

based languages to specify, implement and execute agents. In F. Buccafurri, Rior,

ceedings of the 8th APPIA-GULP-PRODE Joint Conference on Declarative Programming

(AGP’03), pages 275-286, 2003.

M. Martelli, V. Mascardi, and F. Zini. Caselp: a prototyping environment for heteroge-

neous multi-agent systems. Available Htp://www.disi.unige.it/person/

MascardiV/Download/aamas-journal-MMZ04.%ps.gz

SICStus Prolog home page. http://www.sics.se/isl/sicstuswwwy/site/

index.html

FIPA Specificationshttp://www.fipa.org .

TuProlog home pagéhttp:/lia.deis.unibo.it/research/tuprolog/

main :-
handle _msgs,
ask _prices,
buy _goods.

goods _possessed(oranges, 0) :- true.
goods _possessed(apples, 0) :- true.
goods _possessed(kiwi, 0) :- true.

buys(goods(oranges), quantity(2)) :- true.
buys(goods(apples), quantity(3)) :- true.
buys(goods(kiwi), quantity(12)) :- true.

money(200) :- true.

sellers _addresses(["sellerl@gruppoai:1099/JADE",
"seller2@gruppoai:1099/JADE",
"seller@gruppoai:1099/JADE"]) :- true.

handle _msgs :-
receive(Performative, Message, Sender),
select(Performative, Message, Sender).

select(Performative, Message, Sender) :-
bound(Performative),
bound(Message),
address _name(Sender, Name),
unpack(Message, TermMsg),
handle(Performative, TermMsg, Sender).

select(_, _,) :- true.

handle("INFORM",
bought(Goods),
Sender) :-
bound(Goods),
address _name(Sender,S),
price(S,Goods,P),
retract(money(M)),
retract(goods _possessed(Goods,X)),
buys(goods(Goods),quantity(Q)),
N is X + Q,
P na,
NM is M - P,
assert(money(NM)),
assert(goods _possessed(Goods,N)).

Fig. 6. A piece of the tuProlog theory associatedtgerl .

package tuPInJADE;

import jade.core.Agent;

import jade.core.AlD;

import jade.core.behaviours.CyclicBehaviour;
import jade.lang.acl. ACLMessage;

public class Seller extends Agent
{ private int orangesAmount = 5;
private int applesAmount = 5;
private int kiwiAmount = 10;
private int orangesPrice = 105;
private int applesPrice = 80;
private int kiwiPrice = 100;

protected void setup()
{ SellBehaviour p = new SellBehaviour(this);
addBehaviour(p);
}
}

class SellBehaviour extends CyclicBehaviour
{ private static boolean done = false;

public SellBehaviour(Agent a)
{ super(a); }

public void action()
{ ACLMessage msg;
while (!done)
{ msg = myAgent.receive();
if (msg != null) handleMsgs(msg);

Fig. 7. A piece of the Java code that defirsedler

Actions About

[y =R B oem [m JADE

@ (1 AgentPlatforms

Fig. 8. Output of the JADE sniffer agent.

[buyeraggruppoatt09SIADE |

View State Debug

Incaming Message: Outgoing Message:
- Current State |
e (R “ponding [(Sent|
Incoming Messages - Pending Outgoing Messages -- Pending |
INFORM
INFORM
INFORM

INFORM

INFORM

Fig. 9. JADE window showing the communication among agents.

[ACLMessage |
Sender: |\ﬂew ||buyer2@gruppoai:1DQQIJADE |
FamE sellerldyruppoai: 1099 /JADE ‘

Rephy-to: ‘ ‘
Communicative act: |request - |
Content:

nrice ki) -

Fig. 10.Price request frorbuyer2 to sellerl

i ACLMessage

Sender: |\ﬁew Hseller1@gruppoai:WQQIJADE

123 2 i:1099/JADE
Receivers: uyer 2egrippoal 4

Rephs-to:
Communicative act: inform -
Content:
price(kivi 120) i

Fig. 11.Price answer fronsellerl tobuyer2 .

