
Flattening versus direct semantics
for Featherweight Jigsaw ∗

Giovanni Lagorio Marco Servetto Elena Zucca
DISI, Univ. of Genova, v. Dodecaneso 35, 16146 Genova, Italy

email: {lagorio,servetto,zucca}@disi.unige.it

Abstract
Inheritance in object-oriented languages allows, roughly, to obtain
the same effect one would get by duplicating the methods of the
parent class in the heir. However, the key advantage is that source
code duplication is avoided, and the code of the parent is, instead,
found on demand, through a runtime procedure called method look-
up. In other words, two different semantics of inheritance can be
given: flattening semantics, that is, by translation into a language
with no inheritance, and direct semantics, that is, by formalizing
dynamic method look-up. Analogously, many other composition
mechanisms which have been proposed for enhancing the object-
oriented paradigm, such as mixins and traits, can be formally de-
fined either by translation into standard inheritance, or by a provid-
ing a direct execution model.
Flattening semantics generally provides a simpler model and can
be used as a guide in language design. However, it is not adequate
for compositional analysis since the binary code for each code frag-
ment, say, a class, can be generated only when all used fragments
are available.
In this paper we define both semantics and prove their equivalence
for Featherweight Jigsaw, a class-based language providing a very
general framework for software composition, subsuming, besides
other mechanisms, standard inheritance, mixins, and traits.

Introduction
Inheritance in object-oriented languages allows, roughly, to obtain
the same effect one would get by duplicating the methods of the
parent class in the heir. However, the key advantage is that source
code duplication is avoided, and the code of the parent is, instead,
found on demand, through a runtime procedure called method look-
up. In other words, two different semantics of inheritance can be
given: either by translation into a language with no inheritance, or
by providing a direct execution model which formalizes dynamic
method look-up. This difference is analogous, in a sense, to the
one between using compilation or interpretation for implementing

∗ This work has been partially supported by MIUR EOS DUE - Extensible
Object Systems for Dynamic and Unpredictable Environments.

Copyright is held by the author/owner(s).
FOOL ’09 24 January, Savannah, Georgia, USA.
Copyright c© 2009 ACM . . . $5.00

a language, and has been often mentioned in the literature under
different names. For instance, in [4] the former is called “copy
semantics”, and the fact that the two semantics should be equivalent
is used as a guideline to discuss and evaluate different rules for
overloading resolution. This terminology has been followed in [6,
7, 8] for explaining semantics of multimethods. In [2] the design
of an extension of Java with mixin classes is guided by the “copy
principle”, that is, that the behaviour of a class obtained by mixin
instantiation should be the same that one would get by copying the
code of the mixin into the heir. In [13] semantics of inner classes in
Java is given both by translation and by direct reduction rules, and
a proof of equivalence is provided.1

In particular, many composition mechanisms which have been pro-
posed for enhancing the object-oriented paradigm can be formally
defined either by translation into standard inheritance, or by a pro-
viding a direct execution model. For instance, semantics of traits
[18, 10] has been always given in the literature, with the notable
exception of [16, 15], by translation into a language without traits,
hence by flattening style, whereas for mixin classes there are exam-
ples of both solutions [2, 11].
In this paper, we call the two kinds of semantics flattening and di-
rect semantics, respectively. Both are, in our opinion, useful. Flat-
tening semantics usually provides a simple and intuitive model of
what is expected to happen, and can be even used as a guide in lan-
guage design, as it is the case in [4, 2] mentioned above. On the
other hand, it can be inadequate for compositional analysis, since
the binary code for each fragment, say, a class, can be generated
only when all used fragments are available. Direct semantics, in-
stead, allows to analyze a class in isolation, since the references
to members provided by other classes do not need to be resolved
at compile time. These references are indeed resolved at runtime
through a dynamic look-up procedure. This procedure is a natu-
ral generalization of dynamic look-up for the standard inheritance
case, where the method is recursively searched in the parent(s)
class(es) if not present. However, this generalization can be non-
trivial, leading to a more difficult understanding of the language
execution model. Clearly, the ideal situation would be to have both
semantics and know that they are equivalent.
In this paper, we achieve this result in a very general framework,
that is, Featherweight Jigsaw (shortly FJIG), a class-based calculus
formalizing, in a Java-like setting, the Jigsaw framework originally
proposed in Bracha’s seminal work [9]. The full presentation of
FJIG, including the type system and the related soundness proof,
can be found in [14]. Note that solving the problem for FJIG is

1 The well-known difference between heterogeneous and homogeneous
translation of generics (see, e.g., [17]) is only partly analogous, since in
this case both solutions are translations, that is, the runtime model does not
change.

much more than a case-study, since this calculus subsumes a vari-
ety of mechanisms for composition of classes, including standard
inheritance, mixins, traits, and hiding. Hence, the two equivalent
semantics presented here can serve as a paradigmatic solution.
The paper is organized as follows. Section 1 provides an informal
introduction to FJIG by using a sugared surface syntax.Section 2
introduces a lower level syntax and defines flattening semantics.
Section 3 defines direct semantics of FJIG and proves the equiva-
lence between the two semantics. In the Conclusion, we summarize
the contribution of the paper and briefly discuss related and further
work.

1. An informal introduction
In this section we illustrate the main features of FJIG by using a
sugared surface syntax, given in Figure 1. We assume infinite sets
of class names C , (member) names N , and variables x . We use the
bar notation for sequences, e.g., µ is a metavariable for sequences
µ1 . . . µn.
This syntax is designed to keep a Java-like flavour as much as pos-
sible. In the next section we will use a lower-level representation,
which allows to formalize the semantics in a simpler and natural
way.
In this paper, we do not illustrate typing issues of FJIG, since they
are not relevant for our aim. Hence, we also slightly simplify the
syntax omitting a few constructs that only play the role of type
annotations. We refer to [14] for a full presentation.
A program consists of a sequence of class declarations (class name
and class expression), as in FJ. We assume that no class is declared
twice and order is immaterial, hence we can write p(C) for the
class expression associated with C .
Class expressions are basic classes, class names, or are inductively
constructed by a set of composition operators. Let us say that
C “inherits from” C ′ if the class expression associated with C
contains as subterm C ′, or, transitively, C ′′ which inherits from C ′.
In a well-formed program, we require this generalized inheritance
relation to be acyclic, exactly as it is usually required for standard
inheritance.
A basic class consists of a sequence of field declarations, a con-
structor declaration, and a sequence of method declarations. We
assume that no field or method is declared twice and order is im-
material.
Field and method declarations are as in FJ, except that they are
decorated by one of the following modifiers: abstract, virtual,
frozen or local, and a method has no body if and only if its
modifier is abstract. The meaning of modifiers is as follows:

• An abstract member has no definition, and is expected to be
defined later when composing the class with others.
• A virtual or frozen member has a definition, which can be

changed as the effect of the composition operators. However,
redefinition of a frozen member does not affect other mem-
bers, which still refer to its original definition.
• Finally, as the name suggests, a local member cannot be se-

lected by a client, and is not affected by composition operators,
hence its definition cannot be changed.

We assume by default (hence omit) the modifier frozen for fields
and virtual for methods. A class having at least one abstract
member must be declared abstract.
The following example illustrates the meaning of modifiers.2

abstract class A {
abstract int M1();

2 To write more readable examples, we assume that the primitive type int
and its operations are available.

int M2() { return M1() + M3(); }
local int M3() { return 1; }

}
abstract class B {

abstract int M2();
frozen int M1() { return 1 + M2(); }

}

These two classes are abstract (hence cannot be instantiated), have
no fields, and the default constructor (see below). A concrete class
can be obtained by using the merge operator as follows:

class C merge A, B

This declaration is equivalent to the following:

class C {
frozen int M1() { return 1 + M2(); }
int M2() { return M1() + M3(); }
local int M3() { return 1; }

}

Conflicting definitions for the same member are not permitted,
whereas abstract members with the same name are shared. Mem-
bers can be selected by client code unless they are local, that
is, we can write, e.g., new C().M2() but not new C().M3(). To
show the difference between virtual and frozen members, in
the following examples we use the override operator, a variant
of merge where conflicts are allowed and the left argument has the
precedence.

class D1
{ int M2() { return 2; } } override C

An invocation new D1().M2() will evaluate to 2, and an invoca-
tion new D1().M1() to 3. On the other hand, in this case:

class D2
{ int M1() { return 3; } } override C

an invocation new D2().M1() will evaluate to 3, but an invocation
new D2().M2() will not terminate, since the internal invocation
M1() in the body of M2() still refers to the old definition.
The above modifiers are rather intuitive and well-established for
methods, whereas, to the best of our knowledge, they have been
never applied to fields. The meaning is analogous, as shown by the
following example which also illustrates how constructors work.

class A1 {
abstract int F1;
virtual int F2;
int F3;
constructor(int x) {

F2 = x;
F3 = x;

}
int M() { return F2 + F3; }

}
class C1 {

int F1;
int F2;
int F3;
constructor(int x) {

F1 = x + 1;
F2 = x + 1;
F3 = x + 1; }

} override A1

A basic class defines one3 constructor which specifies a sequence
of parameters and a sequence of initialization expressions, one for
each non-abstract field. We assume a default constructor with no
parameters for classes having no fields. Note the difference with FJ,

3 Since overloading is not allowed.

p :: = cd program
cd :: = cmod class C CE class declaration
cmod :: = abstract | ε class modifier
CE :: = class expression

B basic class
| C class name

derived operators
| merge CE1,CE2 merge
| CE1 override CE2 override
| rename N to N ′ in CE rename
| restrict N in CE restrict
| hide N in CE hide
| . . .

primitive operators
| CE1 + CE2 sum
| rename σι; σo in CE reduct
| freeze N in CE freeze
| CE [kh{super(e)}] constructor wrapper

σ :: = N :T 7→N ′:T ′, _ 7→ N :T renaming
N :: = F | M member name
T :: = C | MT member type
MT :: = C→C method type
kh :: = constructor(C x) constructor header

B :: = {ϕ κ µ} basic class
ϕ :: = mod C F ; field
κ :: = kh{F=e} constructor
µ :: = mod C M (C x){return e;}

| abstract C M (C x); method
mod :: = abstract | virtual

| frozen | local member modifier

e :: = expression
x variable
| e.F client access
| e.M (e) client invocation
| F internal access
| M (e) internal invocation
| new C (e) object creation

Figure 1. FJIG (surface) syntax

where the class constructor has a canonical form (parameters ex-
actly correspond to fields). This would be inadequate in our frame-
work since object layout must be hidden to clients. In order to be
composed by merge/overriding, two classes should provide a con-
structor with the same parameter list (if it is not the case, a con-
structor wrapper can be inserted, see the last example of this sec-
tion), and the effect is that initializations in both constructors are
performed. Hence, an instance of class C1 has five fields. An invo-
cation new C1(5).M() will return 11, since F3 in the body of M
refers to the field declared in A1. Classes composed by merge/over-
riding can share the same field, provided it is abstract in all except
(at most) one. Note that this corresponds to sharing fields as in, e.g.,
[5]; however, in our framework we do not need an ad-hoc notion.
Expressions (method bodies) are similar to those of FJ (casts are
omitted for brevity). However, we distinguish between client field
accesses and method invocations, which specify a receiver, and in-
ternal field accesses and method invocations, whose implicit re-
ceiver is the current object. Note that e.M (. . .) behaves differently
from M (. . .) even in the case e denotes an object of the same class
(that is, local members do not correspond to private members
in, e.g., Java). For instance, consider the following class, where we
use the operator rename, which changes the name of a member.

class E merge
(rename M1 to M4 in {

int M1() { return 1; }
int M2() { return M1(); }
int M3() { return new E().M1(); }

}), { int M1() { return 3; } }

An invocation new E().M2() returns 1, since the internal invoca-
tion in the body of M2 refers to the method now called M4. However,
an invocation new E().M3() returns 3, since the client invocation
in the body of M3 refers to method M1 in E. Note that this does not
even coincide with privateness on a “per object” basis as, e.g., in
Smalltalk , since this would be the case even with a client invoca-
tion e.M1(), where e denotes, as special case, the current object.
Besides the operators mentioned above, other operators of the Jig-
saw framework are restrict, which eliminates the definition for a

member, and hide, which makes a member no longer accessible
from the outside. We refer to [9] and [3] for more details. All these
operators and many others can be encoded by using a minimal set of
primitive operators: sum, reduct, freeze, and constructor wrapping.
The first three have already been proved in [3] to subsume the Jig-
saw operators. To support the instantiation on a Java-like language,
we also provide a wrapping operator to change the constructor of
a class. The four operators are explained in the next section, when
we present the semantics of FJIG.
To conclude this section, we show a more significant example,
where we also assume the type void and statements in the syntax.
The following class DBSerializer, an example of the pattern
template method [12], contains the method execute that opens a
connection to a database and writes some data. While the behaviour
of execute is fixed, the details on how to open the connection are
left unspecified, and the implementation of the method serialize
can be changed. This is reflected by the method modifiers. Class
DBConnection is a given library class.

abstract class DBSerializer {
abstract DBConnection openConnection ();
virtual void serialize(DBConnection c) {}
frozen void execute () {

DBConnection connection = openConnection ();
// ...
serialize(connection);
connection.close ();

}
}

Suppose we want to specialize the class DBSerializer for the
DB server MySQL. We can create this specialization, called
MySQLSerializer, in two steps: first, we provide an imple-
mentation of method openConnection with the specific code
for MySQL, then we hide it, since clients of MySQLSerializer
should never invoke this method directly.
We start by defining an auxiliary class _MySQLSerializer, merg-
ing DBSerializer with an anonymous basic class:

class _MySQLSerializer

merge
DBSerializer[constructor(String cs) {

super()
}],

{ local String connectionString;
constructor(String cs) {

connectionString = cs;
}
virtual DBConnection openConnection () {

/* ... use connectionString ... */}
}

Note the use of the constructor wrapper: the constructor of the
anonymous basic class has a String parameter, whereas that of the
class DBSerializer, which has no fields, is the default construc-
tor. Hence, a constructor wrapper is inserted, which just invokes
the default constructor of DBSerializer, so that the constructors
of arguments of merge have the same parameters, allowing an in-
vocation like new _MySQLSerializer("mystring").
As mentioned before, the class _MySQLSerializer provides,
along the method execute, the method openConnection that
we can hide as follows:

class MySQLSerializer
hide openConnection in _MySQLSerializer

Consider now the following class Person, providing a method,
named write, to serialize its objects to a database:

class Person { // ...
frozen void write(DBConnection c) {

/* serializes the data on c*/}
}

Using this class with MySQLSerializer is not a problem, even
though the inherited method DBSerializer.execute writes the
data by invoking the method serialize and not write, since we
can rename the method before merging the two classes:

class MySQLPersonSerializer
hide serialize in

override
(rename write to serialize in Person)[

constructor(String cs){ super ()}
],

MySQLSerializer

2. FJIG calculus
The syntax of the calculus is given in Figure 2. Besides class names,
(external) names and variables, we assume an infinite set of internal
(member) names n .
Except for some shorter keywords for saving space, the only dif-
ferences w.r.t. the surface syntax given in Figure 1 (restricted to the
four primitive operators) are the following:

• There are no modifiers, since their semantics is encoded by
distinguishing between external and internal member names,
as explained in detail below. This solution is typical of module
calculi [19, 3], and allows a simpler and intuitive model of
composition operators. Internal names are used to refer to class
members inside code (method bodies), and can be safely α-
renamed. On the contrary, external names are used in class
composition via operators and in selection of class members
by clients.
• Correspondingly, basic classes include, besides previous com-

ponents which are collected in the local part, an input map from
internal to external names, and an output map from external to
internal names.
• Expressions include runtime expressions, that is, (pre-)objects

and blocks.

Input and output maps are represented as sequences of pairs where
the first element has a type annotation. In an input map, internal
names which are mapped in the same external name are required
to have the same annotation, whereas this is not required in output
names, that is, the same member can be exported under different
names with different types, see the type system in [14]. Renam-
ings σ are maps from (annotated) external names into (annotated)
external names, represented as sequences of pairs; pairs of form
_ 7→ N :T are used to represent non-surjective maps.
We denote by dom and cod the domain and codomain of a map,
respectively. Given a basic class [ι |o |ρ], with ρ = {ϕ κ µ}, we de-
note by dom(µ) and dom(ϕ) the sets of internal names declared in
µ and ϕ, respectively, which are assumed to be disjoint. The union
of these two sets, denoted by dom(ρ), is the set of local names. An
internal name n is, instead, abstract if n∈dom(ι), ι(n)6∈dom(o),
and virtual if ι(n)∈dom(o). An external name N is abstract
if N∈cod(ι)\dom(o), virtual if N∈cod(ι)∩dom(o), frozen if
N∈dom(o)\cod(ι). In a well-formed basic class, local names
must be distinct from abstract/virtual internal names, that is,
dom(ι)∩dom(ρ)=∅. Moreover, cod(o)⊆dom(ρ), and, denot-
ing by names(e) the set of internal names in an expression e ,
names(e)⊆dom(ι)∪dom(ρ) for each method body e .
A basic class of the surface language can be easily encoded in the
calculus as follows. For each member name N we assume (at most)
a corresponding external name N and (at most) two internal names
n,n ′, depending on the member kind, as detailed below. Client
references to N in method bodies are translated by N , whereas
for internal references the translation depends on the member kind.
That is:

• if N is abstract, then there is an association n 7→N in the input
map, and internal references are translated by n ,
• if N is virtual, then there is an association n 7→N in the input

map, an association N 7→n ′ in the output map, a definition for
n ′ in ρ, and internal references are translated by n ,
• if N is frozen, then there is an association N 7→n ′ in the output

map, a definition for n ′ in ρ, and internal references are trans-
lated by n ′,
• if N is local, then there is a definition for n ′ in ρ, and internal

references are translated by n ′.

In initialization expressions in constructor bodies, a field name F
on the left-hand side is always translated by f ′.
For instance, class C of previous section is translated by

[m2:()→int 7→ M2 |M1:()→int 7→ m ′1,M2:()→int 7→ m′2,|ρ]
ρ = {
K(){}
int m ′1(){return 1 + m2;}
int m ′2(){return m ′1 + m ′3;}
int m ′3(){return 1;}
}

We describe now the two kinds of runtime expressions introduced
in the calculus.
Expressions of form C (f =e) denote a pre-object of class C where
for each field there is an initialization expression. Note the differ-
ence with the form new C (e), which denotes a constructor invo-
cation, whereas in FJ objects can be identified with object creation
expressions where arguments are values. As already noted, in FJ it
is possible, and convenient, to take this simple and nice solution,
since the structure of the instances of a class is globally visible to
the whole program. In FJIG, instead, object layout must be hidden
to clients, hence constructor parameters have no a priori relation
with fields.
Values of the calculus are objects, that is, pre-objects where all
initialization expressions are (in turn) values. We use both vC and

p :: = cd
cd :: = C 7→ CE
CE :: = B | C | CE1 + CE2 | σι|CE |σo | freezeNCE | CE [K(C x){e}]

σ :: = N :T 7→N ′:T ′, _ 7→ N :T
N :: = F | M
T :: = C | MT
MT :: = C→C

B :: = [ι |o |ρ]

ι :: = n:T 7→N input map

o :: = N :T 7→n output map
n :: = f | m internal member name
ρ :: = {ϕ κ µ} local part
ϕ :: = C f ;
κ :: = K(C x){f =e}
µ :: = C m(C x){return e;}
e :: = x | e.F | e.M (e) | f | m(e) | new C (e)

| [µ; v |e] block
| C (f =e) (pre-)object

v , vC :: = C (f =e) value (object)

Figure 2. Syntax

v as metavariables for values of class C , the latter when the class
is not relevant.
Moreover, runtime expressions also include block expressions of
the form [µ; v | e], which model the execution of e where method
internal names are bound in µ and field internal names in the
current object v . Hence, denoting by dom(v) the set {f1, . . . , fn} if
v=C (f1=v1 . . . fn=en), the block expression is well-formed only
if names(e)⊆dom(µ)∪dom(v) and these two sets are disjoint.
The semantics of an expression e in the context of a program p can
be defined in two different ways.
The former, which we call flattening semantics and illustrate in this
section, is given in two steps. First, p is reduced to a flat program p′,
that is, a program where every class is basic. To this end, operators
are performed and the occurrences of class names are replaced by
their defining expressions. Then, e is reduced in the context of
p′. Note that in this case dynamic look-up is always trivial, that
is, a class member (e.g., a method) can always be found in the
class of the receiver. In next section, we define an alternative direct
semantics, where expressions are reduced in the context of non flat
programs, hence where dynamic look-up is non trivial.
Flattening rules are defined in the top section of Figure 3.
The first two rules define reduction steps of programs, which can be
obtained either by reducing one of the class expressions, or, if some
class C has already been reduced to a basic class B , by replacing
by B all occurrences of C as subterms of class expressions.
The remaining rules define reduction steps of class expressions.
Rules for sum, reduct and freeze operators are essentially those
given in [3], to which we refer for more details. We omit standard
contextual closure for brevity.
The expression o1, o2 is well-formed only if the two maps have
disjoint domains (analogously for other maps). Hence, rule (SUM)
can only be applied (implicit side conditions) when the two sets of
local names are disjoint (dom(ρ1)∩dom(ρ2)=∅), as are the sets
of output names (dom(o1)∩dom(o2)=∅). The former condition
can always be satisfied by an appropriate α-conversion, whereas
the latter corresponds to a conflict that the programmer can only
solve by an explicitly renaming (reduct operator). Input names are

required to be the same, and the two constructors are also required
to have the same parameters. This is not restrictive since these
components can be always made equal by reduct and constructor
wrapping operators, respectively.
In rule (REDUCT) the symbol ◦ denotes composition of maps.
New input and output names are chosen, modeled by cod(σι)
and dom(σo), respectively. Old input names are mapped in new
input names by σι, whereas new output names are mapped into old
output names by σo. Input names can be shared or added, whereas
output names can be duplicated or removed. Composition is well-
formed only if type annotations are the same and the annotation of
the new name is kept in the resulting map. That is: if ι contains
n:T 7→N , then σι should contain N :T 7→N ′:T ′, and σι ◦ ι will
contain n:T ′ 7→N ′; if σo contains N ′:T ′ 7→N :T , then o should
contain N :T 7→n , and o ◦ σo will contain N ′:T ′ 7→n .
In rule (FREEZE), association from internal names into N are
removed from the input map, and occurrences of these names in
method bodies are replaced by the local name of the corresponding
definition, thus eliminating any dependency on N . The second side
condition ensures that we actually take all such names.
Rule for constructor wrapping just correspond to provide a new
constructor for a class.
Reduction rules are given in the second section of Figure 3.
The first rule is standard contextual closure, where E denotes a one-
hole context and E{e} denotes the expression obtained by filling
the hole by e .
Client field access and method invocations are reduced in two steps.
First, they are reduced to a block where the current object is the
receiver and the expression to be executed is the corresponding
internal field access or method invocation on the name found in the
receiver’s class; moreover, methods found in the receiver’s class are
copied into the block and used for resolving further internal method
invocations.4 Then, the following two rules can be applied.

4 Alternatively, the method body corresponding to an internal name could be
again found in the basic class of the receiver; we choose this model because
it can be better generalized to direct semantics, see the following.

(CDEC1)
CE−→CE ′

p,C 7→ CE−→p,C 7→ CE ′

(CDEC2)
p,C 7→ B−→p[B/C],C 7→ B

(SUM)
[ι |o1 |ρ1] + [ι |o2 |ρ2]−→ [ι |o1, o2 |ρ]

ρi={ϕi K(C x){f =ei} µi}, i ∈ {1, 2}
ρ={ϕ1, ϕ2 K(C x){f =e1, f =e2} µ1, µ2}

(REDUCT)
σι|[ι |o |ρ]|σo−→ [σι ◦ ι |o ◦ σo |ρ]

(FREEZE)
freezeN[ι,n1:T 7→N . . .nk:T 7→N |o |ρ]−→ [ι |o |ρ[n ′/n1] . . . [n ′/nk]]

n′=o(N)
N 6∈ cod(ι)

(K WRAPPING)
[ι |o |{ϕ K(C1 x1 . . .Cn xn){f =e} µ}][K(C x){e}]−→

[ι |o |{ϕ K(C x){f =e[e/x]} µ}]

x=x1 . . . xn

(CTX)
e −→p e ′

E{e} −→p E{e ′}
(CLIENT-FIELD)

vC .F −→p [µ; vC | f]

p(C)=[ι |o |{ϕ κ µ}]
o(F)=f

(CLIENT-INVK)
vC .M (v) −→p [µ; vC |m(v)]

p(C)=[ι |o |{ϕ κ µ}]
o(M)=m

(INT-FIELD)
[µ; v |E{f }] −→p [µ; v |E{vi}]

f /∈ HB(E)
v = C (f1=v1 . . . fn=vn)
f =fi

(INT-INVK)
[µ; vC |E{m(v)}] −→p [µ; vC |E{e[v/x][vC/this]}]

m /∈ HB(E)
µ(m)=(C1 x1 . . .Cn xn){return e;}
x=x1 . . . xn

(OBJ-CREATION)

new C (v) −→p C (f =e[v/x])

p(C)=[∅|o |ρ]
ρ={ϕ K(C1 x1 . . .Cn xn){f =e} µ}
x=x1 . . . xn

(EXIT-BLOCK)
[µ; v |e] −→p e

names(e)=∅

Figure 3. Flattening semantics

An internal field access can only be reduced if it appears inside a
block. In this case, it is replaced by the corresponding field of the
current object. The first side condition says that the occurrence
of f in the position denoted by the hole of the context E is free
(that is, not captured by any binder around the hole), hence ensures
that it is correctly bound to the current object in the first enclosing
block. For instance, in the expression [µ; v | m(f , [µ′; v ′ | f])],
the first occurrence of f denotes a field of the object v , whereas
the second occurrence denotes a field of the object v ′. We omit
the standard formal definition of hole binders HB(E) of a context
E . Analogously, an internal method invocation is replaced by the
corresponding body, found in the receiver’s class, where parameters
are replaced by arguments and this by the current object. Note that
there are two kinds of references to the current object in a method
body: through the keyword this (in client references, or in a non-
receiver position, e.g. return this), and through internal names.
Whereas the former can be substituted at invocation time, as in FJ,
the latter are modeled by a block, otherwise we would not be able

to distinguish, among the objects of form vC , those which actually
refer to the original receiver of the invocation.
In rule (OBJ-CREATION), note that only classes where all members
are frozen can be instantiated.This is a simplification: the execu-
tion model could be easily generalized to handle internal field ac-
cess/method invocation on a virtual internal name by retrieving the
input map as well in blocks (in rules (CLIENT-FIELD) and (CLIENT-
INVK)) and adding two reduction rules which, roughly, reduce such
an internal field access/method invocation into the corresponding
client access. We preferred to stick to an equivalent simpler model
which, assuming that all classes have been frozen before being in-
stantiated, avoids these redundant lookup steps.

3. Direct semantics
Direct semantics allows a modular approach where each class
(module) can be analyzed (notably, compiled) in isolation, since
references to other classes do not need to be resolved before run-
time. In this case, look-up is a non trivial procedure where a class

member (e.g., method) is possibly retrieved from other classes and
modified as effect of the module operators.
In order to define direct semantics, block expressions are general-
ized as shown in the top section of Figure 4. That is, besides the
previous components, a block contains a path map which maps in-
ternal names to paths π, which denote a subterm in the class expres-
sion defining the class C of the current object (an implementation
could use a pointer). More precisely, a path π always denotes a sub-
term of the form freezeNCE , and is used as a permanent reference
to the definition of member N in CE . Indeed, the external name
N can be changed or removed by effect of outer reduct operators;
however, references via π are not affected. Hence, when a refer-
ence π is encountered during current method execution, lookup of
N in CE is triggered (see more explanations below). In flattening
semantics, C is always a basic class, hence this case never happens.
A generalized block expression [ι̂;µ; v | e] is well-formed only
if names(e)⊆dom(ι̂)∪dom(µ)∪dom(v) and these three sets are
disjoint.
The center section of the figure contains the new rules for expres-
sion reduction.
When a member reference (external name or path) N̂ needs to
be resolved, the lookup procedure starts the search of N̂ from re-
ceiver’s class C and, if successful, returns a corresponding internal
name inside a block expression, as shown in rules (CLIENT-FIELD)
and (CLIENT-INVK). In flattening semantics, C is always a basic
class, hence lookup is trivial and the side condition can be equiva-
lently expressed as in the analogous rules in Figure 3.
When an internal name n is encountered, it is either directly
mapped to a definition, or to a path. The former case happens when
n was a local name in the basic class containing the definition of
the method which is currently being executed. In this case, the cor-
responding definition is taken, as shown in rules (INT-FIELD) and
(INT-INVK). The latter case happens when n was an abstract or
virtual name inside the basic class containing the definition of the
method which is currently executed, and n has been permanently
bound to some definition by an outer freeze operator (recall that
only classes where all members are frozen can be instantiated). In
this case, lookup of this definition is started from receiver’s class
via the path π, and, if successful, n is replaced by the local name
n ′ found by lookup; moreover, the corresponding path map and
methods are merged with the original ones (α-renaming can be
used to avoid conflicts among internal names in this phase). This is
shown in rule (PATH). In flattening semantics, the latter case never
happens, hence only the first two rules are needed.
Creation of an instance of class, say, C , also involves a construc-
tor lookup procedure, which returns, starting from class C , the ap-
propriate constructor, by possibly retrieving and modifying con-
structors of other classes (this generalizes what happens in standard
Java-like languages, where the superclass constructor is always in-
voked). In flattening semantics, C is always a basic class, hence
constructor lookup is trivial and the side condition can be equiva-
lently expressed as in the corresponding rule in Figure 3.
The remaining rule is analogous to that given for the flattening case.
Lookup and constructor lookup are defined in the bottom section of
the figure.
The lookup procedure is modeled by a function which, given a pro-
gram p, takes three more arguments: a member reference (exter-
nal name or path) N̂ , a path π, which acts as an accumulator and
keeps track of the current subterm of the class expression which
is examined, and a class name C . When lookup is started, π is al-
ways the empty path Λ, and lookupp〈N̂ ,Λ,C 〉 is abbreviated by
lookupp〈N̂ ,C 〉.
The lookup function returns a triple consisting of input map, path
map, methods and a local name, written [ι; ι̂;µ | n]. However,
the final result of lookup (that is, the result returned for the initial

call) is expected to be always of form [∅; ι̂;µ | n], abbreviated by
[ι̂;µ |n], since all abstract/virtual internal names are expected to be
eventually bound to a path as effect of some freeze operator.
The first two clauses defining lookup are trivial and state that
looking for a member reference starting from a class name C
means looking in the definition of C , and that looking for an
external name N in a basic class only succeeds if the name is
present in the class, and returns the corresponding input map,
methods and local name. Note that the case where we look for a
path π in a basic class is expected to never happen.
The third clause defines lookup on a sum expression. In this case,
lookup is propagated to both arguments. This definition is a pri-
ori non-deterministic, but is expected to be deterministic on class
expressions which can be safely flattened, since in this case an ex-
ternal name cannot be found on both sides. For member references
which are paths, instead, determinism is guaranteed by construction
since the path exactly corresponds to a subterm. In case lookup suc-
ceeds on one of the two arguments, the result is modified by renam-
ing field local names in a way which keeps track of this argument.
For instance, if lookup succeeded on the first argument, then every
field local name f is renamed to f .1. This renaming is denoted by
αi. We choose this canonical α-renaming for concreteness, but any
other could be chosen, provided that it is consistent with that in
constructor lookup.
For instance, let us consider the following program (we assume
integer values and operations to make more readable examples):

C 7→ C1 + C2

C1 7→ [∅| . . . |{int f ; K(){f = 3} . . .}]
C2 7→ [∅| . . . ,M 7→ m |

{int f ; K(){f = 5} int m(){return f + 1;}}]

and the expression new C ().M ().
An instance of class C has two fields, inherited from C1 and
C2, initialized to 3 and 5, respectively. They are both named f in
the original classes; however, they are renamed during constructor
lookup (see the clause for sum), hence the above expression reduces
to C (f .1 7→3, f .2 7→5).M (). Now, M is invoked, starting lookup
from C , and the search propagated to both C1 and C2. Only lookup
in C2 is successful and returns the result

[; ; int m(){return f + 1;}|m]

which is modified in [; ; intm(){return f .2+1;}|m] to take into
account that the method has been found in the second argument.
Hence, method invocation reduces to

[; int m(){return f .2 + 1;}; C (f .17→3, f .2 7→5) |m]

where the body of m correctly refers to the second field.
In flattening semantics, C reduces to the following basic class:
[∅| . . . ,M 7→ m |ρ]
ρ = {int f .1; int f .2; κ int m(){return f .2 + 1;} . . .}
κ = K(){f.1 = 3, f.2 = 5}

Note that here the clash between the two fields is resolved during
flattening (hence before runtime), by α-renaming. We have chosen
as α-renaming the same used in direct semantics as an help for the
reader, but of course in this case any other arbitrary α-renaming
would work as well.
The fourth clause defines lookup on a reduct expression. In this
case, lookup of an external name is propagated under the name
the member has in the argument, given by the output renaming
σo. Instead, lookup of a path is simply propagated, since paths
are permanent references which are not affected by renamings.
Moreover, the result of lookup on the argument must be modified to
ensure that internal names refer to the appropriate external names
obtained via the input renaming σι.
For instance, consider a program including

π :: = i1 . . . ik path (i ∈ {1, 2})
N̂ :: = N | π member reference (external name or path)
ι̂ :: = n1 7→π1 . . .nk 7→πk path map
e :: = . . . | [ι̂;µ; v |e] (generalized) block

(CTX)
e −→p e ′

E{e} −→p E{e ′}
(CLIENT-INVK)

vC .M (v) −→p [ι̂;µ; vC |m(v)]
lookupp〈M ,C 〉 = [ι̂;µ |m]

(INT-FIELD)
[ι̂;µ; v |E{f }] −→p [ι̂;µ; v |E{vi}]

f /∈ HB(E)
v = C (f1=v1 . . . fn=vn)
f =fi

(INT-INVK)
[ι̂;µ; v |E{m(v)}] −→p [ι̂;µ; v |E{e[v/x][vC/this]}]

m /∈ HB(E)
µ(m) = C m(C1 x1 . . .Cn xn){return e;}
x = x1 . . . xn

(PATH)
[ι̂,n 7→ π;µ; vC |e] −→p [ι̂, ι̂′;µ[n ′/n], µ′; vC |e[n ′/n]]

n ∈ names(e)
lookupp〈π,C 〉 = [ι̂′;µ′ |n′]

(OBJ-CREATION)

new C (v) −→p C (f =e[v/x])

k-lookupp(C) = K(C1 x1 . . .Cn xn){f =e}
x=x1 . . . xn

(EXIT-BLOCK)
[ι̂;µ; v |e] −→p e

names(e)=∅

lookupp〈N̂ , π,C 〉 = lookupp〈N̂ , π,CE〉 if p(C) = CE
lookupp〈N , π, [ι |o,N 7→n |{ϕ κ µ}]〉 = [ι; ∅;µ |n]

lookupp〈N̂ , π,CE1 + CE2〉 = αi([ι; ι̂;µ |n]) if lookupp〈N̂ , π.i,CE i〉 = [ι; ι̂;µ |n], i ∈ {1, 2}
lookupp〈N̂ , π, σι|CE |σo〉 = [σι ◦ ι; ι̂;µ |n] if lookupp〈N̂ ′, π.1,CE〉 = [ι; ι̂;µ |n],

N̂ ′ = σo(N) if N̂ = N , N̂ ′ = N̂ otherwise
lookupp〈N̂ , π, freezeNCE〉 = [ι; ι̂,n1 7→π . . .nk 7→π;µ |n] if N̂ 6= π, lookupp〈N̂ , π.1,CE〉 = [ι,n1 7→N . . .nk 7→N ; ι̂;µ |n],

N 6∈ cod(ι)
lookupp〈π, π, freezeNCE〉 = [ι; ι̂,n1 7→π . . .nk 7→π;µ |n] if lookupp〈N , π.1,CE〉 = [ι,n1 7→N . . .nk 7→N ; ι̂;µ |n],N 6∈ cod(ι)

lookupp〈N̂ , π,CE [K(C x){e}]〉 = lookupp〈N̂ , π.1,CE〉

k-lookupp(C) = k-lookupp(CE) if p(C) = CE
k-lookupp([∅|o |{ϕ κ µ}]) = κ

k-lookupp(CE1 + CE2) = K(C x){α1(f = e), α2(f ′ = e ′)} if k-lookupp(CE1) = K(C x){f = e}, k-lookupp(CE2) = K(C x){f ′ = e ′}
k-lookupp(σι|CE |σo) = k-lookupp(CE)
k-lookupp(freezeNCE) = k-lookupp(CE)

k-lookupp(CE [K(C x){e}]) = K(C x){f =e[e/x]} if k-lookupp(CE) = K(C1 x1 . . .Cn xn){f =e}, x = x1 . . . xn

Figure 4. Direct semantics

C 7→ M1 7→M ′
1|C|M 7→M ′

C ′ 7→ [m ′ 7→ M1 |M ′ 7→ m |{ . . . intm(){returnm ′();}}]

and assume that some method invocation triggers lookup for M in
C . Then, lookup is propagated under the name M ′ to C ′. Lookup
of M ′ in C ′ is successful and returns the result

[m ′ 7→ M1; ; int m(){return m ′();}|m]

which is modified in

[m ′ 7→ M ′1; ; int m(){return m ′();}|m]

as an effect of the input renaming.
In flattening semantics, C reduces to the following basic class:

[m ′ 7→ M ′1 |M 7→ m |{ . . . int m(){return m ′();}}]

There are two clauses defining lookup on a freeze expression. The
former handles most cases, except the special situation in which
we are looking exactly for the member which has been frozen in
the current subterm π which has form freezeNCE . In this special
case (second clause) lookup of N in CE is triggered. Moreover,
the result is modified, since internal names referring to N must
now refer to the permanent reference π. Otherwise (first clause),
lookup is propagated, and the result of lookup on the argument is
modified as in the previous case.
The following example illustrates the second clause. Consider the
program

C 7→ freezeFC
′

C ′ 7→ [f 7→ F |F 7→ f ′,M 7→ m |
{int f ′; K(){f ′ = 42} int m(){return f + 1;}}]

and the expression new C ().M ().

An instance of class C has one field, inherited from C ′ and initial-
ized to 42. The above expression reduces to C (f ′ 7→42).M (). Now,
M is invoked, starting lookup from C , and the search propagated
to C ′. Lookup in C ′ is successful and returns the result

[f 7→ F ; ; int m(){return f + 1;}|m]

which is modified in [; f 7→ Λ; int m(){return f ′ + 1;} | m],
where Λ denotes the empty path, to take into account that F has
been frozen. Hence, method invocation reduces to

[f 7→ Λ; int m(){return f + 1;}; C (f 7→42) |m]

where the body of m correctly refers to F frozen in the top level
freeze.

[∅|F 7→ f ′,M 7→ m |
{int f ′; K(){f ′ = 42} int m(){return f ′ + 1;}}]

Figure 5 shows a more involved example which compares flattening
and direct semantics.
The top section of the figure lists some abbreviations, the second
shows the four classes composing program p. Class A defines
the frozen method M whose body invokes the abstract method
M ′. Class B has one local field f initialized to 0 and defines the
frozen method M ′ which returns this field. Class C is obtained
by summing A and B and freezing method M ′. Finally, class D
is obtained by hiding method M ′ in C (in the reduct, the input
renaming is empty since there are no input names, and the output
renaming maps “no new name” into M ′ and is the identity on
M) and then summing a new definition for M ′ which returns 8.
The following three sections of the figure shows how the class
expressions for C and D are reduced, the resulting flat program
p′ and the reduction of expression new D().M () in the context
of p′. Finally, the last section shows direct semantics of the same
expression in the context of p.
The example shows how the method originally called M ′ in B is
correctly invoked via the path 1.1, even though M ′ has been hidden
and then replaced by an homonymous method.
The following theorem states that flattening is equivalent to direct
semantics. We denote by ?−→ the reflexive and transitive closure of
the flattening relation, and analogously for the reduction relation.

Theorem 1. If p
?−→p′, then e

?−→p v iff e
?−→p′ v .

To prove the theorem, we first of all define two congruence relations
∼ and ∼p,C on lookup results, the latter indexed on programs and
class names:

• ∼ is the least congruence relation s.t.

[ι; ι̂;µ, µ |n] ∼ [ι; ι̂;µ |n]

if µ = C m(C x){return e;}, m 6=n,m 6∈names(µ).
• ∼p,C is the least congruence relation including ∼ and, more-

over, s.t.

[ι; ι̂,n 7→ π;µ |n]∼p,C [ι; ι̂, ι̂′;µ[n ′/n], µ′ |n ′]
if lookupp〈C , π〉 = [ι̂′;µ′ |n ′].

The former congruence states that a lookup result is equivalent
to another where a useless method has been removed. The latter
congruence states that a lookup result is equivalent to another
where an association from internal name to path has been resolved
in turn by lookup, and path map and methods have been expanded.
Then, the proof is based on the following lemma.

Lemma 2. If CE is the π-subterm of p(C), and CE −→ CE ′,
then:

• lookupp〈N , π,CE〉 = [ι; ι̂;µ |n] implies
lookupp〈N , π,CE ′〉 = [ι′; ι̂′;µ′ |n] and
[ι; ι̂;µ |n]∼p,C [ι′; ι̂′;µ′ |n ′],
• lookupp〈N , π,CE ′〉 = [ι′; ι̂′;µ′ |n] implies

lookupp〈N , π,CE〉 = [ι; ι̂;µ |n] and
[ι; ι̂;µ |n]∼p,C [ι′; ι̂′;µ′ |n ′].

Proof:
By induction on the definition of CE−→CE ′.

(SUM) We have
CE = CE1 + CE2

CE1 = [ι |o1 |{ϕ1 K(C x){f1 = e1} µ1}]
CE2 = [ι |o2 |{ϕ2 K(C x){f2 = e2} µ2}]
CE ′ = [ι |o1, o2 |{ϕ1, ϕ2 K(C x){f1 = e1, f2 = e2} µ1, µ2}]

Moreover, lookupp〈N , π,CE〉 and lookupp〈N , π,CE ′〉 are
defined only if (o1, o2)(N)=n for some n . By well-formedness
of o1, o2 this means that either o1(N) is defined or o2(N) is
defined, but not both. Let us assume o1(N) = n (the other case
is analogous). Then,
lookupp〈N , π,CE〉 = [ι; ∅;α1(µ1) |n]
lookupp〈N , π,CE ′〉 = [ι; ∅;α1(µ1), α2(µ2) |n]

and these two lookup results are ∼-equivalent since, by well-
formedness of CE ′, methods in α2(µ2) are useless (formally,
({n}∪names(α1(µ1))) ∩ dom(α2(µ2)) = ∅).

(REDUCT) We have
CE = σι|[ι |o |{ϕ κ µ}]|σo
CE ′ = [σι ◦ ι |o ◦ σo |{ϕ κ µ}]

Moreover, lookupp〈N , π,CE〉 and lookupp〈N , π,CE ′〉 are
defined only if o(N) = n for some n . Then,
lookupp〈N , π,CE〉 = [σι ◦ ι; ∅;µ |n]
lookupp〈N , π,CE ′〉 = [σι ◦ ι; ∅;µ |n]

and we get the thesis.

(FREEZE) We have
CE = freezeN ′[ι,n1:T 7→ N ′ . . .nk:T 7→ N ′ |o |{ϕ κ µ}]
CE ′ = [ι |o |{ϕ κ µ[n ′/n1] . . . [n ′/nk]}]
n ′ = o(N ′)
N 6∈ cod(ι)

Moreover, lookupp〈N , π,CE〉 and lookupp〈N , π,CE ′〉 are
defined only if o(N) = n for some n . Then,
lookupp〈N , π,CE〉 = [ι; n1:T 7→ π . . .nk:T 7→ π;µ |n]
lookupp〈N , π,CE ′〉 = [ι; ∅;µ[n ′/n1] . . . [n ′/nk] |n]

Since CE is the π-subterm of p(C), lookupp〈π,Λ,C 〉=
lookupp〈π, π,CE〉=
[ι; n1:T 7→π . . .nk:T 7→π;µ[n ′/n1] . . . [n ′/nk] |n ′], hence the
thesis follows.

(WRAPPING) Trivial.

(CTX) The proof is by structural induction on the context.

4. Conclusion
We have defined flattening and direct semantics, and proved their
equivalence, for FJIG, a class-based calculus formalizing the Jig-
saw framework, originally proposed in Bracha’s seminal work [9],
in a Java-like setting.
There are usually two intuitive models to understand inheritance:
one where inherited methods are copied into heir classes and one
where member lookup is performed by ascending the inheritance
chain. This paper shows the equivalence of these two views in a

vD ≡ D(f .2.1 = 0)
µ ≡ C m(){return m ′();}
µ′′ ≡ C m ′′(){return f .2.1;}
µD ≡ C m(){return m ′′();}; C m ′′(){return f .2.1;}; C m ′′′(){return 8;}

p ≡ A = [m ′ 7→ M ′ |M 7→ m |{ K(){} C m(){return m ′();}}]
B = [∅|M ′ 7→ m ′ |{C f ; K(){f = 0} C m ′(){return f ;}}]
C = freezeM ′(A+B)
D = ∅|C|_ 7→M ′,M 7→M + [∅|M ′ 7→ m ′ |{ K(){} C m ′(){return 8;}}]

freezeM ′(A+B) −→
freezeM ′[m ′ 7→ M ′ |M 7→ m,M ′ 7→ m ′′ |{C f .2; K(){f .2 = 0} C m(){return m ′();}; C m ′′(){return f .2;}}] −→
[∅|M 7→ m,M ′ 7→ m ′′ |{C f .2; K(){f .2 = 0} C m(){return m ′′();}; C m ′′(){return f .2;}}]

∅|C|_ 7→M ′,M 7→M + [∅|M ′ 7→ m ′ |{ K(){} C m ′(){return 8;}}] −→
[∅|M 7→ m |{C f .2; K(){f .2 = 0} C m(){return m ′′();}; C m ′′(){return f .2;}}]
+[∅|M ′ 7→ m ′ |{ K(){} C m ′(){return 8;}}] −→
[∅|M 7→ m,M ′ 7→ m ′′′ |{C f .2.1; K(){f .2.1 = 0} µD}]

p′ ≡ A = [m ′ 7→ M ′ |M 7→ m |{ K(){} C m(){return m ′();}}]
B = [∅|M ′ 7→ m ′ |{C f ; K(){f = 0} C m ′(){return f ;}}]
C = [∅|M 7→ m,M ′ 7→ m ′′ |{C f .2; K(){f .2 = 0} C m(){return m ′′();}; C m ′′(){return f .2;}}]
D = [∅|M 7→ m,M ′ 7→ m ′′′ |{C f .2.1; K(){f .2.1 = 0} µD}]

newD().M () −→p′ vD .M() −→p′ [µD ; vD |m()] −→p′ [µD ; vD |m′′()] −→p′ [µD ; vD | f .2.1] −→p′ [µD ; vD |0] −→p′ 0

newD().M() −→p k-lookupp(D) = K(){f.2.1 = 0}
vD .M() −→p lookupp〈M,Λ, D〉 = [Λ; m ′ 7→ 1.1;µ|m]

[m ′ 7→ 1.1;µ; vD |m()] −→p

[m ′ 7→ 1.1;µ; vD |m ′()] −→p lookupp〈1.1,Λ, D〉 = [Λ; Λ;µ′′|m ′′]
[m ′ 7→ 1.1;µ;µ′′; vD |m ′′()] −→p

[m ′ 7→ 1.1;µ;µ′′; vD | f .2.1] −→p

[m ′ 7→ 1.1;µ;µ′′; vD |0] −→p

0

Figure 5. Example

formal setting with a more sophisticated composition mechanism,
where, e.g., mixin classes and traits can be subsumed. This can also
greatly help in integrating such features, or other modularity mech-
anisms, in standard class-based languages, since it gives practical
hints on implementation.
As already mentioned in the Introduction, many proposals for ex-
tending the object-oriented paradigm have just taken one approach
or the other. In particular, the most direct source of inspiration for
our work has been [16], which defines a direct semantics for traits.
Essentially, their dynamic look-up algorithm can be seen as a sim-
plified version, handling sum and output reduct only, of ours.
On the other hand, to the best of our knowledge there has been no
attempt at providing both semantics and proving their equivalence,
as we do in this paper, for any of these extensions.
One interesting direction of further work can be to investigate
whether and how the equivalence can be preserved in a language
allowing features whose runtime behaviour depends on static types,
such as overloading or static binding of members. We also plan to

investigate smart implementation techniques of the direct semantics
in a prototype interpreter we are developing.

Acknowledgments We warmly thank the anonymous referees for
many useful comments.

References
[1] Davide Ancona, Giovanni Lagorio, and Elena Zucca. Jam: A smooth

extension of Java with mixins. In E. Bertino, editor, ECOOP’00 -
European Conference on Object-Oriented Programming, number
1850 in Lecture Notes in Computer Science, pages 154–178.
Springer, 2000. An extended version is [2].

[2] Davide Ancona, Giovanni Lagorio, and Elena Zucca. Jam–designing
a Java extension with mixins. ACM Transactions on Programming
Languages and Systems, 25(5):641–712, September 2003. Extended
version of [1].

[3] Davide Ancona and Elena Zucca. A calculus of module systems.
Journ. of Functional Programming, 12(2):91–132, 2002.

[4] Davide Ancona, Elena Zucca, and Sophia Drossopoulou. Overloading
and inheritance. In FOOL’01 - Intl. Workshop on Foundations of
Object Oriented Languages, January 2001.

[5] Alexandre Bergel, Stéphane Ducasse, Oscar Nierstrasz, and Roel
Wuyts. Stateful traits and their formalization. Comput. Lang. Syst.
Struct., 34(2-3):83–108, 2008.

[6] Lorenzo Bettini, Sara Capecchi, and Betti Venneri. Double Dispatch
in C++. Software - Practice and Experience, 36(6):581 – 613, 2006.

[7] Lorenzo Bettini, Sara Capecchi, and Betti Venneri. Featherweight
Java with multi-methods. In PPPJ’07 - Principles and Practice of
Programming in Java, volume 272, pages 83–92. ACM Press, 2007.

[8] Lorenzo Bettini, Sara Capecchi, and Betti Venneri. Featherweight
Java with dynamic and static overloading. Science of Computer
Programming, 2008. To appear.

[9] Gilad Bracha. The Programming Language JIGSAW: Mixins,
Modularity and Multiple Inheritance. PhD thesis, Department of
Comp. Sci., Univ. of Utah, 1992.

[10] Kathleen Fisher and John Reppy. A typed calculus of traits. In
FOOL’04 - Intl. Workshop on Foundations of Object Oriented
Languages, 2004.

[11] Matthew Flatt, Shriram Krishnamurthi, and Matthias Felleisen.
Classes and mixins. In ACM Symp. on Principles of Programming
Languages 1998, pages 171–183. ACM Press, 1998.

[12] Erich Gamma, Richard Helm, Ralph E. Johnson, and John M.
Vlissides. Design Patterns: Elements od Reusable Object-Oriented
Software. Addison-Wesley Professional Computing Series. Addison-
Wesley, 1995.

[13] Atsushi Igarashi and Benjamin C. Pierce. On inner classes.
Information and Computation, 177(1):56–89, August 2002.

[14] Giovanni Lagorio, Marco Servetto, and Elena Zucca. Featherweight
Jigsaw - a minimal core calculus for modular composition of
classes. Technical report, Dipartimento di Informatica e Scienze
dell’Informazione, Università di Genova, December 2008. Submitted
for publication.

[15] Luigi Liquori and Arnaud Spiwack. Extending FeatherTrait Java with
interfaces. Theoretical Computer Science, 2008.

[16] Luigi Liquori and Arnaud Spiwack. FeatherTrait: A modest
extension of Featherweight Java. ACM Transactions on Programming
Languages and Systems, 30(2), 2008.

[17] M. Odersky and P. Wadler. Pizza into Java: Translating theory into
practice. In ACM Symp. on Principles of Programming Languages
1997. ACM Press, 1997.

[18] Nathanael Schärli, Stéphane Ducasse, Oscar Nierstrasz, and An-
drew P. Black. Traits: Composable units of behaviour. In ECOOP’03
- Object-Oriented Programming, volume 2743 of Lecture Notes in
Computer Science, pages 248–274. Springer, 2003.

[19] J. B. Wells and R. Vestergaard. Confluent equational reasoning for
linking with first-class primitive modules. In ESOP 2000 - European
Symposium on Programming 2000, number 1782 in Lecture Notes in
Computer Science, pages 412–428. Springer, 2000.

