
Gesper: Support to Capitalize on Experience in
a Network of SMEs?

Maura Cerioli1, Giovanni Lagorio1, Enrico Morten2 and Gianna Reggio1

1 DISI–Dipartimento di Informatica e Scienze dell’Informazione,
Università di Genova, Via Dodecaneso 35, 16146 Genova, Italy

e-mail: {cerioli,lagorio,reggio}@disi.unige.it
2 Softeco Sismat S.p.A.

WTC Tower - Via De Marini 1, 16149 Genova, Italy
e-mail: enrico.morten@softeco.it

Abstract. Small and medium enterprises (SMEs) are the most affected
by the exponentially increasing complexity of the average software sys-
tem: not losing the grip on the new technologies may turn out to be
an unsustainable drain on productive effort, as their developers need to
devote a substantial part of their time to learning instead of producing.
In order to support continuous education and gathering/reusing solu-
tions, SMEs need a tool supported management of experience and knowl-
edge, providing problem-driven searches.
We describe the experience gained in designing and developing Gesper,
a tool for knowledge sharing that provides semantic searches based on
ontologies. This tool has been tailored to the needs of SMEs and a pro-
totype implementation has been built using free and open source tools.

Introduction

The complexity of the average software system is increasing each year, mak-
ing production and maintenance more and more difficult. Indeed, such a fast
growth may be sustained only thanks to the constantly improved technologies
and methodologies for software development. Therefore, it is mandatory for soft-
ware producers to keep their personnel and processes always updated.

Unfortunately, not losing the grip on the new technologies may turn out
to be an unsustainable drain on the productive effort, requiring developers to
devote a substantial part of their time to learning instead of producing. This
is particularly true for small and medium enterprises (SMEs in the following),
where the (human) resources are scant and the budget small.

Thus, many SMEs give up on a well planned effort. But, in order to keep in
contact with the evolution of tools, methodologies and technologies, they rely
on a plethora of ill assorted knowledge gathering efforts, like individual learning
initiative, endeavors by team members to somehow cope with the new tools and

? This research has been supported by the Parco Scientifico e Tecnologico della Liguria
s.c.p.a. - POS. N. 23 Avv. 2/2006.



technologies required by challenging projects, and acquisitions of new personnel,
with a different cultural background. Then, the bits and pieces of knowledge so
randomly acquired and the information about the availability of reusable assets
produced by a team are expected to spontaneously spread through the person-
nel. But, relying on this person-to-person schema of knowledge dissemination
has two main flaws. First of all, the person having the crucial bit of informa-
tion for one project may be currently tied up into another one and hence not
assignable to the lacking team. Thus, the knowledge cannot be accessed and
shared at the required moment, even if it is available inside the SME. More-
over, the availability of the expertise (reusable resource) may be unknown to
the people needing it, because they are not sufficiently familiar with the expert
(the team that produced it). The obvious solution to these problems is to have a
more formalized management of experience, knowledge, and resources available
within the SME3 allowing the needed information to be found without having to
rely on the social network. However, any formal process has its costs and to keep
them as low as possible, the best solution is to support the required activities
by a tool. Though some approaches and software systems support knowledge
management and collaborative working (see e.g., [3,14]), none of them is sat-
isfactory for the management of the enterprise knowledge and experience in a
SME. Indeed, in most cases those systems are specialized for a restricted kind
of experience or documents in a particular phase of the development, like, for
instance, the tools for code management (see, e.g., Eclipse [7]). The more general
systems are usually expensive and complex, being designed for the application
in large companies, and they require a difficult and time-consuming tailoring.
Moreover, quite often such tools are capable of supporting only a specific process
model and are difficult, or altogether impossible, to adapt to those in use in a
given SME. To the best of our knowledge, ViSEK [8] is the tool whose aim is
closest to ours. However, ViSEK is a wide-spectrum portal targeting a public
sharing of knowledge and resources on software engineering. Instead, we need to
model a more sophisticated mechanism, where resources are owned by individual
SMEs, which can decide to keep some of them private, share some others with
their partners, and even publish a few, possibly in a restricted version. There-
fore, a fine-grained visibility policy has to be provided. Thus, the production
of a new system appears to be the only viable solution to the problem. In this
paper we describe a prototype of such a system, called Gesper, from GEStione
dell’ESPERienza (Experience Management), which is currently under develop-
ment by a group of SMEs and the Department of Computer Science (DISI) of
the University of Genova.

The requirements and the design of the resources managed by Gesper are
discussed in Section 1. Section 2 is devoted to the architecture and a sketch of
the implementation. At the end we briefly discuss our results and further work.

3 Public information can quite easily found on the internet by using tools like Google.
The challenging problem is how to search data, which the SME wants to keep private.



1 Experience Management in a Network of SMEs

Designing a tool for managing experiences and knowledge for a cluster of coop-
erating SMEs has been more challenging from the viewpoint of its integration in
the productive process and policies than technically. In the following subsections
we discuss Gesper requirements and the part of design that is implied by them.

1.1 High-level Requirements of Gesper

In order to help the SMEs to keep up with the ever-evolving challenges of software
production, we have identified a few strategic points to be tackled.

First of all, the tool shall manage easy to access information, resources and
experiences, making them immediately expendable assets of the enterprise. No-
tice that experiences, being memorized in the system (as opposed to inside the
head of the person who actually made them) will be available independently of
the career choices of the experience originators. Ideally, people will access the
system to solve a specific problem and will get the correct resources, which could
be references to experts, hints or carefully documented explanations of the solu-
tion(s) found by other people in previous projects, tutorials, web references and
so forth. In Subsection 1.2 we will illustrate the conceptual model of managed re-
sources. It is worth noting, however, that the main requirements are parametric
on this model, being more concerned with searches and resource lifecycle, which
are independent from the structure of the managed resources. Thus, most part
of the requirement analysis and design of the tool discussed here, also applies to
other contextes where the resources are differently modelled.

As we argued, the resources to be hoarded and searched should have not only
a structure making immediate to extract knowledge from them, but also a clear
connection to the problems they refer to, so that the search can be problem-
driven, avoiding most false positives. To support this semantic search, resources
should be indexed using a common dictionary including the most relevant terms
of the problem domain. Thus, technically we need an ontology describing the
problem domain, so that the resources may be indexed by keywords chosen
from this ontology. Notice that the ontology is a configuration parameter of the
system and, though Gesper is based on an ontology for software development,
discussed in Subsection 2.1, it could be adapted to a different application domain
to support the management of experience for another market.

A second important point is the integration of the managed resources into the
company organization. This, on the one hand, means that they need to have a
well-defined lifecycle. That is, newly inserted resources have to get an approval in
order to become visible to users other than who has inserted them. In this way, for
instance, a practitioner writes the first draft and submits it while a person more
expert in company policies checks that the form agrees with the documentation
standards and that security concerns about private data disclosures are met.
This two-steps process also helps junior or newly hired staff to learn the company
practices by comparing their original draft to the published version. Moreover,
the resource will be updated or declared obsolete by an analogous review process,



so that the repository will not be cluttered by useless information. On the other
hand, the integration requires the resources to have different levels of visibility,
so that the results of a query will depend on who is performing it, possibly
granting more privileges to employees of the SME owning the system than to
those working for partner companies, and limiting guest access to public data.

Finally, the efforts to document the development process required, for in-
stance, by a quality plan should not be duplicated in order to capitalize on the
experience gained during the development. Therefore, the information that can
be retrieved from project documents, people curricula, etc should be automati-
cally acquired, pending the check and approval of a human supervisor, of course.
Even in the cases when structured knowledge cannot be (semi)automatically ex-
tracted from existing documents, it may still be convenient to integrate them
in Gesper, to make them searchable in a problem-driven fashion and have their
lifecycle managed by the tool. Indeed, such documents may provide a solution,
albeit indirect, for some problem missing better answers by structured resources,
and they have almost no extra production costs.

So far, we have discussed the requirements of Gesper from the viewpoint of
an individual SME. However, the tool should also address the needs of a cluster
of SMEs, supporting their cooperation. To this aim, the main requirement is
the capability of sharing resources in a limited and controlled form, providing
different levels of visibility, in order to let each company have full control of its
own resources. Gesper is actually designed as a federation of instances. Thus,
each company in the cluster owns an instance, installed on some local server,
containing its own resources. On such server, internal and external users may
perform queries with the assigned privileges. The cluster also owns an instance,
which is populated with the resources, suitably restricted, of all the individual
SMEs, in order to provide a centralized search point. To guarantee that no un-
wanted disclosures take place, the instance of each company exports a restricted
view of its resources to the global instance.

1.2 Conceptual Model of Experience

A central point of the system design is the choice of which resources will be
managed by the system, that is, which kinds of resource will possibly be the
results of problem-driven searches. Indeed, modelling this aspect captures one
of the tailoring needs for the system to be usable by a specific SME.

Figure 1 shows the fragment of UML [16] class diagram describing the re-
sources at a high abstraction level. The root of the conceptual model is the
class Resource, representing any kind of managed resource. All the results of a
search in the system will be of a type extending Resource. Its attributes and
relationships, hence, are those needed by the system to represent resources with
a realistic lifecycle in the context of a cluster of companies and to use them for
problem-driven searches. Indeed, resources are tagged by keywords described by
the ontology, so that the semantic search is possible. The results of a search are
briefly presented by just showing their name and a short description, for the
user to decide if a closer examination is worthwhile. Depending on the role of



Fig. 1. Conceptual model of resources

the user, who can be an employee of the company owning the resource, or of
a partner company, or just any guest, the level of visibility of the resource can
be full (that is, the user can see all the details), or restricted (that is, only the
name and the short description are shown), or none at all, corresponding to an
exclusion of that resource from the search results. For the owning company, the
visibility level is always full. However, not everybody in the company staff has
the complete control of the resource. In particular, two (possibly coinciding) roles
are identified for those entitled to editing: the employee who has submitted the
draft of the resource and the manager for approval of the resource. Indeed, each
resource has a status, which can be draft, automatically inserted (hence more
prone to contain errors), approved, and obsolete. The last value is automatically
set by the system when the resource has passed its expiring date and can be
reset by the approver, who is responsible for all aspects of the resource lifecycle.

Resources are specialized in order to capture different kinds of elements some-
how representing knowledge.

The class Person has a flag for distinguishing experts, who can appear as
results of a query if their expertise matches the search parameters. Persons who
are not flagged as experts may still be represented within Gesper, because they
are related to some other resource, for instance they work for the company or are
involved in some project, yet, they will not be yielded as results of any query. It is
interesting to note that during the requirement elicitation the SMEs involved as
clients refused to have the keywords and the expert flag automatically extracted
from the curricula of a person. Indeed, our clients want to keep the full control
on who should be contacted as expert on a given topic. Thus, Gesper allows
an employee to have a deep knowledge of some area, as recorded in his/her



curriculum, and yet not appear as an expert of that topic so that (s)he will not
be bothered with requests for help from his/her colleagues.

Fig. 2. Conceptual model of resources representing experience

The class Project classifies not only the projects that involves, or involved, the
SME owning this installation of Gesper, but also those of partner companies and
those which some known expert participated in. Projects are valuable resources,
for instance, for solving problems in the area of locating prospective partners in
future projects or support of people experienced in the bureaucracy of a specific
form of funding. Moreover, projects are a natural source of implicit knowledge
in the form of the produced documents, which can be managed as elements of a
special subclass of ExperienceUnit.

The class Company has as elements the SME owning this installation of Ges-
per, owning all the resources inserted by its employees, and the other companies
in the SME cluster, the partners in some project, and so on.

The most interesting specialization of Resource is the class ExperienceUnit,
which captures the knowledge, both in implicit and explicit forms, accumulated
through the experience of the SME, its employees and partners. In Figure 2 we
detail the descendants of ExperienceUnit.

The first level of specialization distinguishes the experience units in cate-
gories, accordingly to how the user can put the experience to practical use.
Indeed, we have Procedure, representing resources that directly describe a proce-
dure to solve a problem, like, for instance, hints and solution for specific problems
formalized as problem frames (see, e.g., [4]), ReusableUnit, whose instances are



reusable assets to be directly imported and used in the software development,
like, for instance, models, code or design patterns [9], and Document, which in-
directly provide knowledge, like, for instance, files managed by Gesper itself, or
external files, or even physical documents, e.g. books, CDs and DVDs.

The deeper levels of specializations have been only partially worked out and
should be extended in a commercial tool. While a large part of the specialization
tree having Resource as root could be reused in the model of another system of
experience management for SME in different areas, the design of the categories
of reusable units and procedures is mostly specific of SMEs in the ICT field and
should be reworked for a different application.

1.3 Main Usage Scenarios

Let us briefly describe the usage scenarios concerning the core business of Gesper.
As they are quite intuitive, we here summarize them mostly in natural language.
However, they were all fully developed as use cases and we propose one of them
in full details to let the reader get the gist of Gesper documentation.

When appropriate, the use cases are complemented by sketches of the corre-
sponding GUI, to give the clients a better understanding of the expected inter-
actions with the system.

In general, the user interface shall be as simple and intuitive as possible. It
will show a graphical view and a tree representation of the ontology, to allow
selecting keywords for resource searching and indexing, together with a research
panel and, possibly, several editing/creating resource forms in separate tabs. The
capability of inserting and/or editing multiple resources at the same time will be

Fig. 3. Screenshot of the Wizard



extremely useful when, while editing a resource, say the person Phil (as in the
example shown in the screenshot in Figure 3), the user notices that the resource
should be linked to another that has not been entered yet. Suppose, for instance,
that the resource the user is inserting is owned by ACME, a firm which is not in
the repository. Since the firm is not yet present, its name does not show up in
the combo box corresponding to the relation owned by. Thanks to the tab-based
interface, the user can open another tab to create the new firm, say ACME, and
save it in the repository. Because the combo boxes are automatically updated,
the user can then go back to editing the resource he/she was inserting, choose
ACME from the combo box and seamlessly continue his/her work.

Resource insertion use case

Name Resource insertion
Primary actors Internal User (IU)
Supporting actors None
Description IU adds a new resource to the system
Triggers None
Pre-conditions IU is logged in the system
Normal flow Course of actions

1. IU chooses to create a new resource (specifying its kind).
2. Gesper creates an empty edit tab for the new resource.
3. IU correctly fills in the fields with the resource data:

– selecting keywords from the ontology using indifferently the graphic
view or the tree representation

– choosing values from lists for enumeration types and resources.
4. IU saves the resource
5. Gesper automatically provides the values draft for the status, IU for

the inserter, and the current date for the creation date; then it saves the
new resource in the repository.

Post-conditions The repository contains the new resource
Additional requirements None
Notes and issues Data editing and creation will be supported by the GUI

using:
– Combo boxes for fields admitting a finite (and reasonably small) set of

values (see, e.g., the visibility tags in Figure 3).
– Combo boxes for enumerating resources that could be linked with the

one the user is inserting or editing. Furthermore, these combo boxes
will be views on the repository, automatically updated when something
changes (see, e.g., the owned by field in Figure 3).

– Instant field validation, warning the users by means of not obtrusive
hints and forbidding to save inconsistent data (see, e.g., near the e-mail
field in Figure 3).

– The graphical and tree representations of the ontology for selecting the
keywords for the resource (not present in the fragment in Figure 3).



Automatic insertion of a documental resource Logged users can choose
to insert a document using the Automatic-Input , to have the ontology keywords
automatically extracted by the tool.

Users select a document file in their (local) system specifying the template4

it adheres to; for instance, that for meeting minutes. Then, the tool parses the
document, searching for ontology keywords to be associated with the resource.
Gesper completes the other data automatically as for manual insertion and saves
the new resource with state automatically inserted.

Edit and approval of a resource Managers can review, edit and approve
resources. Gesper provides, to logged managers, a list of draft resources to be
reviewed. When one of these resource is selected by a manager, Gesper opens an
edit tab where the resource can be edited and, optionally, approved.

Searching From the search page, users can insert a search string, choose which
kinds of resources they are interested in, and start the search. Gesper shows the
list of the matching resources and allows to refine the search string manually or
using input from either (or both) representations of the ontology.

When the search string contains one keyword from the ontology, the graphic
view of the ontology is centered on that (and the same one is selected on the tree
representation). Otherwise, if more keywords are present, then the user is asked
to choose the one to use as centering point of the ontology representations.

2 Gesper Architecture and Implementation

In this section we sketches Gesper architecture and briefly discuss the most
interesting implementation details.

It is interesting to note that a large part of the architecture has been almost
completely fixed by the decision, at the level of requirements, of using already
available open-source and freeware software. Thus, the design phase has focused
mainly on the definition of the ontology, discussed in Subsection 2.1.

2.1 Ontology

The choice of the ontology is an important part of the customization of Gesper.
Indeed, the ontology plays the role of dictionary for the keywords used to tag
the resources and hence to direct the searches. Thus, changing the ontology
effectively changes the applicative domain (within the limits imposed by the
modelled resources).

An acceptable ontology for Gesper should encompass not only the concepts
used in software development, covering both the technologies and the processes,
but also those specific of the applicative domains targeted by the SMEs using
4 Gesper has to be customized for the templates defined in a particular SME, for

instance by its QA plan. In the prototype we used templates of one of the client
SMEs.



the system. Clearly, if all the aspects are fully developed, the ontology risks
growing too much, becoming unmanageable. Therefore, we needed a carefully
designed ontology that, on the one hand, spreads on different domains, from
software engineering to, say, national healthcare organizations and industrial
automation, and on the other hand, cut down to only those terms actually used
by the interested SME. For instance, cutting down the software engineering
terminology to those development processes actually used. Thus, we did not find
a satisfactory ontology among the plethora of those somehow related to software
development (see e.g., [1,15,13,20,19] and [5] for further references), as they were
missing the domain specific parts. Moreover, we were not able to combine several
ontologies on different domains to get what we needed, as merging the interesting
ontologies would have produced a too large result and required careful work to
avoid duplicates of concepts on the overlapping areas.

Therefore, we designed the ontology provided with the prototype in a col-
laborative way with the help of software developers working in several different
SMEs, in particular those playing the role of Gesper clients. The current ver-
sion is still incomplete, with only the major areas fully developed and should be
improved in a realistic tool.

The design process of the ontology consisted of two steps.
First we discussed the categories with the aid of a visual model of the ontol-

ogy, realized in UML, describing the infrastructure of the ontology. The model
captures the classes used to categorize the concepts and their relationships, in-
cluding subtyping, in an immediate way, very easy to understand. Thus, it pro-
vided an invaluable support to the several brainstorming meetings needed to
finalize its structure. By design, all classes of the ontology contain either indi-
vidual elements, that is, are leaves of the hierarchy, or only subclasses. In this
phase, we also decided which part of the ontology to detail and use to index the
resources in the prototype.

The second step of the process was the selection of the individual instances
of the leaf classes and the links among those individuals, that is the instances
of the relations between classes. This further analysis has been conducted in an
asynchronous and concurrent way, starting from a textual file generated from the
model and containing the structure of the ontology, that is the list of the classes
and their relationships. Then each group involved in the design added to its
own copy of the file the interesting instances and their links in fixed format and
positions, so that the result could be automatically processed. The resulting files
were merged and the complete file was used, on the one hand, to automatically
import the ontology into Protégé (see, e.g., [18]), by a Protégé plug-in we have
developed for this purpose, and, on the other hand, to update the UML model,
by adding the class instances to it.

Finally, the Protégé project was exported in OWL [17] format to be used as a
configuration parameter of Gesper. While in the current prototype the ontology
is a fixed resource of the tool, an industrial strong tool should allow users to
update and extend the ontology as needed. This aim could be easily achieved,
for instance, by integrating the Protégé editor within Gesper.



Fig. 4. Ontology: the Root View

The root level of the ontology is depicted in Figure 4. Notice that classes at
this level describe the standard concepts of any software development process and
are quite stable in time. On the contrary, the elements of the class Applicative
Domain have been produced by analyzing the current projects of the involved
SMEs. Thus, they are specific of the prototype and should be changed for a
different productive district. Moreover, even for the same group of users they
will change when the client portfolio of the SMEs evolves.

To give just the intuition of the complexity of the final ontology, Figure 5
depicts the fragment of diagram related to the applicative domain and the GIS.

Fig. 5. Ontology: the Applicative Domain View



2.2 Gesper Architecture

The architecture of Gesper consists of several independent modules, detailed
below, that work on the content repository, providing services like data input,
searches and analysis. Figure 6 contains a schematic view of the whole Gesper
architecture. The box on the left, GUI, represents a generic client, which, in
the current prototype, is a graphical user interface hosted inside a web browser.
The big rounded box represents an instance of a Gesper server, that is, a single
node of a federation, owned by a SME, that hosts a resource repository and its
services. Finally, the box on the bottom right, Shop, represents the central node
of the federation, which gathers (summarized) data from all the other nodes of
the federation and presents a view of this data to the public.

Fig. 6. Gesper architecture

The implementation of Gesper relies on free tools and platforms; at its core
we find Alfresco [2], a Java-based open source ECM (Enterprise Content Man-
agement) providing document management and search facilities. Alfresco offers
its functionalities via Web Services and the Java Content Repository API. More-
over, Alfresco includes a web application allowing users to manage the document
repository through any web browser. This web application has been customized
and enriched to seamlessly work with the Gesper modules interacting with users.

At the moment there are eight modules: Wizard and Automatic-Input handle
data input, Ontology-Tree and Ontology-Graph allow to navigate the ontology,
Search, as the name implies, performs searches and Shop aggregates some data
to showcase the public results and resources of a Gesper federation. Finally, Ob-
jectifierWS and ShopWS are two auxiliary modules providing simple interfaces
to Alfresco; the former maps Java objects to and from the Alfresco repository
and the latter allow Shop to perform predefined queries.



Some modules run only on clients (for instance, Ontology-Tree) or on the
server (e.g., ObjectifierWS ), but most of them consists of a client part, which is
a GUI for the users, and a server part, which interacts with the repository.

Let us detail the tasks of each module.

Although both Wizard and Automatic-Input handle data input, the former
presents the users a user-friendly interface to input/edit resources and handle
their lifecycles, while the latter performs offline batch acquisitions of (electronic)
documents, inferring their metadata by scanning their contents.

Wizard exploits AJAX technology using the GWT (Google Web Toolkit) [10]
that makes it easier to write high-performance AJAX applications. Using GWT,
web applications can be developed in the Java programming language, using
full-featured Java integrated development environments, and then compiled into
highly optimized JavaScript.

Automatic-Input relies on the Java library DUO [6], a wrapper for UNO [21],
to read Word .doc and Open Office .odt documents. As mentioned before,
Automatic-Input needs to read the document contents in order to extract their
metadata. The module searches for keywords, belonging to the ontology, and
other information in fixed, but customizable, positions. For instance, the module
can extract the participant list from the minutes of a meeting. This is achieved
by using document templates, specifying the locations, inside documents, where
important metadata can be found and extracted. The prototype handles two
templates, one for meeting minutes and the other for development quality plans.

Ontology-Tree and Ontology-Graph allow the users to navigate through the
ontology. The former presents the entire (linearized) hierarchy of classes and
their instances in a tree-based way; the hierarchy has to be linearized because
every class can have any number of parents in the ontology. The view offered
by Ontology-Tree is best suited when the user is an expert, knows the relations
between the concepts, and, basically, knows “what to look for” (that is, where are
the exact keywords (s)he is looking for in the logical hierarchy). In these cases
the tree view offers the quickest access to any part of the ontology. However,
when the user is not an expert or needs advice on what entities are related
to what is current looking for, the tree based view is not particularly helpful,
because it does not represent any relationship but inheritance: in these cases the
Ontology-Graph kicks in. The Ontology-Graph offers a graph view where nodes
represent classes and instances, and edges represent relations among those. The
view is initially centered on a particular node and, to avoid cluttering the display,
only the selected node (the one the view is centered on) and its directly related
nodes are shown. Users can navigate the ontology by re-centering the view on
another area simply by clicking on the node they want to center the view on.
The use of this module is best suited for exploratory queries and for navigating
through the ontology, in order to gather ideas. Both ontology modules consists
of a server-side part, written in Java, and a client-side part written in Javascript.
The server components rely on Jena [11] for reading the ontology, stored as an
OWL [17] file. Ontology-Graph uses jsViz [12] to render the graphs.



The Search enriches the built-in search capabilities of Alfresco with semantic
searches, exploiting Ontology-Tree and Ontology-Graph on the client side, and a
small layer of custom code, on top of Alfresco search module, on the server side.

The Shop provides the users nicely formatted reports summarizing the pub-
lic data of all nodes inside a federation. Shop uses its server side counterpart,
ShopWS , to query the Alfresco repository. This latter module has been explicitly
designed with information security in mind, so it allows to run only queries that
have been previously checked and approved. This avoid any leak of sensitive in-
formation that could be, innocently or maliciously, gathered by running generic
queries run on the repository.

Conclusions and Further Work

We have presented the insight gained by our experience of design and develop-
ment of a tool for managing experiences and knowledge in a small network of
SMEs. In order to contain the development costs, the use of open-source and free
software was required from the very beginning. This choice has greatly influenced
the design and the architecture of Gesper.

The most original features of Gesper are, on the one hand, the presentation of
knowledge in a problem-driven style supported by a semantic search based on an
ad-hoc ontology and, on the other hand, the management of resources directly
representing knowledge, as opposed to documents from which the knowledge
may be extracted, as it is in most cases.

Being a prototype, Gesper could be improved on a number of aspects, besides
a better implementation of the current features.

First, the role of administrator should be supported by tools to manage the
ontology, the users, and the templates to be used in the automatic acquisition of
documents. The former two activities are currently performed by functionalities
of respectively Protégé and Alfresco, which could be integrated in Gesper, pos-
sibly making this improvement not much expensive. The ontology maintanance
is prioritary, because of the quick changes of the applicative domain, requiring
the users to update constantly the terminology used to tag the resources.

A second aspect needing improvement is the management of the Gesper fed-
eration and, in particular, how to avoid resource duplications. Indeed, currently if
two SMEs share a resource, for instance a document of a joint project, two totally
independent instances of the resource exist, in the content management system
of each company. Though a better approach to sharing is obviously needed (and
solutions could be probably borrowed from the peer-to-peer field), privacy poli-
cies and dynamic aspects (for instance employees changing the company they
work for) make modelling the federative aspects quite challenging.

An extremely challenging add-in to Gesper, would be to automatically ex-
tract knowledge from experience while it takes place, by means of a small wizard
helping the users to take notes of the relevant points during their normal work-
flow, or of watchers, able to record the principal steps taken during procedures,
or to compute the resources used for some activity, to help future estimates.



Last, but not least, we need to analyze the user feedback to understand the
acceptance of the tool and see how to prioritize its improvements.

References

1. Félix Garc̀ıa, Manuel F. Bertoa, Coral Calero, Antonio Vallecillo, Francisco Ruiz,
Mario Piattini, and Marcela Genero. Towards a consistent terminology for software
measurement. Information & Software Technology, 48(8):631–644, 2006.

2. Alfresco. http://www.alfresco.com/.
3. V. Basili and F. McGarry. The Experience Factory: How to Build and Run One. In

Proceedings of the 1997 (19th) International Conference on Software Engineering.
IEEE publishing, 1997.

4. C. Choppy and G. Reggio. A UML-based approach for problem frame oriented
software development. Information and Software Technology, 47(14):929–954, 2005.

5. Calero Coral, Ruiz Francisco, and Piattini Mario. Ontologies for Software Engi-
neering and Software Technology. Springer-Verlag, Berlin, Heidelberg, 2006.

6. OpenOffice.org UNO/Java wrapper. http://sourceforge.net/projects/

duo-wrapper.
7. Eclipse - an open development platform. http://www.eclipse.org/.
8. Raimund L. Feldmann and Markus Pizka. An on-line software engineering repos-

itory for germany’s SME - an experience report. In Scott Henninger and Frank
Maurer, editors, LSO, volume 2640 of Lecture Notes in Computer Science, pages
34–43. Springer, 2002.

9. Erich Gamma, Richard Helm, Ralph Johnson, and John M. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

10. Google Web Toolkit. http://code.google.com/webtoolkit/.
11. Jena – a semantic web framework for Java. http://jena.sourceforge.net/.
12. jsViz. http://code.google.com/p/jsviz/.
13. OpenCyc. http://www.opencyc.org/.
14. Gihan Kim, Minkwang Lee, Jongphil Lee, and Kyungwhan Lee. Design of SPICE

experience factory model for accumulation and utilization of process assessment
experience. In Proceedings of Third ACIS International Conference on Software
Engineering Research, Management and Applications. IEEE publishing, 2005.

15. Olavo Mendes and Alain Abran. Issues in the development of an ontology for
a emerging engineering discipline. In William C. Chu, Natalia Juristo Juzgado,
and W. Eric Wong, editors, Proceedings of the 17th International Conference on
Software Engineering and Knowledge Engineering (SEKE’2005), Taipei, Taiwan,
Republic of China, July 14-16, 2005, pages 139–144, 2005.

16. OMG. UML superstructure specification v. 2.1.2, 2007. http://www.omg.org/

spec/UML/2.1.2/.
17. OWL Web Ontology Language. http://www.w3.org/TR/owl-features/.
18. Protégé. http://protege.stanford.edu/.
19. Sue sen Lin, Fong hao Liu, and Shion fu Loe. Building a knowledge base of

IEEE/EAI 12207 and CMMI with ontology. In Proceedings of Sixth International
Protégé Workshop (Manchester, England, 7–9 July 2003), 2003.

20. Naiyana Tansalarak and Kajal T. Claypool. XCM: A component ontology. In Pro-
ceedings of Workshop on Ontologies as Software Engineering Artifacts (OOPSLA),
24–28 October 2004.

21. Open Office UNO - Universal Network Objects. http://udk.openoffice.org/.

http://www.alfresco.com/
http://sourceforge.net/projects/duo-wrapper
http://sourceforge.net/projects/duo-wrapper
http://www.eclipse.org/
http://code.google.com/webtoolkit/
http://jena.sourceforge.net/
http://code.google.com/p/jsviz/
http://www.opencyc.org/
http://www.omg.org/spec/UML/2.1.2/
http://www.omg.org/spec/UML/2.1.2/
http://www.w3.org/TR/owl-features/
http://protege.stanford.edu/
http://udk.openoffice.org/

	Gesper: Support to Capitalize on Experience in a Network of SMEs 
	Maura Cerioli, Giovanni Lagorio, Enrico Morten and Gianna Reggio

