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Abstract. We define a framework of components based on Java-like lan-
guages, where components are binary mixin modules. Basic components
can be obtained from a collection of classes by compiling such classes in
isolation; for allowing that, requirements in the form of type constraints
are associated with each class. Requirements are specified by the user
who, however, is assisted by the compiler which can generate missing
constraints essential to guarantee type safety.

Basic components can be composed together by using a set of expres-
sive typed operators; thanks to soundness results, such a composition is
always type safe.

The framework is designed as a separate layer which can be instantiated
on top of any Java-like language; a prototype implementation is available
for a small Java subset.

Besides safety, the approach achieves great flexibility in reusing compo-
nents for two reasons: (1) type constraints generated for a single com-
ponent exactly capture all possible contexts where it can be safely used;
(2) composition of components is not limited to conventional linking,
but is achieved by means of a set of powerful operators typical of mixin
modules.

1 Introduction

It has been argued that the notion of software component is so general that
cannot be defined in a precise and comprehensive way [12]. For instance, [20]
provides three different definitions, that adopt different levels of abstraction.
However, most researchers would agree that the following features are essential
prerequisites for component technology: modularity, type safety, and indepen-
dence from a particular programming language.
Modules and components share several common characteristics. The important
software engineering principle of maximizing cohesion and minimizing depen-
dencies of code applies as well to modules and to components. Furthermore,
both modules and components are meant as units of composition which can be
developed independently.

? This work has been partially supported by APPSEM II - Thematic network IST-
2001-38957, and MIUR EOS - Extensible Object Systems.



Type safety is an important property which guarantees a correct integration
between components; separate development of components requires explicit in-
terfaces not only for the provided services, but also for the requirements which
ensure safe assembly of components. In order to maximize reuse, required inter-
faces should capture as many as possible contexts where a component can be
safely used.
While modules are often tied to a specific programming language, components
are usually meant as binary units, and therefore should not depend on a partic-
ular language; of course, basic components still need to be constructed by using
some language. For instance, .NET assemblies do not strongly rely on any partic-
ular language, but can be created, for instance, from both C# and Haskell code.
However, assembling components is a process which should involve only binary
units and, therefore, is expected to be language independent. The benefits of
this independence are a better integration and interoperability of components,
especially when the binary form is some kind of intermediate language.
Among the several varieties of modules which can be found in programming
languages or have been proposed in literature, mixin modules are one of the
closest approximations of the notion of software component.
Module systems based on the notion of mixin module offer a framework largely
independent from the core language with well-established and clean founda-
tions [7, 6, 14]. Differently to parametric modules, like, for instance, ML functors,
which offer only one composition operator roughly corresponding to function ap-
plication, mixin modules are equipped with a richer set of operators that support
mutual recursion across module boundaries and declaration of virtual entities
which can be redefined via an overriding operator. For this reason, mixin mod-
ules seem a good starting point for defining a language independent framework
for flexible composition and reuse of components in a type safe way. The main
difference between a mixin module and a component is that the former is mod-
eled as a collection of classes in source form, while the latter is modeled as a
collection of classes in binary form. Of course, in practice there are other differ-
ences which we deliberately do not model in this paper: for instance, in general
a component is a collection of more heterogeneous entities including not only
code, but also resources like, for instance, multimedia data.1

Nowadays component technology is mainly based on mainstream object-oriented
languages; nevertheless, object-oriented languages alone fail to provide impor-
tant features for developing and assembling components. Compositional compi-
lation is not supported by mainstream object-oriented languages, even though
this property is important for allowing separate development of components:
users should be able to obtain a basic component from a collection of classes by
simply compiling such classes in total isolation. Furthermore, linking is the only
available mechanism for manipulating and assembling binary components.
In this paper, we investigate how to build a framework for component-oriented
programming based on Java-like languages. The framework is meant as a logi-

1 We refer to [20], Section 4.1.4, for more details.
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cally separate layer constructed on top of the Java-like language used for creating
basic components.
In the framework, components are modeled as mixin modules in binary form,
by following and further developing the approach presented in [5]. Furthermore,
separate development of components is possible by adopting the type technology
we have developed for Java-like languages in a previous work [2]. Thanks to
this technology it is possible to specify the minimal requirements needed by
a component for being safely used by a set of polymorphic type constraints.
Compilation in total isolation of classes into components is supported by the
notion of polymorphic bytecode, a bytecode annotated with type variables which
can be instantiated according to the context where a component is deployed.
The framework allows separate compilation of classes into basic components
starting from the declarations of such classes in a Java-like language and from
the specification of the requirements needed by the classes. Then, components
in polymorphic bytecode can be assembled together in a type safe way by means
of five composition operators: bind, merge, renaming, unbind, and restrict.
Other interesting features of the framework are the following:

– Since specifying the requirements needed by a class can be a tedious activity,
the framework assists the programmer by generating those constraints which
have not been explicitly specified by the user, but are nevertheless necessary
for guaranteeing a type safe composition. The interface obtained in this
hybrid way is then permanently associated with the polymorphic bytecode
of the class in the components.

– Classes in a component are all implicitly considered virtual, that is, their
definition can be later replaced when composing the component with others.

– In addition to composition operators typical of mixin modules [7, 6], the
framework provides two novel operators2 bind and unbind , designed for bet-
ter supporting unanticipated software evolution.

The paper is organized as follows. Section 2 is a gentle introduction to the frame-
work; some examples are used for explaining its main features and its ability to
support software reuse and unanticipated software evolution. In Section 3 we
formally define syntax and reduction semantics of the framework, by listing the
ingredients the underlying Java-like language should provide. Section 4 is de-
voted to the implementation of the framework: a prototype is available3 for test-
ing all the examples shown in Section 2. Finally, Section 5 outlines related work,
summarizes paper contribution and draws directions for future developments.
A preliminary presentation of the ideas developed in this paper can be found
in [3]. The full formal definition of the framework can be found in [4], notably
including the definition of the type system modeling compilation of component
expressions into binary components and soundness results. Moreover, [4] provides
the formal description of an instantiation of the framework on top of Feather-
weight Java [15], and more examples.
2 Which, however, can be encoded in lower-level operators of module calculi such as

CMS [6].
3 http://www.disi.unige.it/person/LagorioG/SmartJavaComp/
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2 A Gentle Introduction to Components

This section is a brief introduction to our component-oriented system: its main
features are presented through some simple, but still meaningful, examples show-
ing its expressive power. A more involved example showing how to deal with the
classical expression problem (or extensibility problem) [21] can be found in [4].
Even though our operators handle components in binary form (more precisely, in
polymorphic bytecode), in the examples we write components in source format
for readability. In particular, we choose Java as source language, but all code
could be easily rewritten in, say, C#.

2.1 Basic Components

Let us start our introduction with an example4 of declaration of basic component:

component LinkedList = {
deferred class N;
class List {
requires { N(N); }
N first;
void addFirst() {
first=new N(first);

}
}
class Node {
requires { & N; }
N next;
Node(N n) { next=n; }
N getNext() { return next; }

}
}

A basic component is a collection of declarations of classes which are either de-
ferred , that is, whose definition has to be imported later, like N, or defined inside
the component, like List and Node. Class definitions are those in the Java-like
language under consideration, enriched by a requires part which specifies type
constraints on deferred classes, which of course also depend on the language. In
the example, constraint N(N) means that class N is required to have a constructor
applicable to an argument of type N, whereas constraint &N means that class N
must exist. Other forms of constraints are subtyping constraints and constraints
requiring a class to have a field of a certain type or a method applicable to
certain argument types; moreover, constraints are polymorphic in the sense that
types can be type variables, as will be illustrated below.
As it will be shown, deferred classes can be bound to a definition by means of the
bind and merge operators. Within this example, the intuition is that N could be
4 For simplicity, we will avoid access modifiers.
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Node; indeed, if we replaced all occurrences of N with Node, then we would obtain
the classic example of single-linked lists with a header node. However, having
used a deferred class instead of the already defined class Node allows us to bind
N to something more specific than Node later, for instance a class DoubleNode
(which, presumably, extends Node).
This particular use of a deferred class allows one to simulate the idea of type
mytype [10], or ThisClass of LOOJ [9], where inside a class, say Node, we can
use mytype instead of Node with the effect that in any subclass of Node, say
DoubleNode, this type will be interpreted by DoubleNode rather than Node.
However, our approach allows a step further: N can be bound to any class that
satisfies the type constraints declared in class List and Node. For instance, class
Node simply requires an existing declaration for N, since N is used in Node only
as a type, while the correctness of List relies on a stricter constraint5 asking N
to provide a constructor which takes an argument of type N (hence, with a single
parameter whose type is a supertype of N).
Note that constraints are declared at the level of each class definition, rather
than at the level of the component declaration. As we will see, this is due to
the fact that classes declared in components are all virtual: for instance, a new
component could be derived from LinkedList by overriding the declaration
of Node. In this case, the constraints associated to Node, and only those, are
analogously replaced.
Component LinkedList supports an important feature for promoting component-
oriented programming: each class is explicitly equipped not only with the inter-
face of the provided services, (what is usually, and improperly, called the provided
interface), but also with the interface of the required features. (what is usually,
and improperly, called the required interface). Indeed, provided and required
interfaces for classes List and Node can be easily extracted from their code:

class List {
requires { N(N); }
provides { N first;

void addFirst();
}

}
class Node {
requires { & N; }
provides { N next;

Node(N n) ;
N getNext() ;

}
}

Providing the required interface should allow compilation of a component in
total isolation (no other sources or binary files are needed) and composition with
other components (already in binary form) in a type safe manner. To this end,

5 Indeed, the constraint N(N) implies & N.
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the required interface should specify, on the one hand, all the requirements on
deferred classes which are needed to compile the component; on the other hand,
it should not specify requirements which are not strictly necessary, in order to
allow safe composition with as many other components as possible. For Java-
like languages, this can be achieved by using the approach we propose based on
type constraints, whereas cannot be achieved by using other forms of required
interfaces. For instance, compilation in isolation of the component above cannot
be achieved by using the approach based on only subtyping constraints adopted
for Java generics [8]; there is no way to guarantee that class N has a constructor
which is type compatible with the call in method addFirst by simply requiring
class N to extend some already defined class or interface.
Conversely, an approach where the required interface has to specify for each
deferred class its expected signature (that is, constructor, field and method sig-
natures), as done, e.g., in our previous work [5], is too restrictive, since it rejects
components which do not match this type but can still be linked in a safe way
with the given component. We will illustrate better this point in the following
when introducing the merge operator.
Since specifying required interfaces by listing all the needed type constraints may
be a tedious and error prone activity, the specification of required interfaces is
assisted by the compiler: the most general constraints which are required by a
component, but are not explicitly specified by the programmer, are automatically
generated and added to the required interface. In this way the compiled code
will contain the complete required interface, including both the user constraints
and the missing ones inferred by the compiler. Of course, the user can always
specify constraints which are not strictly necessary to guarantee type safety, but
that are needed for contractual reasons.
For instance, in class List the user could specify the requirement N <= Node
which requires N to be a subclass of Node, even though this condition is not
necessary for the type safety of the code of the class. However, the required
interface generated with the code will contain both the user-defined constraint
N <= Node and the inferred constraint N(N).
As shown in the following, the generated required interface will be used together
with the provided interface, to check type safety of component composition.

2.2 Open and Closed Components

A component with deferred classes, as LinkedList, is called open; analogously,
a component with no deferred classes is called closed. Classes declared inside an
open component, as List and Node, cannot be accessed through qualified names
(see 2.5).

LinkedList.List l=new LinkedList.List(); // type error
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The qualified name LinkedList.List is used for denoting class List at com-
ponent LinkedList.6 An unqualified class name is called a simple class name.
A soft link to a class is any of its unqualified occurrences except those which
introduce the declaration of either the class itself, or any of its constructors.
Analogously, qualified occurrences are called hard links (see more in Section
2.5).
There are two different composition operators for deriving closed components
from open ones: bind and merge.

Bind A closed component can be obtained by binding the deferred classes of
some open component to definitions in the same component. For instance, a new
component ClosedLinkedList could be obtained from LinkedList by binding
N to Node, since class Node satisfies all required constraints on N:

component ClosedLinkedList=bind(LinkedList,N->Node);

The component we obtain in this way is equivalent to (that obtained compiling)
the following, where we have copied the definition of LinkedList and replaced
each occurrence of N by Node.

component ClosedLinkedList = {
class List {
requires { Node(Node); }
Node first;
void addFirst() {
first=new Node(first);

}
}
class Node {
requires { & Node; }
Node next;
Node(Node n) { next=n; }
Node getNext() { return next; }

}
}

Now classes List and Node can be used:

ClosedLinkedList.List l=new ClosedLinkedList.List();

When closing a component, all type constraints in the class types must be veri-
fied, otherwise a type error is issued.

6 For simplicity, we use here the dot notation for qualified class names since it is
likely the most natural choice for Java programmers. However, while this poses no
ambiguity problems for the simple Java subset we have implemented so far, this
would be the case in an extension to full Java.
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For instance, the expression bind(LinkedList,{N->List}) is not type correct,
since List does not satisfy the constraint List(List).
Note that the constraints in ClosedLinkedList cannot be removed by the com-
piler even though they are clearly satisfied. Indeed, a closed component is not
permanently “sealed”, but can be reopened using operators restrict and unbind ,
which will be discussed in Section 2.4.

Merge Assume we want to extend the code in LinkedList in order to support
doubly linked lists. This extension can be isolated in a separate component:

component Double = {
deferred class N, List, Node;
class DoubleList extends List {
requires { N(N,N);

’a List.first;
N<=’a;
’a N.next;
’a ’a.prev; }

N last;
void addLast() {
N n = new N(last, null);
if (first==null) first = n;
if (last!=null) last.next = n;
last = n;

}
void addFirst() {
N n=new N(null, first);
if (first!=null)
first.prev = n;

first = n;
if (last==null) last=n;

}
}
class DoubleNode extends Node {
requires { Node(N); }
N prev;
DoubleNode(N n) { super(n); }
DoubleNode(N p,N n) {
super(n); prev=p; }

N getPrev() { return prev; }
}

}

Before explaining how the merge operator behaves, let us focus on the user
requirements in DoubleList: the type variable ’a is used for expressing the
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general7 requirement that class List must provide the field first with a type
’a such that ’a is a supertype of N (N<=’a), and provides a field prev having
the same type ’a (’a ’a.prev). Note that, as anticipated above, we could not
achieve the same effect by using a required interface which specifies for each
deferred class its expected signature. Indeed, in this case we should have fixed
for instance the type of field f in List, e.g., requiring this type to be N, whereas
in fact any supertype of N would work as well.
A new component DoubleLinkedList can be defined by merging LinkedList
with Double:

component DoubleLinkedList=merge(LinkedList,Double);

In DoubleLinkedList the two deferred classes List and Node of component
Double are bound to the corresponding classes declared in LinkedList, whereas
class N remains deferred (indeed binding of deferred classes is by name matching).
Note that, while it is possible to merge components with deferred classes having
the same name, name conflicts for defined classes are not allowed.
Finally, it is possible to bind N to DoubleNode in DoubleLinkedList:

component ClosedDoubleLinkedList = bind(DoubleLinkedList,N->DoubleNode);

2.3 Renaming Facilities

Since binding of deferred classes is by name matching, a renaming operator might
be useful in some circumstances.
For instance, if in Double the two deferred classes List and Node were named
L and Nd, respectively, then a renaming would be necessary before merging
LinkedList with Double.

component DoubleLinkedList =

merge(LinkedList,rename(Double,{L->List,Nd->Node}));

The rename operator allows renaming of a single class name at time, therefore the
expression rename(Double,{L->List,Nd->Node}) is just a convenient shortcut
for the more verbose one:

rename(rename(Double,L->List),Nd->Node)

Renaming of more classes is accomplished sequentially from left to right. Both
deferred and defined classes can be renamed. Since the operator allows only
bijective renamings, the newly introduced name must be unused in order to
avoid conflicts.
7 For sake of simplicity we have omitted to specify the most general requirements as

they would be inferred by the compiler.
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2.4 Unbind and Restrict

Let us consider again component ClosedLinkedList as defined in Section 2.2. As
already noted, the constraints on class Node cannot be removed by the compiler
without compromising type safety. This is due to the fact that it is possible to
derive an open component from a closed one by making some class deferred.
This can be accomplished by using either the unbind or the restrict operator.

Unbind The unbind operator can be considered the inverse of bind; for instance,
as ClosedLinkedList could be derived from LinkedList with the bind operator,
the opposite could be obtained by deriving LinkedList from ClosedLinkedList
with the unbind operator.

component LinkedList=unbind(ClosedLinkedList,Node->N)

The class to be unbound (Node in the example) must be defined in the component
while the new name (N in the example) must be unused. The effect consists in
adding the deferred class N and replacing all soft links to Node with N.
This example shows also that in general requirements cannot be safely removed
by the compiler; indeed, requirements on Node specified in ClosedLinkedList
cannot be simplified, since after applying the unbind operator, soft links to the
defined class Node could be redirected to some deferred class (N in the example).
The unbind operator offers an effective way to deal with unanticipated code
modification due to poor component design; although unanticipated code modi-
fication should be better addressed when designing and developing components,
unbind gives a chance to recover from this problem when components are as-
sembled and are not available in source form.

Restrict The restrict operator provides another mean for opening closed com-
ponents. It is mainly used jointly with the merge operator to override class defini-
tions. For instance, a new component could be obtained from ClosedLinkedList
by overriding the definition of Node with that contained in component AnotherNode:

component AnotherNode = {

class Node {

Node next;

int elem;

Node(Node n) { next=n; }

Node(Node n,int e) { next=n; elem=e; }

Node getNext() { return next; }

int getElem() { return elem; }

}

}

component ClosedIntLinkedList =

merge(AnotherNode,restrict(ClosedLinkedList, Node));
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First, the restrict operator makes class Node in ClosedLinkedList deferred by
removing its definition. Then the new definition of Node in AnotherNode is added
by the merge operator.
Note the difference between the unbind and the restrict operator: for class C
defined in component Comp, unbind(Comp, C->U) does not remove the definition
of C, but redirects soft links to C to an unused class U; restrict(Comp,C),
instead, makes class C deferred by removing its definition, but does not redirect
soft links to C. Hence rename(restrict(Comp,C),C->U) is still different from
unbind(Comp, C->U) since in the latter the definition of C is kept.
As for renaming, convenient shortcuts are provided for unbinding and restricting
multiple classes.

2.5 Qualified Class Names

As already explained, references to classes defined in other components are al-
lowed by using qualified class names:

component AnotherList = {

class List {

requires { AComponent.Node(AComponent.Node); }

AComponent.Node first;

void addFirst() { first=new AComponent.Node(first); }

}

}

Component AnotherList directly depends on component AComponent which is
expected to define a class Node satisfying the constraint specified in class List.
While soft links can always be redirected by the composition operators, hard
links cannot and establish direct dependencies between components. However,
these dependencies are always made explicit by the required interface. The same
consideration applies to hard links to classes declared in the same component.

component YetAnotherList = {

class List {

requires { YetAnotherList.Node(YetAnotherList.Node); }

YetAnotherList.Node first;

void addFirst(){first=new YetAnotherList.Node(first);}

}

class Node{

requires { & YetAnotherList.Node; }

YetAnotherList.Node next;

Node(YetAnotherList.Node n){next=n;}

YetAnotherList.Node getNext(){return next;}

}

}

In component YetAnotherList all hard links to Node are permanently bound to
the definition of Node in the same component and can no longer be unbound.
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While it is not possible to transform a hard link into a soft link, the opposite
can be achieved via the bind operator. For instance, YetAnotherList could be
equivalently obtained from ClosedLinkedList:

component YetAnotherList =

bind(ClosedLinkedList,Node->YetAnotherList.Node);

3 A Framework of Components

The full formal definition of the framework of components we have introduced
through examples in the previous section is given in [4]. In this paper, for lack of
space, we only report syntax and reduction rules, to give the reader a precise, yet
rather intuitive, definition of the behaviour of the operators. However, in the real
scenario (see Section 4) a component expression is not reduced at the source level,
but rather generates a binary component in a context where binary components
for component names used inside the expression are already available. This is
modeled by the type system given in [4].
The framework is parametric, in the sense that syntax and reduction rules can
be instantiated on top of a programming language providing some syntactic
categories and judgments. We use a Java-oriented terminology, since our aim
is to instantiate the framework on Java-like languages (in particular, in [4] we
present an instantiation on Featherweight Java [15]). However, the framework
could in principle be applied more in general, thinking of “class” as “language
entity”.
In order to define syntax and reduction semantics of our component language, we
first list the syntactic categories the used programming languages must provide.

– Simple class names (c). A qualified class name has the shape M.c, where c
is a simple class name, and M is a component name. The meta-variable n
ranges over both the sets of simple and qualified class names.

– (Source) class definitions (cds). We assume that each source class definition
introduces a simple class name c that can be extracted by a function out.
Sequences of source class definitions cds

1 . . . cds
n will also be denoted by S.

The syntax used for creating and composing components is given in Fig.1. We
assume that order in sequences is immaterial and use a bar notation for sequences
following the same conventions as in [15] (for instance, c stands for c1 . . . cn).
An application program corresponds to an executable application obtained by
assembling together and deploying some components as specified in the environ-
ment MDS, and by providing a main expression es from which execution must
start in the context of components MDS.
A component environment is a sequence of component declarations (possibly
mutually dependent), each one associated with a distinct name.
A basic component BM is a sequence of class names (the deferred classes), followed
by a sequence of class definitions. We assume that all class names (deferred or
defined) introduced in BM are distinct.
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P ::= (MDS, es) application program
MDS ::= MD (source) component environment
MD ::= M = ME component declaration
ME ::= M | BM | merge(ME1, ME2) | restrict(ME, c) | component expression

rename(ME, c 7→ c′) |
bind(ME, d 7→ n) | unbind(ME, c 7→ d)

BM ::= {c;S} basic component

where: component/class names declared in MDS/BM are distinct;
in(S) ⊆ c ∪ out(S) in BM

Fig. 1. Syntax

Moreover, we assume that class definitions can only contain soft links to classes
which are explicitly declared in BM, either in c or in S. If S = cds

1 . . . cds
n, then

out(S) = out(cds
1) ∪ . . . ∪ out(cds

n) denotes the set of all classes defined in S,
whereas in(S), whose definition depends on the used language, is expected to
denote the set of all soft links in S. Recall that a soft link to a class is any of its
unqualified occurrences except those which introduce the declaration of either
the class itself, or any of its constructors.
For instance, in component M={class C{ C(){...} M.C m(C arg){...}}} only
the last occurrence of C is a soft link to C, whereas M.C is a hard link, that is, a
link permanently anchored to the declaration of C inside M.
Defined class names are not associated permanently with a class definition in
the component, but their definition can be changed later when composing the
component with others. In other words, classes are all considered virtual.
Composition operators include merge, restrict, rename, bind, and unbind.
The reduction relations over programs, component environments, declarations
and expressions are defined by the rules in Figure 2. For simplicity, we use the
same symbol for the reduction relations over the four different sets of terms,
since such sets are mutually disjoint.
Values for component expressions are basic components BM, whereas a compo-
nent declaration M = ME is expected to reduce to a declaration of a basic compo-
nent M = BM. Analogously, component environments are expected to reduce to
environments of basic components M = BM.
Rule (prog) corresponds to the intuition that the component environment of
the program needs first to be reduced to a collection of declarations of basic
components; then, the reduced component environment is closed by completing
simple class names with their corresponding qualified version, and, finally, in
the context of the class definitions extracted from the elaborated component
environment, the reduction of es can start (prog2 ) according to the reduction
relation →core at the level of the programming language.
The auxiliary functions classes and close are trivially defined by
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(prog)
MDS→ MDS′

(MDS, es) → (MDS′, es)

(prog2)
(S, es) →core (S, es′)

(M = BM, es) → (M = BM, es′)
S ≡ classes(close(M = BM))

(mdecs)
MD→ MD′

M = BM MD MDS→ M = BM MD′ MDS

(mdecs2)
M = BM MD MDS→ M = BM MD′ MDS

MD′ ≡ MD[BM/M]
MD′ 6≡ MD

(mdec)
ME→ ME′

M = ME→ M = ME′

(merge)
merge({c1;S1}, {c2;S2}) → {c;S1S2}

c = c1c2 \ out(S1S2)
out(S1) ∩ out(S2) = ∅

(restrict)
restrict({c;S cds}, c) → {c c;S}

out(cds) = c

(rename)
rename({c;S}, c 7→ c′) → {c;S}[c′/c]

c ∈ c ∪ out(S)
c′ 6∈ c ∪ out(S)

(bind)
bind({c d;S}, d 7→ n) → {c;S[n/d]}

n qualified or n ∈ out(S)

(unbind)
unbind({c;S}, c 7→ d) → {c d;S[d/in c]}

c ∈ out(S)
d 6∈ c ∪ out(S)

Fig. 2. Reduction rules

classes(M = {c;S}) = S

close(M = {c;S}) = M = {c; closeM(S)}

The definition of closeM, though trivial (simple class names are qualified by M),
depends on the used language; the instantiation for FJ can be found in [4].
In a component environment, component declarations are sequentially processed
from left to right. The leftmost declaration MD which is not fully reduced yet is
selected, and, either a reduction step can be applied to MD (mdecs), or some
name Mi of previously declared components can be substituted with the corre-
sponding basic expression (mdecs2 ). Note that even though the two rules are not
mutually exclusive, the reduction relation turns out to be confluent. The side
condition MD′ 6≡ MD avoids loops, whereas MD[BM/M] denotes parallel substitution
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of Mi with BMi, for i ∈ 1..n, in MD. The inductive definition of such substitution is
standard, except for the following case: {c;S}[BM/M] = {c;S}. Substitution is not
propagated inside components, since hard links are allowed to establish mutual
dependencies between components.
Rule (mdec) is straightforward.
We denote by S[c′/in c] the class definitions obtained from S by replacing every
soft link to c by c′. Recall that references to c are all occurrences of c except
those which either occur in qualified names, or introduce the declaration of either
c, or one of its constructors.
Finally, c[c′/c] denotes the replacement of c with c′ in c, if present, and S[c′/c]
denotes the replacement of simple class name c (but not of qualified names of
shape M.c) with c′. That is, S[c′/c] differs from S[c′/in c] since it also replaces
declaring occurrences. Again, the precise definitions of [ /in ] and [ / ] depend
on the core language.
The reduction relation for component expressions is defined as the compatible
closure of the corresponding rules, since, for brevity, we have omitted the usual
congruence rules. Even though it is not deterministic, the reduction relation is
clearly confluent by orthogonality.
Merging two basic components (merge) corresponds to just putting together
their class definitions (S1 S2), provided that there are no conflicts (out(S1) ∩
out(S2) = ∅), whereas the deferred classes are those of the two components
which do not match with a defined class (c1c2 \ out(S1S2)); note that deferred
classes are shared.
The restrict operator (restrict) removes the definition of a class c in a basic
component, and makes c a deferred class.
The rename operator (rename) performs a bijective renaming of a class c into
c′ in a basic component BM: c must be either a deferred or a defined class in BM,
whereas c′ must be new, that is, neither deferred nor defined in BM. Recall that
qualified names are not affected by the substitution.
The bind operator (bind) replaces all soft links to a deferred class8 with the
name of a defined class of the same component or with a qualified class name.
Conversely, the unbind operator (unbind) replaces all soft links to a defined class
with a new deferred class.
As final remark, note that all the composition operators can be expressed as a
combination of operators in (mixin) module calculi, such as CMS [6]. Indeed,
merge (called link in [6]) and restrict are exactly the corresponding operators
of the CMS version with virtual components, whereas rename, bind and unbind
can all be obtained as special instances of the CMS reduct operator which al-
lows independent renaming of input and output names (in rename names which
are both input and output are renamed in the same way, and only bijective re-
namings are considered; in bind an input name is renamed to an output name;
finally, in unbind an input name is renamed to a fresh name). Hence, the seman-
tics of our component language could be equivalently given by translation into

8 Note that all soft links to a deferred class are just all unqualified occurrences of c,
hence S[n/d] and S[n/in d] coincide here.
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CMS. However, we preferred here a direct semantics since it is more intuitive
for most readers. Note also that unbind operator, which seems at a first sight
to change the inner structure of a component, actually can safely be expressed
by module operators which consider a component as a black box, relying on
the CMS distinction between (external) names and (internal) variables which
we have omitted here for simplicity: that is, only the input name is changed,
whereas the variable used in internal code is kept. This model exactly reflects
what happens at the implementation level.

4 Implementation

In this section we discuss how we have implemented a prototype compiler for the
framework we have presented; it can be downloaded (along with its sources and
some examples) at: http://www.disi.unige.it/person/LagorioG/SmartJavaComp/
This compiler supports a small Java subset, which extends the language used
in the instantiation of the framework described in [4]; in addition to some syn-
tactic shortcuts it supports primitive types, assignments, implicit use of this,
the literal null, void methods, constructor overload and basic statements. All
examples shown in the paper can be tested.
Our prototype consists of two programs: the compiler and the deployer. The
former generates .bc component binary files from .sjc component source files,
and the latter assembles component binary files into standard .jar files. These
resulting JAR files are directly executable on any JVM (Java Virtual Machine).
A .sjc file contains a single component declaration MD as in Fig.1, where the
language used for writing class definitions is the small Java subset described
above. A .bc file (a binary component) is (roughly) a collection of Java classes
in polymorphic bytecode format, each one equipped with its constraints. A basic
component is compiled by compiling in isolation any class definition, by imple-
menting the type system for separate compilation defined in [2], extended to the
considered language.
Component declarations where unbound component names appear only in qual-
ified names can be compiled in total isolation. On the other hand, component
declarations which depend on other components can be compiled only if these
components are already available in binary form. In this case, our compiler acts
also as a linker, that is, it generates a new .bc file by also using those binary
files.
When components are compiled, type constraints are checked for consistency;
unfortunately, some errors could be undetected as long as components remain
open. Luckily, verification of constraints is complete in case of closed compo-
nents [2].
Because binary components contain polymorphic bytecode, they cannot be di-
rectly loaded, much less executed, by a standard JVM. In order to obtain a
standard Java “executable” (that is, a JAR archive containing a proper mani-
fest) from a set of .bc binary files, we must deploy them.
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The deployer can assemble components into a single executable, after having
checked that these components complete each other without clashing; that is,
when the collection of Java class signatures extracted from these components
is well-formed9 and all type constraints of components can be simplified in this
environment of class signatures.

5 Conclusion

We have presented a parametric framework of components for Java-like lan-
guages where a component is a collection of (binary) classes, each one equipped
with type constraints on used classes. These type constraints guarantee safe
linking of components; moreover, linking is flexible, in the sense that type con-
straints are abstract enough to never reject safe compositions, and components
can be combined by a set of powerful (mixin) module operators.
A concrete instantiation of the framework can be provided by giving a suitable
intermediate language: Java bytecode or .NET intermediate language does not
allow fully adaptive components since, roughly speaking, they do not abstract
away from all the possible contexts where open components can be safely used.
However, as shown in [2], it is possible to define more abstract binary languages
which are adequate to this aim. Our work until now, both in [2] and in the
prototype accompanying this paper, has focused on extending Java bytecode,
by adding type variables and type constraints. However, instantiations based on
.NET intermediate language are feasible and interesting as well; moreover, they
would be even more appealing, being .NET an intermediate language which does
not rely on a particular source language, so the corresponding component frame-
work would allow interoperability among components written in any language
which targets .NET. We plan to investigate this possibility further.
Basic components are constructed, as mentioned above, in a particular language.
Again, the framework can be instantiated on any source language which allows
compilation in isolation of classes in the given binary language.
The semantics of the component language is defined in terms of reduction into
basic components, that is, collection of class declarations.
To show the effectiveness of the approach, we have provided in [4] a complete
formal description of an instantiation of the framework on Featherweight Java
[15], which uses the type system for compositional compilation in [2]. Moreover,
we have developed a prototype implementation on a small Java subset, which
implements a large extension of this type system.
In literature there exist several proposals to better support component program-
ming in object-oriented languages.
MzScheme [13] and Jiazzi [17] components are mixins which can be statically
linked, in a way similar to our approach. MzScheme is built on top of Scheme
and is not statically typed; Jiazzi is inspired by MzScheme, but is defined on
top of Java, and is statically typed.

9 The class hierarchy is acyclic and there is no bad overriding/overloading.
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Other related papers propose language level abstractions for component-oriented
programming allowing components to be first-class entities. ComponentJ [18],
ArchJava [1], and ACOEL [19] are Java-like component-oriented languages,
where components can be dynamically composed by explicitly connecting their
ports. Ports basically play the role of required and provided interfaces in our
framework.
ComponentJ promotes black-box object-oriented component programming style,
by avoiding inheritance in favor of object composition.
ArchJava is an extension of Java with component classes; its type system allows
for static checking of structural conformance between architecture and imple-
mentation.
ACOEL is an extensional language for supporting black-box components which
uses mixins and virtual types to build adaptable applications.
Finally, Zenger [22] follows a more scalable approach, by proposing a component
model where components are composed by type-safe high-level composition op-
erators.
Differently to our approach, all the works above are less focused on the problem of
programming language independence and interoperability of binary components.
There are several short term enhancements on the design of the component
language which could be considered: for instance, adding the possibility of hiding
classes in components by making them private, or allowing non virtual classes
(classes statically bound).
Long term future work includes at least two important directions. First, our
binary components are linkable units, but not loadable units, that is, they cannot
be replaced or serviced after application execution has started. Hence, we plan
to study the possibility of considering a different semantics for the composition
operators based on dynamic rather static linking, following the approach taken in
[11, 16] where models for virtual machines able to execute polymorphic bytecode
have been defined.
Another limitation of the approach is that mutual consistency of components
only means that type correctness is guaranteed, but of course does not imply that
components satisfy some expected behaviour. To go more towards preservation
of also semantic properties, one should develop an assertion-based version of
both required and provided interfaces.
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