
Dipartimento di Informatica e
Scienze dell’Informazione

•
••
•• ••

Type systems for Java separate compilation and

selective recompilation

by

Giovanni Lagorio

Theses Series DISI-TH-2004-XX

DISI, Università di Genova

v. Dodecaneso 35, 16146 Genova, Italy http://www.disi.unige.it/

Università degli Studi di Genova

Dipartimento di Informatica e

Scienze dell’Informazione

Dottorato di Ricerca in Informatica

Ph.D. Thesis in Computer Science

Type systems for Java separate compilation
and

selective recompilation

by

Giovanni Lagorio

March, 2004

Dottorato di Ricerca in Informatica
Dipartimento di Informatica e Scienze dell’Informazione

Università degli Studi di Genova

DISI, Univ. di Genova
via Dodecaneso 35

I-16146 Genova, Italy
http://www.disi.unige.it/

Ph.D. Thesis in Computer Science

Submitted by Giovanni Lagorio
DISI, Univ. di Genova

lagorio@disi.unige.it

Date of submission: March 2004

Title: Type systems for Java separate compilation and
selective recompilation

Advisors:
Davide Ancona

DISI, Univ. di Genova
davide@disi.unige.it

Elena Zucca
DISI, Univ. di Genova
zucca@disi.unige.it

Supervisor: Elena Zucca

Ext. Reviewers:

Gilad Bracha
Sun Microsystems
gilad@bracha.org

Sophia Drossopoulou
Imperial College of Science, Technology and Medicine, University of London

sd@doc.ic.ac.uk

Paola Giannini
Università del Piemonte Orientale

giannini@di.unito.it

2

Abstract

In this thesis we provide a formal framework for separate compilation of Java-like languages.
We start by formalizing the Java compilation process as it is currently implemented by
compilers. Indeed, the behavior of standard compilers is hard to be understood, since
compilation is propagated in a complex way to sources not explicitly mentioned by the
user, and a specification is completely missing. Furthermore, with this formalization we
show that Java separate compilation, despite its complexity, does not satisfy some desirable
properties, such as safety and equivalence with global compilation. The former states that
binaries produced by a successful compilation should not throw linkage exceptions when
run; the latter states that the recompilation of a subset of the existing fragments should
be equivalent to the recompilation of the whole program.

Therefore, we show how to get these properties. First, we achieve safety by modifying the
Java compilation process, still keeping the approach of current compilers and existing type
systems, where a single Java fragment is typechecked w.r.t. a type environment containing
full type information on used fragments, which is extracted from the compilation context.

Then, we introduce an innovative type system where a fragment is typechecked in total iso-
lation, w.r.t. a type environment consisting in fine-grained assumptions which describe the
minimal requirements needed for generating a given binary. This system can be success-
fully exploited to define a recompilation strategy which is both sound, that is, equivalent to
global recompilation, and optimal, that is, s.t. a source is never recompiled if not necessary.

In order to provide a solid starting point for implementing a compilation manager based
on these ideas, we extend the type system with most of the Java-specific features, showing
why they hinder a sound and optimal selective recompilation mechanism and how they can
be successfully handled. Finally, we discuss implementation issues.

Voodoo Programming: Things programmers do that they know shouldn’t work
but they try anyway, and which sometimes actually work, such as recompiling
everything. (Karl Lehenbauer)

Acknowledgements

First of all, I’d like to express my gratitude to my parents, who have always trusted and
supported me.

My advisors Elena and Davide deserve special thanks for their endless patience and support,
from both the technical and the “philosophical” points of view. Their love for research in
seeking the Truth is infectious, and I’m glad I’ve been “infected” :-)

During my PhD I’ve visited Imperial College, which has been a wonderful experience. I’m
very grateful to Sophia for making it possible, for her kindness and help. I’d also like to
thank Susan and all the other skilled guys who attended SLURP meetings during my stay
in London: every brainstorming session was fun and fruitful. The contents of this thesis
has been surely enhanced by some of the ideas discussed there.

For all the time we have shared, their help and encouragement I’d like to thank Walter,
Lalla, Sonia and all the other inhabitants of planet DISI ;)

Last, but not least, a very warm thank-you to Fabio and Chiara, for being the friends I
can always count on.

Contents

List of Figures 3

Chapter 1 Introduction 5

1.1 Type safety . 6

1.2 Equivalence with global recompilation . 7

1.3 Java-like separate compilation . 10

1.4 True separate compilation and selective recompilation 12

1.5 Towards selective recompilation for full Java 15

Chapter 2 Java-like separate compilation 18

2.1 Some motivating examples . 19

2.2 Framework . 22

2.3 A safe compilation schema . 26

2.3.1 Main results . 40

2.3.2 Proofs (sketched) . 40

Chapter 3 True separate compilation and selective recompilation 44

3.1 An informal presentation . 44

3.2 Formalization . 48

3.3 Selective recompilation . 55

Chapter 4 Towards selective recompilation for full Java 58

1

4.1 An informal overview . 58

4.1.1 Compile-time constant fields . 60

4.1.2 Unreachable code . 63

4.2 Formalization . 65

4.2.1 The language . 65

4.2.2 Type environments . 70

4.2.3 Type assumptions . 72

4.2.4 Compilation . 89

4.2.5 Proofs . 99

4.2.6 Incremental environment checking 103

4.3 Implementation issues . 106

Chapter 5 Related work 109

5.1 Formalizations of Java . 109

5.2 Separate compilation . 110

5.3 Selective recompilation . 111

Chapter 6 Conclusion and future work 112

Bibliography 115

2

List of Figures

2.1 Definition of compilation function . 24

2.2 Definition of the type extraction function 24

2.3 Syntax and types . 27

2.4 Definition of function refClasses . 29

2.5 Source type-judgment . 30

2.6 Definition of methRes . 32

2.7 Full type of a class . 32

2.8 Binary type-judgment . 33

2.9 Implementation and widening . 34

2.10 Exception-aware disjunction . 35

2.11 Definition of MBody . 35

2.12 Contexts . 36

2.13 WeakSubtype and Supertypes definitions 36

2.14 Verification . 38

2.15 Rewriting . 39

3.1 Syntax . 49

3.2 Type environments . 50

3.3 Separate compilation . 51

3.4 Type environments entailment . 52

3.5 Well-formed standard type environments 53

3

3.6 Auxiliary judgment and functions . 54

4.1 Syntax - Sources . 66

4.2 Syntax - Binaries . 68

4.3 Type environments . 70

4.4 Definition of the type extraction function T 71

4.5 Type assumptions . 73

4.6 Rules defining subtyping . 76

4.7 Accessibility (1/2) . 78

4.8 Accessibility (2/2) . 79

4.9 Full types . 81

4.10 Auxiliary operators and functions . 82

4.11 Constructors . 84

4.12 Fields and constants . 86

4.13 Methods . 87

4.14 Rules defining exception related judgments 88

4.15 Expression typing rules (1/3) . 90

4.16 Expression typing rules (2/3) . 92

4.17 Expression typing rules (3/3) . 93

4.18 Statement typing rules (1/2) . 95

4.19 Statement typing rules (2/2) . 96

4.20 Compilation rules (1/2) . 97

4.21 Compilation rules (2/2) . 98

4.22 Well-formed standard environments . 104

4

Chapter 1

Introduction

In modern programming languages, the notion of “program” as a whole has become more
and more obsolete. Nowadays, the process of developing software typically consists in writ-
ing separate pieces of code, which we call fragments, following [Car97], each one implement-
ing some basic functionality and relying on functionalities provided by other fragments.

A language should provide facilities which allow the development of fragments to be as
much modular as possible. In particular, a highly desirable feature is separate compilation,
which means, in its strongest formulation, the possibility of typechecking and compiling a
single source fragment S in isolation, that is, in a context where only type information but
no code is available on the fragments S depends on.

Two properties are desirable to exploit the power of separate compilation without risking
counterintuitive semantics:

• type safety;

• equivalence with global (re)compilation.

The former guarantees that the execution of a program, which is the result of a successful
compilation, never throws linkage related exceptions (as NoSuchMethodError).

The latter expresses the intuitive idea of being able to compile different fragments at
different times, obtaining, in an incremental way, the same overall result that would be
obtained recompiling all the fragment at once (being that result either a set of binaries or
an error).

Even though Java is known to support separate compilation, neither type safety nor equiv-
alence to global compilation are met.

5

1.1 Type safety

As the following example shows, in Java it may happen that the execution of an application,
which is the result of a successful compilation, throws a linkage error.

Assume to have the following declarations in two source fragments named A.java and
B.java.

class A {

void f(B b) {

if (b!=null)

b.g(this) ;

}

void h() {}

public static void main(String [] args) {

new A().f (args.length > 0 ? new B() : null) ;

}

}

class B {

void g(A a) {

a.h() ;

}

}

We can compile these fragments obtaining the corresponding binaries A.class and B.class.

Suppose now to remove the method h from class A, and then to invoke the compilation on A

in the current context (where B.class is available). The compilation succeeds, because the
binary B.class is newer than its source B.java, so the compilation is not automatically
propagated to B.java, and the type information needed to typecheck the declaration of
class A are extracted from the binary B.class.1

At run-time the lack of method h can either pass unnoticed (if the method is never invoked)
or cause a run-time error, modeled in Java by the exception NoSuchMethodError, if there
is an attempt at calling the method.

In this particular case, if we run class A without arguments then no exception is thrown
and the program terminates (successfully); on the other hand, passing any argument to
the program causes the exception NoSuchMethodError to be thrown. Therefore, we can
conclude that standard Java separate compilation is not type safe. This issue, well-known

1Note that, on the other hand, the compilation of both sources would fail because B tries to invoke the
method h(), which is no longer available in A.

6

to experienced Java programmers, seems in contradiction with the fact that type safety
results have been proved for the Java language [vON99, DE99, Sym99]; the explanation is
that these formal type systems, and the related type safety results, are only related to the
special case when a closed set of source fragments is typechecked. However, always taking
this approach would make totally useless having a support for separate compilation.

1.2 Equivalence with global recompilation

Because sources depend on each other, a change to a source may affect the result of
the compilation of other unchanged sources. For this reason, the compilation of a set of
(changed) sources may require the recompilation of other (unchanged) sources to obtain
the same result a global recompilation would produce.

Even though Java compilers in some cases propagate the compilation to fragments not
explicitly mentioned when invoking the compiler, they fail to guarantee equivalence with
a global recompilation. In particular, in Java it may happen that:

1. the recompilation of a set of changed sources succeeds, while the recompilation of the
whole program fails;

2. the recompilation of a set of changed sources fails, while the recompilation of the
whole program succeeds;

3. both recompilations succeed, but they produce different binaries, hence they lead to
different executions.

We have already shown an example of the first problem in Section 1.1; indeed, in that
example the recompilation of the single class A succeeds, while a global recompilation
would fail. So, let us consider the other two cases.

The following example shows that the recompilation of a subset of the sources may fail while
the compilation of the whole program succeeds. Assume to have the following declarations
in two source fragments named A.java and B.java.

class A {

final static boolean b = B.b ;

}

class B {

final static boolean b = false ;

}

7

We can compile these fragments obtaining the corresponding bytecode fragments A.class
and B.class. Suppose now to modify B.java in the following way:

class B {

final static boolean b = true ;

void f() {

while (A.b) {

System.out.println("Hello, world!") ;

}

}

}

The compilation of the single class B would fail, because the constant A.b found in A.class

is false and thus the body of the while statement turns out to be unreachable2; note that
in this case, differently from the preceding, B depends on A, hence, the compilation of B
would require the compilation of A in the absence of the bytecode for A; however, even
in a context where the bytecode for A is available (as in this case), the compiler would
not recompile A.java because the class file turns out to be newer than the corresponding
source.

On the other hand, the compilation of both source fragments would succeed because in
this case the value of A.b would be true.

As the reader has probably noticed, this counterexample relies on two quite peculiar fea-
tures of Java:

• a standard Java compiler must raise an error when some part of code turns out to
be unreachable3;

• a final field initialized with a compile-time constant is itself a compile-time con-
stant4, hence, during compilation, it is bound to the calculated value, thus losing the
dependency information.

We analyze both issues in detail in Chapter 4.

The following example shows a case where both the recompilation of a subset of the sources
and the recompilation of the whole program succeed, but producing different bytecode
fragments (hence, different run-time semantics). Assume to have the following declarations
in two source fragments named A.java and B.java.

2See 14.20 and 15.28 of [GJSB00].
3Except for if statements that are treated in a special way to permit conditional compilation, see 14.20

of [GJSB00]
4See 15.28 of [GJSB00].

8

class A {

void f(B b) {

System.out.println("The answer is: "+b.g(b)) ;

}

public static void main(String [] argv) {

new A().f(new B()) ;

}

}

class B extends A {

int g(A a) { return 1 ; }

}

We can compile these fragments obtaining the corresponding bytecode fragments A.class
and B.class. When we run A.class we obtain:

The answer is: 1

Assume now to add an overloaded method to class B, obtaining the following B.java:

class B extends A {

int g(A a) { return 1 ; }

int g(B b) { return 42 ; }

}

If we recompile (successfully) class B and then re-run A.class, then we obtain the same
output as before, but if we recompile both source fragments and run A.class we obtain
the different output shown below.

The answer is: 42

The example above is based on the fact that overloading resolution is performed at compile-
time. Hence, while in a source fragment the method which is selected for a given invocation
depends on the context, that is, on the methods which are currently provided by the class
of the receiver, at the binary level this dependency is lost (as in the case of final fields
initialized with compile-time constants mentioned above) and the invoked method is fixed
once and for all. The same happens in all the situations where the resolution is static, like,
e.g., field accesses.

9

1.3 Java-like separate compilation

Although there is a specification which describes how to compile Java language into its byte-
code representation (to be executed by the Java Virtual Machine), there is no specification
of Java separate compilation. So, the semantics of separate compilation is implementation
dependent and, as we have seen, in some cases it is not type-safe (nor equivalent to a global
recompilation).

In order to study Java-like separate compilation and its properties we introduce, in Chap-
ter 2, a formal framework providing a rigorous basis for:

• defining and investigating different possibilities for the overall compilation process
as in Java (for instance: a minimal set of checks, the checks performed by standard
Java compilers, as many checks as possible)

• proving desirable properties, like type safety, for a compilation process.

The framework is based on the notion of compilation schema. A compilation schema
consists of four components:

• a source type judgment, which models the compilation (that is, typechecking and
code generation) of a source fragment;

• a binary type judgment, which models the typechecking of a binary fragment;

• a dependency function, which models the fact that the compilation of a fragment
may enforce the compilation of other fragments;

• a type extraction function, which extracts from a compilation environment (a collec-
tion of source and binary fragments) a type environment providing the type infor-
mation needed for typechecking fragments.

The first two components model the part of Java compilation which corresponds to truly
separate compilation in the sense of [Car97], although, as the presence of a type extraction
function hints, in the Java-like approach a fragment cannot be compiled in total isolation.
Indeed, fragments are always checked against a type environment extracted from other
fragments, which must be present (at least in binary form).

The language we consider is reminiscent of Featherweight Java [IPW99], in the sense that
it is a small functional subset of Java; however, since here we are also interested in code
generation and bytecode execution, we present a simple binary language as well, together
with its reduction semantics. Our description of bytecode is rather abstract: we basically

10

enrich the source language with some annotations. For instance, each method invocation is
annotated with a method descriptor which describes the method which has been statically
selected for the invocation.

We consider three different compilation schemata. While all these schemata share the
same source type judgment and type extraction function (corresponding to the Java type
system defined in [GJSB00]), they remarkably differ in the other two components (that is,
dependency function and binary type judgment).

The first schema we consider, which we call minimal, corresponds to true separate type-
checking, in the sense that typechecking is not propagated. However, as noted, compiling
a source S requires the availability of fragments S depends on, since some of the type
information needed for typechecking S have to be extracted from them.

The second compilation schema, that we call SDK, is the one used by standard Java
compilers (at least for what we have been able to understand by experiments, since no
specification is available). In this case invoking compilation on S enforces typechecking of
other fragments, but not of all those which could be possibly loaded at run-time and, more-
over, no checks are performed on binary fragments. As a consequence, binaries obtained
as result of the compilation are not guaranteed to link safely at run-time.

Finally, we propose a compilation schema which is type safe, that is, guarantees safe linking
at run-time. For this last schema we provide a full definition of the four components and
we prove type safety. That is, we prove that executions started from classes that are the
product of the compilation do not throw linkage errors.

This last result shows that type safety can be achieved by keeping a Java-like separate
compilation (that is, an approach where a class is not compiled in total isolation, but
checked against a type environment extracted from the current compilation context), by a
modification of two components of the SDK compilation schema. That is, having stronger
dependencies which propagate typechecking to all classes which could be possibly loaded
at run-time, and a non trivial binary type judgment.

The other property we are interested in, that is, equivalence with global recompilation,
could also be achieved by having stronger dependencies. Roughly, when recompiling a class
after a change, we could propagate typechecking to all classes which use either directly or
indirectly this class. Notwithstanding this recompilation strategy would be equivalent to
global recompilation, we could perform useless recompilations, since we would recompile
a class C’ which uses a class C whichever is the change made to C, regardless this change
affects typechecking of C’ or not. In practice, this strategy would be no much better than
just recompiling all classes each time a change is made.

In order to obtain a better recompilation strategy, we need to take an approach different
from Java-like separate compilation, which is illustrated in the following section.

11

1.4 True separate compilation and selective recompi-

lation

In Chapter 3 we strive for a compilation which is truly separate, introducing an innovative
type system where a fragment is typechecked in total isolation. As the type environment
the fragment is compiled against is not extracted from the other fragments, in this system
the compilation of a source closely corresponds to what Cardelli [Car97] calls intra-checking
phase.

In this type system we introduce type environments which, differently from standard type
environments used in Java-like compilations, are collections of type constraints describing
fine grain requirements. For instance, let us consider the following class declaration:

class H extends P {
int g(P p) {

return p.f(new H()) ;
}
int m() {

return new H().g(new P()) ;
}
U id(U u) {

return u ;
}
X em(Y y) {

return y ;
}

}

and analyze under which assumptions class H can be successfully compiled. If we take the
approach of Java-like separate compilation previously described, then we would need to
impose rather strong requirements on all classes used by H, by asking for the most detailed
type information about such classes.

Formally, this corresponds to compile H in a type environment ΓS (“S” stands for standard)
which contains assumptions on the types of classes P, U, X and Y. For instance, we can
compile H in the type environment

ΓS = P 7→ <Object, int f(Object)>, U 7→ <Object, >, Y 7→ <X, >, X 7→ <Object, >

corresponding to assume that class P extends Object and declares only int f(Object),
classes U and X both extend Object and are empty, and class Y extends X and is empty.

Under the assumptions contained in ΓS class H can be successfully compiled into the fol-
lowing binary fragment Bh:

12

class H extends P {
int g(P p) {

return p.f<<P.int (Object)>>(new H()) ;
}
int m() {

return new H().g<<H.int (P)>>(new P()) ;
}
U id(U u) {

return u ;
}
X em(Y y) {

return y ;
}

}

In our language a binary fragment is just like a source fragment except that method
invocations contain an annotation � C.T (T1 . . . Tn)� giving the class of the receiver C (in
which the method is to be found at run-time, see 5.1 of [LY99]), the return type T, and
the parameter types T1 . . . Tn of the method which has been selected as most specific at
compile time.

Let us now try to relax the strong assumptions in ΓS by seeking an environment ΓNS (“NS”
stands for non-standard) containing other kinds of type assumptions which still guarantee
that H compiles to the same binary fragment Bh, but impose fairly weaker requirements on
classes P, U, X and Y.

A first basic request is that the compilation environment containing H must provide a
definition for the four classes which H depends on. In our system the existence of class C is
expressed by a nonstandard assumption of the form ∃ C, therefore ΓNS will contain at least
the assumptions ∃ P,∃ U,∃ X,∃ Y.

Let us now focus on the other assumptions needed for compiling class H into Bh.

Class P: the following additional assumptions on class P are needed:

• P 6< H: P cannot be a subtype of H (since inheritance cannot be cyclic).

• P,int g(P): P can be correctly extended with method int g(P); that is, according
to Java rules on method overriding, if P has a method g(P), then g must have the
same return type int as declared in H. Analogous requirements are needed for the
other methods declared in H.

• P.f(H)
res→ <Object, int>: invocation of method f on an object of type P with an

argument of type H is successfully resolved to a method with a parameter of type

13

Object and return type int. This assumption ensures that the body of g in H

is successfully compiled to the same bytecode as in Bh (in other words, the same
symbolic reference to the method is generated).

Class U: no additional requirements on U are needed, since the static correctness of method
id in H only requires the existence of U.
Classes X and Y: class Y must be a subtype of class X, otherwise method em in H would
not be statically correct. Therefore we need to add the assumption Y ≤ X.

In conclusion, class H can be successfully compiled to Bh in the environment ΓNS defined
by:

ΓNS = ∃ P,∃ U,∃ X,∃ Y, P 6< H, P,int g(P), P,int m(),

P,U id(U), P,X em(Y), P.f(H)
res→ <Object, int>, Y ≤ X

Note that ΓNS is weaker than ΓS, in the sense that it imposes less restrictive constraints;
for instance, class U can extend any class and declare any method in ΓNS, while class U

must extend Object and be empty in ΓS.

While the ability of compiling a source S in total isolation is appealing, the direct use of
this type system would put the burden of writing the type assumptions on programmers.
This activity is both tedious and rather time-consuming for real projects. Fortunately,
the type assumptions for compiling a particular source S (to a particular binary B) can
be automatically extracted, if the compilation of S is performed against a standard type
environment.

The key point is that these automatically generated assumptions ΓNS describe the weakest
requirements to compile a source S into a binary B. That is, S can be successfully recom-
piled, into the same binary B, in every type environment which satisfies assumptions ΓNS.
Moreover, being those assumptions the weakest requirements, we do know that S cannot
be compiled into B in every other environment which, conversely, does not satisfy ΓNS.

This feature can be fruitfully used to implement a selective recompilation strategy, that is,
a way to decide, after some sources have been changed, which unchanged sources have to
be recompiled.

A recompilation strategy which does not guarantee the same outcome of an entire recom-
pilation is not useful: why wasting time in debugging a program (a set of .class files in
the Java case) which might behave differently from the program obtained recompiling all
the sources from scratch?

Two contrasting requirements have to be considered: on the one hand recompilations can
be rather expensive (in time), hence they should be avoided when possible. More precisely,
they are useless when the recompilation of an unchanged (with respect to the previous
compilation) source fragment S, whose corresponding binary fragment B is already present,
would produce a binary equal to B. On the other hand, a recompilation strategy which

14

saves time not recompiling a fragment S, with a corresponding binary fragment B, whose
recompilation would produce a new binary B′ different from B, could cost a lot of wasted
time in debugging an inconsistent application, that is, an application that cannot be rebuilt
by recompiling all the sources.

Albeit some Java IDEs support smart or incremental compilation, to our knowledge there
are no publications which explain in detail the inner working of such recompilation strate-
gies.

We say that a compilation strategy is sound if it is equivalent to a global recompilation; that
is, if it recompiles all the changed sources and the unchanged sources whose new binary,
produced by the overall recompilation, would differ from the existing one (if any) and all
the unchanged sources for which the recompilation would fail. This latter requirement
is very important: indeed, when the entire recompilation fails, so should do the partial
recompilation.

Of course, a strategy which recompiles all the sources each time a change is made is trivially
sound and, obviously, totally useless in practice. We say that a compilation strategy is
minimal if it never recompiles an unchanged fragment whose new binary would be equal
to the existing one.

The compilation strategy built on our type system is proved to be sound and minimal for
a substantial subset of Java in Chapter 4.

1.5 Towards selective recompilation for full Java

Some Java-specific features, not modeled by the type system outlined in Section 1.4, hinder
a straightforward implementation of the selective recompilation strategy described above
to the full Java language. For this reason, in Chapter 4 we analyze these features and we
extend the type system in order to take also into account:

• accessibility levels, that is, the fact that different clients have different visibility of
the same class;

• different kinds of methods and fields, to reflect the fact that, e.g., an invocation to
an instance method is translated into the JVM instruction invokevirtual, while an
invocation of a static one into invokestatic;

• compile-time constant fields, because the bytecode generated for an access to such a
field is the same that would be generated if the literal corresponding to the value of
the field was used in its place;

15

• unreachable code detection, since the way Java handles unreachable code is peculiar:
what is a warning in most languages is a compile-time error in Java, so we need to
keep track of which code remains reachable after some sources have been changed.

With the exception of arrays and inner-classes, in the extended type system we model all
the major features of Java: classes (including abstract classes), interfaces, primitive types,
access modifiers (including packages, but without the import directive), constructors, (in-
stance/static) fields (both in classes and interfaces), (instance/static/abstract) methods,
super field accesses and method invocations, exceptions. The treatment of arrays and
inner-classes would complicate the model without apparently giving further insights. In
the few points where inner-classes would make a difference we briefly discuss the issue.

In order to provide a reasonable starting point for implementing a compilation manager,
we also take in account some efficiency issues.

As said before, our selective recompilation strategy requires to check which assumptions,
generated by a previous compilation, still hold in a new environment Γnew (that is, the en-
vironment extracted by the updated fragments) in order to determine which (unchanged)
sources have to be recompiled. Because this implies to check whether Γnew is a well-formed
environment, we analyze how well-formedness of environments can be verified incremen-
tally.

This strategy is optimal, from a theoretical point of view, since the strategy triggers the
recompilation of an unchanged source if and only if its recompilation produces a different
binary (or an error). However, from a practical point of view, there is another point to
ponder: the cost of checking whether the requirements of a fragment S are satisfied by a
type environment ΓS. If this checking costed more than compiling the source S, then the
whole idea would be useless.

In practice, what really matters is to have a recompilation strategy which is both fast
and sound. Because in the global cost of recompilation we must take into account both
the time spent in checks and the time spent in recompiling the selected sources, choosing
the minimum number of sources to be recompiled does not necessarily mean choosing the
fastest recompilation strategy. For these reasons, we consider a series of issues which should
help in simplifying, and so speeding up, the checking step.

A compiler manager for full Java, based on these ideas, is under development.

Summary

Chapter 2 presents a framework for modeling Java-like separate compilation, introducing
the notion of compilation schema and studying three different instantiations. In Chapter 3

16

we introduce an innovative type system where a fragment is typechecked in total isolation,
w.r.t. a type environment consisting in fine-grained assumptions which describe the min-
imal requirements needed for generating a given binary. This system can be successfully
exploited to define a sound recompilation strategy which never recompiles a source if not
necessary. The extension of this strategy to full Java is analyzed in Chapter 4, where the
type system is extended and implementation issues are discussed. Finally, in Chapter 5
we discuss related work, and in Chapter 6 we draw some conclusions and discuss further
work.

17

Chapter 2

Java-like separate compilation

In this chapter we model the overall compilation process introducing the formal notion of
compilation schema. A compilation schema consists of four components: two typing judg-
ments, a type extraction function and a dependency function. The judgments are: a source
type judgment ΓS ` S; B and a binary type judgment ΓS ` B � modeling typechecking, in
a given standard1 type environment ΓS, of source code S and binary code B, respectively;
in the former case the corresponding binary code B is also generated. These two compo-
nents model the part of Java compilation which corresponds to truly separate compilation
in the sense of [Car97]. The fact that in Java typechecking of a fragment may enforce
typechecking of other fragments is modeled by the dependency function. Finally, the fact
that in Java type information for a fragment cannot be provided separately from code is
modeled by the type extraction function which extracts from a compilation environment
ce (collection of source and binary fragments) a type environment ΓS providing the type
information needed for typechecking fragments in ce.

We consider three different compilation schemata for Java. The first, which we call min-
imal, corresponds to true separate typechecking, in the sense that no other fragment is
typechecked when compilation is invoked on a fragment f . In this case, all inter-checks
are left to the run-time verifier. However, note that some of the fragments f depends on
must be available, since some of the type information needed for typechecking f has to be
extracted from them2.

The second compilation schema is the one used by standard Java compilers (at least for
what we have been able to understand by experiments, since no specification is available).
In this case only some inter-checks are performed: invoking compilation on f enforces

1We will introduce nonstandard type environments in Chapter 3.
2This is how standard Java compilers work; in Chapter 3 we drop this requirement by using the already

mentioned nonstandard environments.

18

typechecking of other fragments, but not of all those which could be possibly loaded at run-
time3; moreover no checks are performed on binary fragments, that is, the type judgment
ΓS ` B � is always trivially valid. As a consequence, binaries obtained as result of the
compilation are not guaranteed to safely link at run-time, as we show below. Finally, we
propose a compilation schema which is type safe, that is, guarantees safe linking at run-
time. For this last schema we provide a full definition of the four components for a small
Java subset and we prove type safety.

2.1 Some motivating examples

In this section we illustrate, by means of some examples, three different Java compilation
schemata, called minimal, SDK and safe, respectively.

As already explained, the minimal compilation schema requires the minimal amount of
checks over fragments: typechecking is performed only for those source fragments on which
the compiler has been explicitly invoked and no checks (except those strictly necessary for
compiling the sources) are performed on binary fragments. This schema fits well in open
environments where source fragments to be compiled are expected to be later dynamically
linked with fragments that are not available at compile-time. For instance, assume that
the class C1 we want to compile depends on a class C2. Even in the case the source of C2
is available, it could be sensible avoiding typechecking of C2 if there is a high probability
that it does not correspond to the actual code that will be linked with C1 at run-time.

The SDK schema simply corresponds to the SDK implementation of Java4. As already
said, this schema falls in between the minimal and the safe schema: it enforces more checks
than the former but less than the latter. For instance, the compilation of a class C requires
that all source fragments5 directly used by C must be typechecked, while for all binary
fragments6 directly used by C, only their existence and format is checked (but no real
typecheck is performed).

Finally, the safe schema can be sensibly applied when we expect that the fragments that
will be linked at run-time are those available after the compilation; under this assumption,
it makes sense to typecheck all fragments (either source or binary) used (either directly
or indirectly) by a class C, in order to ensure that no execution of C will throw a linkage
error (like, for instance, NoClassDefFoundError or NoSuchMethodError). To this aim, the
compilation schema must include all those checks on binary fragments that a safe linker

3Note, however, that some fragment which are not loaded at run-time may be checked.
4These examples are based on version 1.4 beta 2 of SDK.
5Whose corresponding binary fragment is either unavailable or older.
6Which either are more recent than the corresponding source fragment or do not have a corresponding

source fragment.

19

would perform if Java classes were statically linked7.

While all these three schemata share the same source type judgment and type extraction
function (corresponding to the Java type system defined in [GJSB00] and formalized in,
e.g., [DE99]), they remarkably differ in the other two components (that is, dependency
function and binary type judgment) as described in the following examples.

Consider the following class declarations, assuming that each one is contained in a single
.java file:

class Main {
static void main(String[] args) {

new Used().m() ;
}
void g (UsedAsType x) {}

}

class Used extends UsedParent {
int m() {

return new TransUsed().m() ;
}

}

class UsedParent{
int m() {

return 1 ;
}

}

class TransUsed {
int m() {

return 1 ;
}

}

class UsedAsType { ... }

As already stated, the same type extraction function is shared by the three schemata. The
definition is straightforward: the type environment is a mapping associating with each
available class C the type information which can be extracted from its code, that is, a

7Of course, such checks are usually performed at run-time by the JVM.

20

pair consisting of the direct superclass of C and the list of naked method headers8 directly
declared in C, which we will call the class type of C. A naked method header is a method
header without the parameter names; roughly speaking it is the “signature” of the method,
but this terminology would conflict with the one used by [GJSB00], where a method signa-
ture is just the pair consisting of the method name and parameter types. In the following
we use the terms “naked method header” and “method header” interchangeably where
there is no ambiguity.

Assume now that we want to compile Main. In the minimal schema, our aim is just to per-
form the separate typechecking (intra-checking), hence we only need the type information
necessary to typecheck the source code of Main. In particular, for each class used in Main,
we may need different information depending on the usage situation; for instance, when a
class is used only as a type, like in the method g, we only need the existence of the class
in the type environment, whereas when it is used as the type of the receiver in a method
invocation, like in new Used().m(), we need to know which are all the method headers of
the class (either directly declared or inherited). This information, which we will call the
full type of a class, can be safely constructed by retrieving all the types of the ancestors of
the class (provided that this hierarchy is acyclic); this will be formalized in Figure 2.7 later
on. In summary, Main.java can be successfully typechecked, producing a corresponding
Main.class, in the type environment ΓS defined by

{Main 7→ 〈Object, void g(UsedAsType)〉, Used 7→ 〈UsedParent, int m()〉,
UsedParent 7→ 〈Object, int m()〉, UsedAsType 7→ . . . },

which can be extracted from a compilation environment ce1 which just contains the files
Main.java, Used.java, UsedParent.java and UsedAsType.java (but not TransUsed.java)
and no class files. This is formalized by the validity of the judgment ΓS ` S; B, defined
in Figure 2.5. Note that, as already said, in Java type information on fragments can-
not be provided separately from their code, so either the .java or .class files for Used,
UsedParent and UsedAsType must be available, even though no typechecking is performed
on their code (for UsedAsType not even the type information is used). In the minimal
schema, indeed, the set of dependencies of Main.java is simply {Main}, reflecting the fact
that we are only interested in typechecking Main.java.

In both the SDK and safe schema, the set of dependencies of Main in ce1 includes also Used,
UsedParent, UsedAsType and TransUsed. As a consequence, compilation of Main.java

in ce1 fails for both the SDK and safe schema, because ce1 contains neither a source nor a
binary file for TransUsed.

8In these examples we will consider for simplicity only instance method declarations, as in the Java
subset defined in Section 2.3; in full Java the class type of a class includes also other declared members.
We assume that the method main is just used for starting execution.

21

Let us consider now two compilation environments able to discriminate between the SDK
and the safe schemata. First consider ce2 which contains the source files Main.java,
Used.class, UsedParent.class, UsedAsType.class9, and a changed version of
TransUsed.java which does not satisfy intra-checks (for instance, the body of method m

could return a boolean). The type environment extracted from ce2 is still ΓS but, the set
of dependencies of Main in ce2 is now {Main, Used, UsedParent, UsedAsType, TransUsed}
in the safe schema, and {Main, Used, UsedParent, UsedAsType} in the SDK schema.

Hence, in SDK, although the source of class TransUsed is not typechecked, a new binary
fragment Main.class is produced anyway. However, in the new environment obtained by
enriching ce2 with the fragment Main.class, the execution of class Main throws the error
NoClassDefFoundError (note that this error is raised instead of a type error since the
class has not been compiled, hence there is no corresponding binary), whereas this error is
detected at compile-time by the safe schema which performs the typechecking of the source
of TransUsed.

In this case the difference between the Java and the safe schema is given by the dependency
function. However, even in the case dependencies are the same, the two schemata can still
behave differently due to the fact that the safe schema also performs a significant binary
typechecking (formalized by the validity of the judgment ΓS ` B � that will be defined in
Figure 2.8). For instance, invoking the compilation of both Main and TransUsed in the
compilation environment ce3 which contains Main.java, Used.class, UsedParent.class,
UsedAsType.class and a changed version of TransUsed.java which does not satisfy type
requirements in Used (for instance, declaring boolean m() {return true;}), in SDK no
checks are performed on the the binary code of Used. Hence, again, in the binary envi-
ronment obtained after the compilation, the execution of class Main throws the exception
NoSuchMethodError, whereas this error is detected at compile-time by the safe schema.

2.2 Framework

We now formally define our framework for modeling the Java overall compilation process.
Consistently with this aim, we use a Java-related terminology everywhere. However, most
of the notions presented here could be generalized to model the compilation process of
other languages.

Let us denote by C the set of fragment names, that is, in Java, class/interface names10,
ranged over by C, and by S and B the set of source and binary fragments, respectively.
We assume that source fragments are .java files containing (for simplicity) exactly one

9Obtained, e.g., by compiling the whole program in the example.
10We will consider only classes in the Java subsets of the first chapters. We use a larger subset only in

Chapter 4.

22

class/interface declaration, and binary fragments are .class files.

We denote by [A ⇀fin B] the set of finite partial functions from A into B, that is, functions
f from A into B which are defined on a finite subset of A, denoted Def (f).

So, a compilation environment ce is a pair

〈ceb, ces〉 ∈ CE = [C⇀fin B]× [C⇀fin S]

s.t. Def (ceb) ∩ Def (ces) = ∅. We will call ceb and ces a binary and a source environment,
respectively. Note that the assumption Def (ceb) ∩ Def (ces) = ∅ means that, even in the
case a class has both a binary and a source definition, the compiler considers only one of
them, according to some rule. Here we do not specify any rule, and it can be assumed the
rule simply consists in considering the latest modified one (according to the timestamps
of the corresponding files). Indeed, this is what happens in most implementations, albeit
this is not always satisfactory as we discuss in Section 4.2.2. The results of (successful)
compilations are binary environments. Hence, we can model the compilation process by a
(partial) function, called compilation function:

C : CE × ℘(C) ⇀ [C⇀fin B]

where C(〈ceb, ces〉, CS) = ce ′b intuitively means that the compilation, invoked on fragments
with names in CS, in the compilation environment consisting of binary fragments ceb and
source fragments ces, generates binary fragments ce ′b.

We introduce now the formal notion of compilation schema, meant to express different
Java compilation processes.

A compilation schema consists of the following four components.

• A dependency function D which gives, for any compilation environment ce and set
of fragment names CS, the set CS′ of all the fragment names on which typechecking
is enforced when the compilation is invoked on CS.

• A type extraction function T which extracts from a compilation environment ce a type
environment ΓS providing the type information necessary to typecheck fragments in
ce.

• A source type judgment ΓS ` S; B expressing that in the type environment ΓS the
source fragment S is successfully typechecked generating the binary fragment B.

• A binary type judgment ΓS ` B � expressing that in the type environment ΓS the
binary fragment B is successfully typechecked.

23

∀C ∈ CSb ΓS ` ceb(C) �
∀C ∈ CSs ΓS ` ces(C); BC

C(〈ceb, ces〉, CS) = {C 7→ BC | C ∈ CSs}

ΓS = T (〈ceb, ces〉)
CS ⊆ Def (ces)
CSd = D(〈ceb, ces〉, CS)
CSb = CSd ∩ Def (ceb)
CSs = CSd ∩ Def (ces)

Figure 2.1: Definition of compilation function

∀C T (〈ceb, ces〉)(C) =

〈C′, T (MDSb)〉 if ceb(C) = 〈C, C′, MDSb, Eb〉
〈C′, T (MDSs)〉 if ces(C) = class C extends C′ { MDSs } main Es

⊥ otherwise
T (MDs1 . . . MD

s
n) = T (MDs1) . . . T (MDsn)

T (MDb1 . . . MD
b
n) = T (MDb1) . . . T (MDbn)

T (MH { return Es; }) = T (MH)
T (MH { return Eb; }) = T (MH)
T (T0 m(T1 x1, . . . , Tn xn)) = T0 m(T1 . . . Tn)

Figure 2.2: Definition of the type extraction function

To compile a set of fragments CS in a compilation environment ce, first the needed type
environment ΓS is extracted applying T to ce. Then, all the fragments in the set CSd
computed from CS using D are typechecked generating corresponding binaries for those
which were in source form. This can be formalized by the inference rule in Figure 2.1
which defines a compilation function C in terms of the four components of a compilation
schema. The second side condition, CS ⊆ Def (ces), states that compilations can be only
invoked on a set of existing sources.

Let us now apply the above definitions for specifying the three different compilation
schemata informally introduced in Section 2.1.

The type extraction function is the same for the three schemata: the type environment
extracted from a compilation environment ce = 〈ceb, ces〉 is a finite partial function which
associates to each C ∈ Def (ceb) ∪ Def (ces) its class type, that is, a pair consisting of the
superclass of C and the list of the method headers declared in C, as shown in Figure 2.2.

The source type judgment is the same for the three schemata as well, and corresponds to the
Java type system defined in [GJSB00] and formalized, e.g., in [DE99]. The formalization
for the small Java subset for which we define a type safe compilation schema is given in
Figure 2.5.

Despite the first two components are the same, the three schemata remarkably differ in

24

the remaining components.

For what concerns the dependency function, D(ce, {C}) contains only C in the minimal
schema; in the safe schema D(ce, {C}) contains C and all the classes transitively used by
C, regardless that C is in source or binary form (see the formal definition in Figure 2.4
later on). In the SDK schema the definition is much more involved. First of all, D(ce, {C})
contains C and all the classes directly used by C. For each of these classes, say C′, D(ce, {C})
also (recursively) contains D(ce, {C′}) if C′ is in source form. If C′ is in binary form, then the
behavior is different depending whether C′ is only used in C as “abstract” type (for instance,
field type, parameter type, method return type) or information on the components provided
by C is also needed (for instance, there is a method invocation with the type of the receiver
C). In the former case D(ce, {C}) contains only C′ and some of its ancestors, in the latter
it contains C′, all the ancestor classes of C′ and (recursively) D(ce, {C′′}) for each ancestor
C′′ which is in source form. This rule is quite complex, and has been extrapolated by
performing a number of compilation tests because no form of documentation seems to be
available.

Also, the binary type judgment differs from schema to schema. In the minimal schema
no typechecks are performed (that is, the judgment ΓS ` B � trivially holds). In the safe
schema the checks performed on a binary fragment are similar to those performed on a
source fragment. A difference is, for instance, the way a method invocation is checked.
In the source case the method must be found searching in all the ancestor classes, and
overloading must be resolved, while in the binary case a method invocation is already
annotated with the class where the method should be found together with its header. The
formalization for the small Java subset for which we define a type safe compilation schema
is given in Figure 2.5 (last rule) and Figure 2.6 for the source case and in Figure 2.8 (last
rule) for the binary case.

In the SDK schema no typechecks are performed on binary code. The only checks which
are performed, when typechecking a class C which uses C′, together with the existence check
on C′, are the existence, and the correctness of the format, of the binary (analogous to the
fact that Java grammar is respected in the source case) and on the correspondence between
the fragment name and the name of the class defined inside. For simplicity, in the formal
model in Section 2.3 we assume that fragments are well-formed in this sense.

We introduce now the formal property of type safety for separate compilation. We assume
a judgment of the form C ;ceb V which is valid if and only if execution of class C in the
binary environment ceb terminates producing a value V which can be either a normal value
or a linkage exception. Intuitively, this judgment corresponds to start the execution from
class C in an environment ceb corresponding to the set of all available binaries that can be
dynamically linked during the execution.

The formal definition of this judgment for the small Java subset for which we define a type

25

safe compilation schema is given in Figure 2.15. Let us denote with ceb[ce ′b] the partial
function f s.t. Def (f) = Def (ceb) ∪ Def (ce ′b) and for any C ∈ Def (f) f(C) = ce ′b(C) if
C ∈ Def (ce ′b) and f(C) = ceb(C) otherwise.

Def. 2.2.1 A compilation function C is type safe iff for any compilation environment
〈ceb, ces〉 and set of class names CS, if C(CS, 〈ceb, ces〉) = ce ′b, then, for all class names
C ∈ Def (ce ′b) and values V , if C;ceb[ce′b]

V , then V is not a (linkage) exception.

Note that type safety requires that execution does not throw linkage errors only when
started from classes that are the product of the compilation. Indeed, an error raised by
an execution started from a class C present in the original binary environment ceb can be
either an error which was already present, hence not due to the compilation, or an error
due to the fact that some binary used by C has been modified.

2.3 A safe compilation schema

The language we consider is reminiscent of Featherweight Java [IPW99], in the sense that
it is a small functional subset of Java (see Figure 2.3); however, since here we are mainly
interested in code generation and bytecode execution, we present a simple binary language
as well, together with its reduction semantics. The dynamic semantics of our Java subset
is indirectly defined by a compilation function mapping well-typed source fragments into
well-typed binary fragments.

Metavariables C, m, x and N range over sets of class, method and parameter names, and
integer literals, respectively.

A source fragment S is a class declaration consisting of the class name, the name of the
superclass, a sequence of method declarations MDSs, and an expression Es playing the role
of the (static) main method, that for simplicity we assume present in all classes. A method
declaration MDs consists of a method header and a method body (an expression). A method
header MH consists of a (return) type, a method name and a sequence of parameter types
and names. There are four kinds of expression: instance creation11, parameter name,
integer literal and method invocation. A type is either a class name or int. We will use
the abbreviation T̄ for T1 . . . Tn in the following.

Our description of bytecode is rather abstract: we basically enrich the source language with
two kinds of annotation. Each method invocation is annotated with a method descriptor,
which describes the method which has been statically selected for the invocation. The

11Although we do not model constructors in this subset of Java, we chose to put “()” after the class
name anyway, to mimic the syntax Java programmers are used to.

26

S ::= class C extends C′ { MDSs } main Es

MDSs ::= MDs1 . . . MD
s
n

MDs ::= MH { return Es; }
MH ::= T0 m(T1 x1, . . . , Tn xn)
Es ::= new C() | x | N |

Es0.m(Es1, . . . , E
s
n)

T ::= C | int

B ::= 〈C, C′, MDSb, Eb〉
MDSb ::= MDb1 . . . MD

b
n

MDb ::= MH { return Eb; }
V ::= new C() | N | ε
Eb ::= V | x | Eb0.m� C .T (T1 . . . Tn)� (Eb1, . . . , E

b
n)

Eb0.m� C.T (T1 . . . Tn)� (Eb1, . . . , E
b
n) | new C ()

ε ::= ClassNotFound | ClassCircularityError | VerifyError | NoSuchMethod

NH ::= T m(T1 . . . Tn)
ANH ::= C NH

ANHS ::= ANH1 . . . ANHn

Figure 2.3: Syntax and types

27

descriptor consists of: the static type of the receiver12, the return type and the type of the
parameters. Moreover, each class name mentioned either in class creation or as the first
component of method descriptors in method invocation is (initially) boxed13. The idea is
that a reference to a class is “sealed” in a box until it has been verified (at run-time). Such
a reference cannot be used until it is unboxed.

A binary fragment B consists of the name of the class, the name of the superclass, a set of
binary method declarations MDSb and the binary expression corresponding to the method
main. This expression is used as the entry point of the program when the class is executed.
A binary method declaration MDb is structurally equivalent to a source method declaration
except that the body is a binary expression.

Binary expressions can be either values, or parameters, or (either boxed or unboxed)
method invocations, or a boxed creation expression. Values correspond to the normal
forms of the reduction semantics of binary fragments (defined in Figure 2.15), and can be
either unboxed creation expressions, or integer literals, or exceptions (in case of abnormal
termination).

Note that exceptions and unboxed method invocation and creation are only needed for
defining the rewriting rules for bytecode execution (see Figure 2.15), but they are not con-
sidered valid binary formats, even though for sake of simplicity we do not have introduced
two separate syntactic categories corresponding to valid binary format and valid run-time
expressions, respectively.

In the last part of Figure 2.3 we define naked (method) headers and annotated naked
(method) headers, which are not part of the syntax but will be used in the type judgments.
A naked method header NH is a method header without the argument names; an annotated
naked method header ANH is a naked (method) header prefixed by an annotation indicating
the class which contains the method declaration.

We start now the formal definition of the four components of our safe compilation schema,
which are used (as shown in Figure 2.1 in Section 2.2) to define the corresponding compi-
lation function.

The dependency function D is defined as follows:

D(ce, CS) = {C′ | ∃C ∈ CS s.t. C
∗→ce C′}

where
∗→ce is the reflexive and transitive closure of the relation →ce defined by C→ce C′ iff

C′ ∈ refClasses(C, ce). This latter function, defined in Figure 2.4, gives the set of all classes

12This is a change introduced in SDK 1.4, since in the previous versions the first component of method
descriptors corresponded to the class where the method was statically found.

13This notion has nothing to do with boxing/unboxing of C#. Ours is a way to denote an unverified item
at run-time, while the boxing of C# is a compiler feature which, roughly speaking, let the programmer
use primitive and reference type interchangeably.

28

refClasses(C, 〈ceb, ces〉) =

refClasses(ceb(C)) if C ∈ Def (ceb)
refClasses(ces(C)) if C ∈ Def (ces)
∅ otherwise

refClasses(class C extends C′ { MDSs } main Es) =
{C, C′} ∪ refClasses(MDSs) ∪ refClasses(Es)

refClasses(MDs1 . . . MD
s
n) =

⋃
i∈1..n refClasses(MDsi)

refClasses(MH { return Es; }) = refClasses(MH) ∪ refClasses(Es)
refClasses(T0 m(T1 x1, . . . , Tn xn)) = {T0, . . . , Tn}
refClasses(new C()) = {C}
refClasses(x) = refClasses(N) = ∅
refClasses(Es0.m(Es1, . . . , E

s
n)) =

⋃
i∈0..n refClasses(Esi)

refClasses(〈C, C′, MDSb, Eb〉) = {C, C′} ∪ refClasses(MDSb) ∪ refClasses(Eb)
refClasses(MDb1 . . . MD

b
n) =

⋃
i∈1..n refClasses(MDbi)

refClasses(MH { return Eb; }) = refClasses(MH) ∪ refClasses(Eb)
refClasses(Eb0.m� C .T0 (T1 . . . Tn)� (Eb1, . . . , E

b
n)) = {C} ∪

⋃
i∈0..n(refClasses(Ebi) ∪ {Ti})

refClasses(new C ()) = {C}

Figure 2.4: Definition of function refClasses

explicitly mentioned in the code of C.

A standard14 type environment ΓS is a finite (partial) function from class names into class
types which are pairs 〈C′, NH1 . . . NHn〉 where C′ is the (direct) superclass of C and NH1 . . . NHn
is the list of the headers of methods declared in C.

The type extraction function T , defined in Figure 2.2 (page 24), simply throws away
method bodies and parameter names, retaining type information from all classes in the
compilation environment.

Figure 2.5 shows the rules for typechecking, in a given type environment, source fragments
(with generation of the corresponding binary code).

The first rule defines the typechecking of a class declaration.

First, it is checked that C has a well-formed full type in ΓS. The full type of a class is the
list of all the annotated method headers of the class, either directly declared or inherited,
and it can be safely constructed if there are no cycles in the inheritance hierarchy of C and
the Java rules on method overriding are respected. This is formalized by the judgment
ΓS ` C ::� defined in Figure 2.7. When we are not interested in specifying a particular

14As said before, we introduces nonstandard type environments in Chapter 3.

29

ΓS ` C ::� ΓS ` MDSs; MDSb ΓS; ∅ ` Es : ; Eb

ΓS ` class C extends C′ { MDSs } main Es; 〈C, C′, MDSb, Eb〉

∀i ∈ 1..n ΓS ` MDsi; MDbi
ΓS ` MDs1 . . . MDsn; MDb1 . . . MD

b
n

ΓS; {x1 7→ T1, . . . , xn 7→ Tn} ` Es : T; Eb

ΓS ` T ≤ T0

ΓS ` T0 m(T1 x1, . . . , Tn xn) { return Es; };
T0 m(T1 x1, . . . , Tn xn) { return Eb; }

∀i ∈ 1..n Ti ∈ Def (ΓS) ∪ {int}

ΓS; Π ` new C() : C; new C ()
C ∈ Def (ΓS)

ΓS; Π ` N : int; N

ΓS; Π ` x : T; x
Π(x) = T

ΓS; Π ` Es0 : C; Eb0
∀i ∈ 1..n ΓS; Π ` Esi : Ti; Ebi

ΓS; Π ` Es0.m(Es1, . . . , E
s
n) : T′;

Eb0.m � C .T′ (T̄′)� (Eb1, . . . , E
b
n)

<T̄′, T′> = methRes(ΓS, C,m, T1 . . . Tn)

Figure 2.5: Source type-judgment

30

value/metavariable, we use the wildcard notation in its place.

Then, the method bodies and the main expression are checked and compiled.

The second rule defines the typechecking of a sequence of method declarations. Each
method declaration is correct (third rule) if the type of the expression body is a subtype of
the declared return type (premises) and all argument types exist in ΓS (note that no check is
performed on the fact that they have well-formed full types). The judgment ΓS ` T ≤ T′ is
valid whenever T is a subtype of T′ in the type environment ΓS, and is defined in Figure 2.9.

Other rules define the typechecking of expressions, which also needs a local type environ-
ment Π which is a (partial) function from parameters into types.

An instance creation expression, new C(), is well-typed, and has type C, in ΓS and Π if C
exists in ΓS. An integer literal is trivially well-typed, and has type int, in every ΓS and Π.

A parameter is well-typed in ΓS and Π if it belongs to the domain of the local type
environment, and it has the corresponding type.

A method invocation expression is typechecked in two steps: first, the receiver expression
and all the argument expressions are typechecked finding their types Ti (and generating
the corresponding binary expressions Ebi). Then, using this information, the most specific
among the applicable methods is selected, as formally defined by the function methRes ,
defined in Figure 2.6, which returns a pair consisting of the type of parameters and re-
turned value used to annotate the binary method invocation produced as the result of the
compilation; the annotation is used at run-time by the JVM (see Figure 2.15). Recall
that since SDK 1.4 the first component of the descriptor, which annotates the method
invocation, is the static type of the receiver (C in the rule).

In Figure 2.7 we define the judgment ΓS ` C :: ANHS, associating with a class its full type
ANHS, and the judgment ΓS ` C ::� ANHS, which is valid only if ANHS is well-formed.

As already said, the full type of a class consists of the sequence of the annotated headers
of the methods either directly declared in C or inherited.

A full class type ANHS is well-formed if it does not contain duplicate method headers and
if the Java rules on overriding are satisfied (predicate okOverride).

In Figure 2.7 the notation ANH ∈ ANHS is a shortcut for ∃ANHS0, ANHS1 : ANHS = ANHS0 ANH ANHS1.

Note that neither ΓS ` C :: ANHS nor ΓS ` C ::� ANHS can be deduced for C if it has a cyclic
inheritance hierarchy in ΓS.

Figure 2.8 shows the rules for typechecking binary fragments, which are analogous to those
for source fragments shown in Figure 2.5, except for the last rule, concerning method
invocations.

31

methRes(ΓS, C, m, T̄) =

<T̄′, T′> if ΓS ` C :: ANHS ∧

mostSpec(ΓS, appMeth(ΓS, ANHS, m, T̄)) = C′ T′ m(T̄′)
⊥ otherwise

appMeth(ΓS,Λ, m, T̄) = Λ
appMeth(ΓS, C T m′(T̄′) ANHS, m, T̄) ={

C T m′(T̄′) appMeth(ΓS, ANHS, m, T̄) if m = m′ ∧ ΓS ` T̄ ≤ T̄
′

appMeth(ΓS, ANHS, m, T̄) otherwise

mostSpec(ΓS,Λ) = ⊥

mostSpec(ΓS, ANHS) = C T m(T̄) if

{
C T m(T̄) ∈ ANHS and,
∀ C′ T′ m(T̄′) ∈ ANHS : ΓS ` C T̄ ≤ C′ T̄

′

Figure 2.6: Definition of methRes

ΓS ` Object :: Λ

ΓS ` C′ :: ANHS′

ΓS ` C :: ANHS′ C NH1 . . . C NHn

ΓS(C) = 〈C′, NH1 . . . NHn〉
NHi = NHj =⇒ i = j

ΓS ` C :: ANHS

ΓS ` C ::� ANHS
okOverride(ANHS)

okOverride(ANHS) ⇐⇒
∀ANH, ANH′ ∈ ANHS ANH = C T m(T̄) ∧ ANH′ = C′ T′ m(T̄) =⇒ T = T′

Figure 2.7: Full type of a class

32

ΓS ` C ::� ΓS ` MDSb � ΓS; ∅ ` Eb : �
ΓS ` 〈C, , MDSb, Eb〉 �

∀i ∈ 1..n ΓS ` MDbi �
ΓS ` MDb1 . . . MDbn �

ΓS; {x1 7→ T1, . . . , xn 7→ Tn} ` Eb : T �
ΓS ` T ≤ T0

ΓS ` T0 m(T1 x1, . . . , Tn xn) { return Eb; } �
∀i ∈ 1..n Ti ∈ Def (ΓS) ∪ {int}

ΓS; Π ` new C () : C �
C ∈ Def (ΓS)

ΓS; Π ` N : int �

ΓS; Π ` x : T �
Π(x) = T

ΓS; Π ` Eb0 : C �
∀i ∈ 1..n ΓS; Π ` Ebi : Ti �
∀i ∈ 1..n ΓS ` Ti ≤ T′i
ΓS ` C� C′ T′ m(T′1 . . . T

′
n)

ΓS; Π ` Eb0.m� C′ .T′ (T′1 . . . T
′
n)� (Eb1, . . . , E

b
n) : T′ �

Figure 2.8: Binary type-judgment

33

ΓS ` int ≤ int

ΓS ` C ≤ C
C ∈ Def (ΓS)

ΓS ` C′ ::
ΓS ` C ≤ C′

ΓS(C) = 〈C′, 〉

ΓS ` C ≤ C′ ΓS ` C′ ≤ C′′

ΓS ` C ≤ C′′

∀i ∈ 1..n ΓS ` Ti ≤ T′i
ΓS ` T1 . . . Tn ≤ T′1 . . . T

′
n

ΓS ` C ≤ Ck

ΓS ` {C1 NH1, . . . , Cn NHn}� C NH
k ∈ 1..n ∧ NH = NHk

ΓS ` C :: ANHS ΓS ` ANHS� ANH

ΓS ` C� ANH

Figure 2.9: Implementation and widening

Indeed, as already mentioned, in a binary method invocation the descriptor annotation
indicates exactly which method to look for, and we only have to check that the types
of the receiver expression and of the parameters are subtypes of those specified in the
descriptor, and the class of the actual receiver C still implements such a method (premise
ΓS ` C�C′ T′ m(T′1 . . . T

′
n), see Figure 2.9 for the definition of this judgment); this informally

means that class C must inherit method T′ m(T′1 . . . T
′
n) from C′ or any superclasses of C′ (of

course, if C′ = C, then the method can also be defined in C itself). Note that this corresponds
to the run-time check performed by the JVM when invoking methods, therefore requiring
method T′ m(T′1 . . . T

′
n) to be exactly defined in C′ would be too strong.

The judgment ΓS ` int ≤ int is trivially valid in every ΓS.

Every class C defined in ΓS is a subtype of itself (second rule) and of its (direct) superclass
(third rule). Note that every class in ΓS is considered subclass of itself, even if its inheritance
hierarchy is cyclical, because this does not lead to wrong type assumption. Vice versa, a
class C is considered subclass of C′ only if its inheritance relation is acyclic.

Subtyping relation is transitive, fourth rule. The fifth rule extends the subtype relation to
tuples of types.

34

b1 ∧E b2 =def

b1 if b1 ∈ ε
b2 if b2 ∈ ε, b1 6∈ ε
Ok otherwise

Figure 2.10: Exception-aware disjunction

MBody(ceb, C, m, T1 . . . Tn, T) =
NoSuchMethod if C = Object

ClassNotFound if C 6= Object, C 6∈ Def (ceb)
〈Eb, x1 . . . xn〉 if T m(T1 x1, . . . , Tn xn){return Eb; } ∈ code(ceb(C))
MBody(ceb, superclass(ceb(C)), m, T1 . . . Tn, T) otherwise

code(〈 , , MDSb, 〉) = MDSb

superclass(〈 , C′, , 〉) = C′

Figure 2.11: Definition of MBody

The judgment ΓS ` {C1 NH1, . . . , Cn NHn} � C NH is valid whenever one of the annotated
method headers Ci NHi “implements” the annotated method header C NH, that is, there is a
method with the same header in C or any of its superclasses. If a class has full type ANHS

and the latter implements the method header ANH′, then the class is said to implement
ANH′.

The last rule defines the judgment ΓS ` C�ANH′, that is valid whenever class C implements
ANH′.

We define now execution and verification of binary fragments. We anticipate some auxiliary
definitions.

Figure 2.10 shows the definition of the operation ∧E, whose arguments are either set of
class names or exceptions. This operation is similar to a boolean conjunction; it returns
Ok when both arguments are Ok and one of its argument when it is an exception (giving
priority to the left argument).

The function MBody(ceb,C,m,T1 . . . Tn,T), defined in Figure 2.11, models method look-up
at run-time; it searches in the binary environment ceb for the body of a method named m

whose argument types are T1 . . . Tn and return type is T, starting from class C. If such a
method is not found in C, then it is searched, recursively, in its superclass.

The result of MBody can be either the body of the method (if found) or an exception if

35

[·]Exp ::= [·].m� C .T (T1 . . . Tn)� (Eb1, . . . , E
b
n) |

new C().m� C′ .T (T1 . . . Tn)� (v1, . . . , vi−1, [·], Ebi+1, . . . , E
b
n)

[·]Type ::= new C().m� [·].T (T1 . . . Tn)� (v1, . . . , vn) |
new [·]()

Figure 2.12: Contexts

WeakSubtype(T, T′, ceb) =

Ok if T = T′

ε if T 6= T′, Supertypes(T, ceb) = ε
Ok if T 6= T′, T′ ∈ Def (ceb),

T′ ∈ Supertypes(T, ceb)
VerifyError if T 6= T′, T′ ∈ Def (ceb),

T′ 6∈ Supertypes(T, ceb)
ClassNotFound otherwise

Supertypes(T, ceb) = Supertypesaux (T, ∅, ceb)
Supertypesaux (T, LC, ceb) =

ClassCircularityError if T ∈ LC
ClassNotFound if T 6∈ Def (ceb) ∪ {int, Object}
{Object} ∪ LC if T = Object

{int} if T = int

Supertypesaux (superclass(ceb(T)), {T} ∪ LC, ceb) if T 6∈ LC, T ∈ Def (ceb)

Figure 2.13: WeakSubtype and Supertypes definitions

it is not found. There are two kinds of error that can happen during the method look-
up: if C = Object then this means that the method cannot be found15, so the exception
NoSuchMethod is returned. Otherwise, if C cannot be found in the binary environment,
then the exception ClassNotFound is returned.

In Figure 2.12 we introduce two kinds of contexts: expression contexts [·]Exp and type con-
texts [·]Type . In rewrite semantics, given in Figure 2.15, the former are used to propagate
execution to sub-expressions and the latter to verify class references in order to unbox them
(making it possible the continuation of the execution). The function WeakSubtype is used,
at verification time, to check whether a type is subtype of another; WeakSubtype(T, T′, ceb),
defined in Figure 2.13, returns Ok when the type T is a subtype of T′ in the binary envi-
ronment ceb or an appropriate exception when it is not. The subtype is “weak” because of
the special case T = T′: any type T is always considered subtype of itself; it does not even

15For simplicity, we ignore all the predefined methods of Object, defined in 4.3.2 of [GJSB00].

36

matter whether T exists or not in the binary environment ceb. In all the other cases both
T and T′ must exist, otherwise an exception ClassNotFound is returned. When both exist
in ceb, the auxiliary function Supertypes is used to check the relationship between T and
T′; indeed, T is subtype of T′ iff T′ is a supertype of T. The function Supertypes(T, ceb) can
either return the set of supertypes of T in ceb, when they can be computed, or an exception
in case of error. There are two possible error situations: when a class (directly or indirectly)
extends itself and when a parent class is not found in ceb; in these cases the exceptions
ClassCircularityError and ClassNotFound are, respectively, returned. Figure 2.14 shows
the verification judgments. The top-level judgment `ceb C : Ok is valid whenever the class
C can be verified in the binary environment ceb, otherwise it is valid a judgment `ceb C : ε,
where ε indicates the error occurred in the verification steps. Indeed, it can be proved that
the verification process is deterministic and always terminates (either with Ok or with an
exception).

Note the interesting relation between verification and typechecking of binaries as defined in
Figure 2.8; the former corresponds to dynamic typechecking of binaries, whereas the latter
to static typechecking, and, hence, is more conservative than the former. This relation is
formalized by Theorem 2.3.4 below.

When a class exists in the current binary environment ceb its verification consists of:
checking its superclass, checking that there are no different method declarations with the
same signature (that is, name and parameter types) in the code of the class (predicate
noDup) and verifying that all method declarations (`ceb MD

b
i : bi) and the main expression

(∅ `ceb E
b : 〈 , b〉) are Ok .

When a class does not exists in a binary environment ceb its verification simply gives
ClassNotFound (second metarule).

The judgment Π `ceb E
b : 〈T, b〉 is valid whenever the expression Eb in a binary context ceb

and local type environment Π has type T and the result of its verification is b. The value b
can be either Ok , when the verification succeeds, or an exception, indicating the problem,
when the verification fails. In this latter case the value of T is immaterial. A local type
environment Π is a (partial) function from argument names to types.

The verification of a method declaration (third rule) succeeds when the verification of its
body succeeds and the type of the body is a subtype of the declared return type.

The verification of a method invocation succeeds when the number of arguments coincides
with the number of parameter types in the method descriptor, the verification of the
receiver and of each argument type succeeds and the type of the receiver and of each
argument is a (weak) subtype of the corresponding type contained in the method descriptor
(fourth rule).

The fifth rule covers the case when the numbers of arguments differs (side condition k 6= n).

37

`ceb C
′ : b0

∀i ∈ 1..n `ceb MD
b
i : bi

∅ `ceb E
b : 〈 , b〉

`ceb C : noDup(MDb1 . . . MDbn)
∧E
i∈0..n bi ∧E b

ceb(C) = 〈C, C′, MDb1 . . . MDbn, Eb〉

`ceb C : ClassNotFound
C 6∈ Def (ceb)

{x1 7→ T1, . . . , xn 7→ Tn} `ceb E
b : 〈T, b〉

`ceb T0 m(T1 x1, . . . , Tn xn) {return Eb; } : b ∧E WeakSubtype(T, T0, ceb)

∀i ∈ 0..n Π `ceb E
b
i : 〈Ti, bi〉

Π `ceb E
b
0.m� T′0 .T (T̄′)� (Eb1, . . . , Ebn) : 〈T,

∧E
i∈0..n si〉

T̄
′ = T′1 . . . T

′
n

si = bi∧E
WeakSubtype(Ti, T

′
i, ceb)

Π `ceb E
b
0.m� T′0 .T (T′1 . . . T′n)� (Eb1, . . . , Ebk) : 〈T,VerifyError〉

k 6= n

Π `ceb n : 〈int,Ok〉
n = 0, 1,−1, 2,−2, . . .

Π `ceb new C () : 〈C,Ok〉

Π `ceb x : 〈Π(x),Ok〉
x ∈ Def (Π)

noDup(MDb1 . . . MD
b
n) ={

Ok if ∀i, j ∈ 1..n methSig(MDbi) = methSig(MDbj) =⇒ i = j
VerifyError otherwise

methSig(T m(T1 x1, . . . , Tn xn){Eb}) = T m(T1 . . . Tn)

Figure 2.14: Verification

38

`ceb C : Ok Eb
∗;ceb V

C;ceb V
ceb(C) = 〈 , , , Eb〉

`ceb C : ε

C;ceb ε

`ceb C : ε

[C]Type ;ceb ε

`ceb C : Ok

[C]Type ;ceb [C]Type

Eb ;ceb E
b
1

[Eb]Exp ;ceb [Eb1]Exp
Eb1 6= ε

Eb ;ceb ε

[Eb]Exp ;ceb ε

new C().m� C′.T (T̄)� (v1, . . . , vn) ;ceb ε

T̄ = T1 . . . Tn
MBody(ceb, C

′, m, T̄, T) = ε

Eb[v1/x1, . . . , vn/xn] ;ceb E
b
1

new C().m� C′.T (T̄)� (v1, . . . , vn) ;ceb E
b
1

T̄ = T1 . . . Tn
MBody(ceb, C

′, m, T̄, T) 6= ε
MBody(ceb, C, m, T̄, T) = 〈Eb, x1 . . . xn〉

Figure 2.15: Rewriting

Note that if a binary fragment is the result of the compilation of a source fragment, the
number of arguments is indeed equal to the number of parameter types in the descriptor;
such a mismatch may only be found in “malicious” binary fragments.

Figure 2.15 shows the rewriting rules for the program execution. The first two rules deal
with the execution of the main method of a class C; the former covers the case when class
C is verified, whereas the latter considers the case when C does not pass verification.

The third and fourth rules cover the loading/verification process. The former is used in
case of error: the whole term is rewritten in the exception thrown by the verifier. The latter
is used when the verification is carried out successfully; in this case the term is rewritten
in itself except for the reference to the class C that is unboxed.

The third rule is just the standard closure.

39

The fourth rule propagates an exception rewriting an entire term containing an exception
ε in the exception itself.

The fifth and the sixth rules deal with method invocation. When the method cannot be
found starting the search from the class contained in the method descriptor the entire
expression is rewritten in the exception; otherwise a second invocation to MBody , passing
as starting class the dynamic type of the receiver, returns the method body and the name
of the arguments. These information are used to expand the method invocation.

2.3.1 Main results

We prove three main theorems claiming the safety of source and binary typechecking and
of the safe compilation schema, respectively; the former two theorems are necessary for
proving the latter.

Theorem 2.3.1 (Safe Source Typechecking) For all type environments ΓS, sources S

and binaries B, if ΓS ` S; B, then ΓS ` B �.

Theorem 2.3.2 (Safe Binary Typechecking) Let 〈ceb, ces〉 and C be a compilation en-
vironment and a class name, respectively. For all values V , if
∀C1 ∈ D(〈ceb, ces〉, {C}) T (〈ceb, ces〉) ` ceb(C1) � and C ;ceb V , then V is not an excep-
tion.

We can state now the main property of the safe compilation schema: if a set of classes is
successfully compiled w.r.t. the safe schema, then the execution of any binary produced by
such compilation in the updated binary environment never throws a linkage exception.

Theorem 2.3.3 (Safety) Let 〈ceb, ces〉, CS and ce ′b be a compilation environment, a set
of class names and a binary environment, respectively. For all class names C ∈ Def (ce ′b)
and values V , if C(〈ceb, ces〉, CS) = ce ′b and C;ceb[ce′b]

V , then V is not an exception.

2.3.2 Proofs (sketched)

Safe Source Typechecking: The only way to deduce ΓS ` S; B is applying the first rule in
Figure 2.5, so whenever ΓS ` S; B is deducible, ΓS ` C ::� is deducible too, and ΓS ` B �
can be deduced if:

• ΓS ` MDSs; MDSb =⇒ ΓS ` MDSb � and,

40

• ΓS; ∅ ` Es : ; Eb =⇒ ΓS; ∅ ` Eb : �.

Both implications rely on the implication:

ΓS; Π ` Es : T; Eb ⇒ ΓS; Π ` Eb : T �

which trivially holds for all kinds of expression except for method invocations. The method
invocation case relies on the following:

<T̄′, T′> = methRes(ΓS, C,m, T̄) =⇒
{

ΓS ` T̄ ≤ T̄′

ΓS ` C� C T′ m(T̄′)

The first part of the implication trivially holds by definition of appMeth (directly used by
methRes), see Figure 2.6. The latter follows by two facts:

• methRes selects the most specific method among the ones in ANHS if ΓS ` C :: ANHS,

• for any annotation C′ in ANHS it must be ΓS ` C′ ≤ C.

Safe Binary Typechecking: Safety of binary typechecking comes from the following two
theorems, the former connecting static with dynamic binary typechecking (that is, the
binary typechecking judgment ΓS ` B � with the verification judgment `ceb C : b), the latter
expressing subject reduction for binary expressions. The former can be proved by induction
over the rules for binary typechecking, while the latter can be proved by induction over
the rewriting rules for binary expressions.

Theorem 2.3.4 (Binary Typechecking Implies Verification) Let 〈ceb, ces〉 and C be
a compilation environment and a class name, respectively, s.t. the following condition holds:
D(〈ceb, ces〉, {C}) ⊆ Def (ceb). If T (〈ceb, ces〉) ` ceb(C) � , then `ceb C : Ok.

Note that the converse implication does not hold, since typechecking at (dynamic) load
time is more accurate than that at compile time. For instance, typechecking of a binary
declaration of a class C requires the check of all classes explicitly mentioned in C, whereas
the JVM only checks those classes that are actually needed by that particular execution.

Theorem 2.3.5 (Binary Subject Reduction) Let 〈ceb, ces〉 and Eb be a compilation
environment and a binary expression, respectively. If T (〈ceb, ces〉); ∅ ` Eb : T � and Eb ;ceb

Eb1, then there exists a type T1 s.t. T (〈ceb, ces〉); ∅ ` Eb1 : T1 � and T (〈ceb, ces〉) ` T1 ≤ T.

41

We are now able to prove safety of binary typechecking. Let us assume that ∀C′ ∈
D(〈ceb, ces〉, {C}) T (〈ceb, ces〉) ` ceb(C

′) � and C ;ceb V . From the first assumption
we easily deduce D(〈ceb, ces〉, {C}) ⊆ Def (ceb) and T (〈ceb, ces〉) ` ceb(C) � (since, trivially,
C ∈ D(〈ceb, ces〉, {C})).
As a consequence, Theorem 2.3.4 can be applied, therefore `ceb C : Ok holds. This means
that C;ceb V has been deduced by instantiating the first (and not the second) meta-rule in

Figure 2.15, so Eb
∗;ceb V must hold. Furthermore, the validity of T (〈ceb, ces〉) ` ceb(C) �

implies the validity of T (〈ceb, ces〉); ∅ ` Eb : T �, since there is only one meta-rule that can
be instantiated in Figure 2.8. Therefore we can apply Theorem 2.3.5 and deduce the va-
lidity of T (〈ceb, ces〉); ∅ ` V : T′ �, with T′ subtype of T. Since exceptions do not typecheck
(see rules in Figure 2.8), we can conclude that V is not an exception.

Safety: To prove safety we need two lemmas claiming that both the dependency and type
extraction functions are invariant w.r.t. source typechecking. These lemmas can be proved
by induction over the definition of D and T , respectively.

In what follows, let ces\C denotes the partial function obtained by restricting the definition
domain of ces to the set Def (ces) \ {C}.

Lemma 2.3.6 Let 〈ceb, ces〉, C and B be a compilation environment, a class name, and a
binary fragment, respectively. If T (〈ceb, ces〉) ` ces(C); B, then for all class name C1 the
following equality holds:

D(〈ceb, ces〉, {C1}) = D(〈ceb[C 7→ B], ces\C〉, {C1}).

Lemma 2.3.7 Let 〈ceb, ces〉, C and B be a compilation environment, a class name, and
a binary fragment, respectively. If T (〈ceb, ces〉) ` ces(C); B, then the following equality
holds:

T (〈ceb, ces〉) = T (〈ceb[C 7→ B], ces\C〉).

Now assume that C(〈ceb, ces〉, CS) = ce ′b. By virtue of the top-level rule in Figure 2.1, the
following judgments are valid:

∀C ∈ CSb ΓS ` ceb(C) �
∀C ∈ CSs ΓS ` ces(C); BC

where CSb = CSd ∩ Def (ceb), CSs = CSd ∩ Def (ces), CSd = D(〈ceb, ces〉, CS) and ΓS =
T (〈ceb, ces〉). Furthermore, ce ′b(C) = {C 7→ BC | C ∈ CSs}.

By Theorem 2.3.1, ΓS ` ce ′b(C) � for all C ∈ CSs, therefore we can easily deduce ΓS `
ceb[ce ′b](C) � for all C ∈ CSd.

Let us now prove the main theorem by assuming that C is a class name in CSb (recall that
Def (ce ′b) = CSb) and that C ;ceb[ce′b]

V for a certain value V . By lemmas 2.3.6 and 2.3.7

42

and by induction on the cardinality of CS, D(〈ceb, ces〉, {C}) = D(〈ceb[ce ′b], ces\CS〉, {C}) and
T (〈ceb, ces〉) = T (〈ceb[ce ′b], ces\CS〉). Therefore we can apply Theorem 2.3.2 and conclude
that V cannot be an exception.

43

Chapter 3

True separate compilation and
selective recompilation

In Chapter 2 (and in [ALZ02]) we have proposed a formalization of the Java compila-
tion process where the judgment corresponding to intra-checking is clearly isolated from
other components (extraction of the type environment from the program and determina-
tion of the fragments on which compilation is propagated). However, each class is still
intra-checked against a unique standard type environment extracted from the compilation
environment. With this approach, inter-checking trivially succeeds, since the type envi-
ronment is directly extracted from the code and is the same for all fragments. Anyway,
a fragment can be successfully intra-checked using “less” information. In this chapter we
introduce a formal system which permits to derive typings which are stronger than those
of the standard type systems for Java, by introducing the notions of nonstandard type
assumption and entailment of type environments. The former allows the user to specify
fine-grain requirements on the source fragments which need to be compiled in isolation,
whereas the latter syntactically captures the concept of stronger type environment.

One of the most important advantages of this approach consists in a better support for
selective recompilation; indeed, based on the formal system, it is possible to define an
algorithm able to avoid the unnecessary recompilation steps which are usually performed
by the Java compilers. This particular application is exploited in Section 3.3.

3.1 An informal presentation

This section is a gentle introduction to the system formally defined in Section 3.2. More
precisely, the two basic notions of nonstandard type assumption and entailment relation

44

between type environments are informally presented and motivated.

The language used in the examples, as in the previous chapter, is a basic subset of Java,
where classes can only declare methods. Method overloading is present, but constructor
overloading is not and it is assumed that every class has, as the only constructor, the
default (parameterless) one.

Nonstandard Type Assumptions

Let us consider a declaration of the class H:

class H extends P {
int g(P p) {

return p.f(new H()) ;
}
int m() {

return new H().g(new P()) ;
}
U id(U u) {

return u ;
}
X em(Y y) {

return y ;
}

}

and analyze under which assumptions class H can be successfully compiled. If we take the
approach of the SDK compiler, then we would need to impose rather strong requirements
on all classes used by H, by asking for the most detailed type information about such classes.

In our system this corresponds to compile H in a type environment ΓS which contains
standard type assumptions on the classes P, U, X and Y. For instance, if ΓS is defined by:

ΓS = P 7→ <Object, int f(Object)>, U 7→ <Object, >, Y 7→ <X, >, X 7→ <Object, >

then we are assuming that class P extends Object and declares only int f(Object),
classes U and X both extend Object and are empty, and class Y extends X and is empty. An
environment like ΓS containing only standard type assumptions is called a standard type
environment .

Under the assumptions contained in ΓS class H can be successfully compiled to the following
binary fragment Bh:

class H extends P {
int g(P p) {

45

return p.f<<P.int (Object)>>(new H()) ;
}
int m() {

return new H().g<<H.int (P)>>(new P()) ;
}
U id(U u) {

return u ;
}
X em(Y y) {

return y ;
}

}

In our system, as the reader may recall from previous chapter, a binary fragment is just
like a source fragment except that invocations contain an annotation � C.T (T1 . . . Tn) �
giving the class C in which the method is to be found (see [LY99] 5.1), the return type T,
and the parameter types T1 . . . Tn of the method which has been selected as most specific at
compile time. Indeed, from our perspective the most critical difference between source and
binary fragments is type annotations in the method invocations, since it makes the problem
of separate compilation (that is, separate typechecking plus code generation) substantially
different from that of separate typechecking.

Let us now try to relax the strong assumptions in ΓS by seeking an environment ΓNS

containing other kinds of type assumptions which still guarantee that H compiles to the
same binary fragment Bh, but impose fairly weaker requirements on classes P, U, X and Y.

A first basic request is that the compilation environment containing H must provide a
definition for the four classes which H depends on. In our system this is expressed by a
nonstandard assumption of the form ∃ C, therefore ΓNS will contain at least the assumptions
∃ P,∃ U,∃ X,∃ Y.

Let us now focus on each single class used by H.
Class P: in order to correctly compile class H (into Bh) the following additional assumptions
on class P must be added to ΓNS:

• P 6< H: P cannot be a proper subtype of H since inheritance cannot be cyclic.

• P,int g(P): P can be correctly extended with method int g(P); indeed, according
to Java rules on method overriding, if P has a method g(P), then g must have the
same return type int as declared in H. Analogous requirements are needed for the
other methods declared in H.

• P.f(H)
res→ <Object, int>: invocation of method f of an object of type P with an

argument of type H, is successfully resolved to a method with a parameter of type

46

Object and return type int. This assumption ensures that the body of g in H is
successfully compiled to the same bytecode of method g in Bh (in other words, the
same symbolic reference to the method is generated). Note that we do not need to
know the class where the method is declared, since the bytecode is annotated with
the type of the receiver.

Class U: no additional requirements on U are needed, since the static correctness of method
id in H only requires the existence of U.
Classes X and Y: in order to correctly compile class H, class Y must be a subtype of class
X, otherwise method em in H would not be statically correct. Therefore we need to add the
assumption Y ≤ X.

In conclusion, class H can be successfully compiled to Bh in the environment ΓNS defined
by:

ΓNS = ∃ P,∃ U,∃ X,∃ Y, P 6< H, Y ≤ X, P,int g(P),

P,int m(), P,U id(U), P,X em(Y), P.f(H)
res→ <Object, int>

Furthermore, ΓNS is weaker than ΓS; for instance, class U must extend Object and be empty
in ΓS, while in ΓNS it can extend any class and declare any method. The notion of stronger
type environment is syntactically captured by an entailment relation on type environments.

Entailment of Type Environments

Referring to the previous example, in our system the intuition that ΓNS is weaker than ΓS

is formalized by the following property: for all S, τ, B if ΓNS ` S : τ ; B is provable, then
ΓS ` S : τ ; B is provable as well. However, since the definition above cannot be directly
checked in an effective way, the notion of stronger type environment needs to be captured
by an entailment relation (that is, a computable relation) between type environments.

For instance, in our system ΓS ` ΓNS can be proved. Furthermore, the entailment relation
is proved to be sound, that is, if Γ1 ` Γ2 can be proved, then Γ1 is stronger than Γ2. In
the particular example, we can go further, by showing that ΓNS is actually strictly weaker
than ΓS.

Let us add in H the new method int one(){return 1;}. After this change, the new code
for class H still intra-checks in ΓS, whereas intra-checking of the same code in ΓNS fails. To
see this, let us consider the following new declaration for class P:

class P extends Object{
int f(Object o) {

return 1 ;
}
P one() {

return new P() ;

47

}
}

The reader can easily verify that each type assumption in ΓNS about P is satisfied by the
new version of P above, however if we put all classes together we obtain a statically incorrect
program, since method one is redefined in H with a different return type. Therefore ΓS is
strictly stronger than ΓNS; from this last claim and from the soundness of the entailment
we can deduce ΓNS 6` ΓS.

3.2 Formalization

The language we consider is a rather small but significant subset of Java; indeed, it includes
one of the most critical features for separate compilation which is Java static overloading
([Car97] – see the end of page 1). The main difference, with respect to the language
formalized in the previous chapter, is the absence of the main expression and of boxed
class names, since we do not model run-time behavior here.

The syntax of the language is defined in Figure 3.1; the type environments are defined in
Figure 3.2. The metavariables C, m, x and N range over sets of class, method and parameter
names, and integer literals, respectively.

A program P is a sequence of source fragments; a source fragment S is a class declaration
consisting of the name of the class, the name of the superclass and a sequence of method
declarations MDSs. A method declaration MDs consists of a method header and a method
body (an expression). A method header MH consists of a (return) type, a method name and
a sequence of parameter types and names. There are four kinds of expression: instance
creation, parameter name, integer literal, and method invocation. A type can be either a
class name or int.

As already mentioned, the bytecode of our language differs from the source code only for
method invocations which contain a symbolic reference � C.T(T̄) � to the method to be
invoked (see Section 3.1).

A standard type environment ΓS is a possibly empty sequence of type assumptions of the
form C 7→ <C′, NHS> with the meaning “C extends C′ and declares exactly all methods1

specified by NHS” where NHS = NH1 . . . NHn, and for all i ∈ 1 . . . n NHi is a return type
followed by a method signature (that is, a method name and a sequence of parameter
types). We denote the empty sequence by Λ and use the notation Def (ΓS) for the set
{C | C 7→ τ ∈ ΓS} (where γ ∈ Γ means Γ contains the assumption γ).

1For simplicity, in our language instance methods are the only members a class can contain.

48

P ::= 〈S1 . . . Sn〉
S ::= class C extends C′ { MDSs }

MDSs ::= MDs1 . . . MD
s
n (n ≥ 0)

MDs ::= MH { return Es; }
MH ::= T0 m(T1 x1, . . . , Tn xn) (n ≥ 0)
Es ::= new C() | x | N | Es0.m(Es1, . . . , E

s
n)

T ::= C | int
T̄ ::= T1 . . . Tn
B̄ ::= 〈B1 . . . Bn〉
B ::= class C extends C′ { MDSb }

MDSb ::= MDb1 . . . MD
b
n (n ≥ 0)

MDb ::= MH { return Eb; }
Eb ::= new C() | x | N | Eb0 � C.T(T̄)� m(Eb1, . . . , E

b
n) (n ≥ 0)

NH ::= T m(T̄)
NHS ::= {NH1, . . . , NHn}

Implicit assumptions:

• class names in P are distinct;

• method signatures in MDSs and MDSb are distinct;

• parameter names in MH are distinct.

Figure 3.1: Syntax

A nonstandard type environment ΓNS is a possibly empty sequence of nonstandard type
assumptions of the following kinds:

• ∃ T with the meaning “T is defined”;

• T ≤ T′ with the meaning “T is a subtype of T′”;

• C.m(T̄)
res→ <T̄′, T> with the meaning “the invocation of method m of an object of type

C with arguments of type T̄, is successfully resolved to a method (obviously named
m) with parameters of type T̄

′ and return type T.

• C,T m(T1 . . . Tn) with the meaning “C can be extended by a subclass having method
T m(T1 . . . Tn) without breaking the Java rule on method overriding”;

• C 6< C′ with the meaning “C is not a proper subtype of C′”.

49

NH ::= T m(T̄)
NHS ::= {NH1, . . . , NHn}
µ ::= �C.T (T̄)�
µs ::= {µ1, . . . , µn}

ΓS ::= γS
1 . . . γ

S
n

γS ::= C 7→ τ
τ ::= <C, NHS>
τ̄ ::= 〈τ1 . . . τn〉

ΓNS ::= γNS
1 . . . γ

NS
n

γNS ::= ∃ T |
T ≤ T′ |
C.m(T̄)

res→ <T̄′, T> |
C,NH |
C 6< C′ |

Γ ::= γ1 . . . γn
γ ::= γS | γNS

Figure 3.2: Type environments

Finally, type environments Γ used for separate compilation can contain both standard
and nonstandard type assumptions; standard type assumptions are needed for dealing
with mutual recursion between classes (see rule for separate compilation of programs in
Figure 3.3) and for compatibility with the SDK systems.

Typing rules for separate compilation are defined in Figure 3.3.

The top-level rule defines the compilation of a program P, whose type is 〈τ1 . . . τn〉, into a
set of binary fragments 〈B1 . . . Bn〉. The provided environment, Γ, is enriched with the type
of the fragments to compile, to deal with mutual recursion. The resulting environment
Γ′ must be well-formed and the compilation of all the fragments Si must be derivable in
Γ′. The functions className and T (defined in Figure 2.2, page 24) extract from a class
declaration the name and the type of the class, respectively.

The rule which defines the compilation of a single fragment for class C checks that all
methods can be compiled, that the superclass C′ can be safely extended with the methods
declared in C and that there are no cycles involving C and C′ (existence of the superclass
is guaranteed by this last check). The function T extract from a method declaration the
return type and the signature of the method.

The rule for compiling a method declaration checks that the body can be compiled and
that the return type and the types of the parameters are defined.

The typing rule for method invocation checks that all sub-expressions can be compiled and
that the method can be successfully resolved.

The entailment of type environments is given in Figure 3.4.

Rule (well-def) defines well-formed type environments, that is, consistent environments,
and relies on the definition of well-formed standard environments. A standard type envi-
ronment is well-formed if the inheritance relation is acyclic, for each class all its ancestor

50

` Γ′�
Γ′ ` Si : τi ; Bi ∀i ∈ 1, . . . , n

Γ ` P : 〈τ1 . . . τn〉; 〈B1 . . . Bn〉

P = 〈S1 . . . Sn〉
Γ′ = Γ, C1 7→ τ1, . . . , Cn 7→ τn
Ci = className(Si), τi = T (Si)
∀i ∈ 1, . . . , n

Γ ` MDsi ; MDbi ∀ i ∈ 1, . . . , n
Γ ` C′,NHi ∀ i ∈ 1, . . . , n
Γ ` C′ 6< C

Γ ` class C extends C′ {MDSs} : 〈C′, NHS〉;
class C extends C′ {MDSb}

MDSs = MDs1 . . . MD
s
n

NHS = {NH1, . . . NHn}
T (MDsi) = NHi
∀ i ∈ 1, . . . , n

Γ; {x1 7→ T1, . . . , xn 7→ Tn} ` Es : T; Eb

Γ ` T ≤ T0

Γ ` ∃ Ti ∀ i ∈ 0, . . . , n

Γ ` T0 m(T1 x1, . . . , Tn xn) { return Es; };
T0 m(T1 x1, . . . , Tn xn) { return Eb; }

Γ; Π ` N : int; N

Γ; Π ` x : T; x
Π(x) = T

Γ ` ∃ C
Γ; Π ` new C : C; new C

Γ; Π ` Es0 : C; Eb0
Γ; Π ` Esi : Ti ; Ebi ∀i ∈ 1, . . . , n

Γ ` C.m(T1 . . . Tn)
res→ <T̄′, T′>

Γ; Π ` Es0.m(Es1, . . . , E
s
n) : T′ ; Eb0 � C.T′(T̄′)� m(Eb1, . . . , E

b
n)

Figure 3.3: Separate compilation

classes are defined and the Java rules on overriding are respected (that is, a class cannot
declare a method with the same name and parameter types of an inherited method and dif-
ferent return type). The rules for well-formed type environments are shown in Figure 3.5.

Rules (empty), (conc), and (singleton) ensure the basic properties expected by an entail-
ment relation. Note that Γ1 ` Γ2 is provable only if Γ1 is well-formed.

A class type C is defined in Γ if C is declared in Γ def , whereas types Object and int are
always defined (rules (Object) and (int)).

Rules for subtyping are standard.

Rule (exact res) deals with the situation where there exists a method in a superclass of the

51

(well-def)
ΓS ` Γ ` ΓS�

Γ�

(empty)
Γ�

Γ ` Λ
(conc)

Γ ` Γ1 Γ ` γ
Γ ` Γ1, γ

(singleton)
Γ1, γ,Γ2�

Γ1, γ,Γ2 ` γ

(def)
Γ ` C 7→ <C′, NHS>

Γ ` ∃ C
(Object)

Γ�
Γ ` ∃ Object

(int)
Γ�

Γ ` ∃ int

(refl)
Γ ` ∃ T

Γ ` T ≤ T
(trans)

Γ ` C1 ≤ C2 Γ ` C2 7→ <C3, NHS>

Γ ` C1 ≤ C3

(top)
Γ ` ∃ C

Γ ` C ≤ Object
(vector)

Γ ` Ti ≤ T′i ∀ i ∈ 1, . . . , n

Γ ` T1 . . . Tn ≤ T′1 . . . T′n

(exact res)
Γ ` C′ 7→ <C′′, NHS> Γ ` C ≤ C′

Γ ` C.m(T̄)
res→ <T̄, T>

T m(T̄) ∈ NHS

(match res)

applAll(Γ, C, m, T̄) = µs
matchAll(Γ, C, m, T̄) = µs
mostSpec(Γ, µs) = <T̄′, T′>

Γ ` C.m(T̄)
res→ <T̄′, T′>

(complete res)

applAll(Γ, C, m, T̄) = µs
Γ ` T̄ ⇑
mostSpec(Γ, µs) = <T̄′, T′>

Γ ` C.m(T̄)
res→ <T̄′, T′>

(,obj)
Γ�

Γ ` Object,T m(T̄)

(,down)

Γ ` C 7→ <C′, {NH1, . . . , NHn}>
Γ ` C′,T m(T̄)

Γ ` C,T m(T̄)

NHi = T′ m(T̄) =⇒ T = T′

∀ i ∈ 1, . . . , n

(not sub)
Γ ` C ⇑ C′ 6∈ supertypes(Γ, C)

Γ ` C 6< C′

Figure 3.4: Type environments entailment

52

ΓS ` ΓS�
` ΓS� ΓS ` Λ� ΓS ` T�type

T = int∨
T = Object∨
T ∈ Def (ΓS)

ΓS ` Ti �type ∀i ∈ 0, . . . , n

ΓS ` T0 m(T1..Tn)�NH
ΓS ` NHi �NH ∀i ∈ 1, . . . , n

ΓS ` NH1 . . . NHn�NHS

ΓS ` Object : ∅

ΓS ` C′ : NHS′
ΓS ` NHS�NHS

ΓS ` C : NHS ∪ NHS′
ΓS(C) = <C′, NHS>
T m(T̄) ∈ NHS, T′ m(T̄) ∈ NHS′ =⇒ T = T′

T m(T̄), T′ m(T̄) ∈ NHS =⇒ T = T′

ΓS ` ΓS
1 � ΓS ` C : τ

ΓS ` ΓS
1, C 7→ τ�

ΓS

1(C) = τ ′ =⇒ τ ′ = τ

Figure 3.5: Well-formed standard type environments

type of the receiver with parameters of the same type of the arguments; clearly, in this case
invocation will be always resolved to that method, despite of the other type assumptions
contained in Γ.

Rule (match res) requires more type assumptions than the previous rule in order to be
applicable: the standard type assumptions of all superclasses of the type C of the receiver -
C included - must be in Γ. Then it is possible to compute all applicable methods (function
applAll) and to verify that each applicable method is matchable (function matchAll) as
well. Finally, the set of all applicable methods must contain the most specific method
(function mostSpec). A method T′ m′(T̄′) is applicable to the invocation C.m(T̄) in Γ if
m′ = m and T̄ ≤ T̄

′ can be proved in Γ, while is matchable if m = m′ and there exists a
type environment where T̄ ≤ T̄

′ can be proved. All these auxiliary functions are defined in
Figure 3.6.

Rule (complete res) can be applied if the standard type assumptions of all superclasses of
the types C and T̄ - C and T̄ included - of the receiver and of the arguments (Γ ` T̄ ⇑) can
be found in Γ; in this case the set of all applicable methods is the same in any environment
entailed by Γ, therefore there is no need to compute the matchable methods.

Rule (,obj) states that Object can be safely extended by any method2 (that is, without
breaking the Java rule on overriding); in all other cases, if a class C′ can be safely extended
by a method T m(T̄) then any direct subclass C of C′ can be safely extended by the same
method, providing that C does not contain a method with the same name, same types of

2For simplicity, we ignore all the predefined methods of Object, defined in 4.3.2 of [GJSB00].

53

Γ ` Object ⇑
Γ ` int ⇑

Γ ` C′ ⇑
Γ ` C ⇑

Γ(C) = <C′, >
Γ ` T1 ⇑ . . .Γ ` Tn ⇑

Γ ` T1 . . . Tn ⇑

supertypes(Γ, C) =

{Object} if C = Object

{C} ∪ supertypes(Γ, C′) if Γ(C) = <C′, >
⊥ otherwise

Appl(Γ, C, m, T̄) =

{
{�C.T (T̄′)�| T m(T̄′) ∈ NHS,Γ ` T̄ ≤ T̄

′ } if Γ(C) = < , NHS>
⊥ otherwise

applAll(Γ, C, m, T̄) =

∅ if C = Object

µs1 ∪ µs2 if Γ(C) = <C′, >
Appl(Γ, C, m, T̄) = µs1,
applAll(Γ, C′, m, T̄) = µs2

⊥ otherwise
match(T1 . . . Tm, T

′
1 . . . T

′
n) ⇐⇒ m = n ∧ ∀i ∈ 1..n (Ti = int) ⇐⇒ (T′i = int)

match(Γ, C, m, T̄) =

{
{�C.T (T̄′)�| T m(T̄′) ∈ NHS,match(T̄, T̄′)} if Γ(C) = < , NHS>
⊥ otherwise

matchAll(Γ, C, m, T̄) =

∅ if C = Object

µs1 ∪ µs2 if Γ(C) = <C′, >
match(Γ, C, m, T̄) = µs1,
matchAll(Γ, C′, m, T̄) = µs2

⊥ otherwise

mostSpec(Γ, µs) =

�C.T (T̄)� if �C.T (T̄)�∈ µs and

Γ ` C ≤ C′,
Γ ` T̄ ≤ T̄

′ for all �C′.T′ (T̄′)�∈ µs
⊥ otherwise

Figure 3.6: Auxiliary judgment and functions

54

parameters but different return type (rule (,down)).

Finally, rule (not sub) is applicable only if Γ contains the standard type assumptions of all
supertypes of C - C included (Γ ` C ⇑) - and C′ is not in the set of such supertypes (function
supertypes).

3.3 Selective recompilation

Despite several papers have been written on the subject of selective recompilation, Dmitriev’s
approach [Dmi02] is the only other Java specific proposal we are aware of. Dmitriev’s pa-
per describes a make technology, based on smart dependency checking, that aims to keep
a project (that is, a set of source and binary fragments) consistent while reducing the
number of files to be recompiled. A project is said to be consistent when all its sources
can be recompiled producing the same binaries as before. The main idea is to catalog all
possible changes to a source code (as, for instance, adding/removing methods) establish-
ing a criterion for finding a subset of dependent classes that have to be recompiled. A
freely downloadable tool, Javamake, is based on such a paper and implements the selective
recompilation for Java upon any Java compiler. This tool stores some type information
for each project in database files which are used to determine which changes have been
made to the sources with respect to the previous (consistent) version. Even though this
approach has the advantage of being the only one to be both well documented and fully
implemented, unfortunately, is not based on a theoretical foundation, as pointed out by
the author himself. As a consequence, no proof of correctness is provided, therefore there is
no guarantee that Javamake always forces the recompilation of a class when needed for en-
suring the consistency of the project. Furthermore, Javamake cannot avoid a considerable
amount of unnecessary recompilations.

Instead, the type system given in this chapter provides a good theoretical basis for imple-
menting selective recompilation strategy. Consider, for instance, to extract a (standard)
type environment ΓS

old from a program P and to compile one of its sources S:

ΓS

old ` S : ; B

The proof tree for this judgment contains a set of type assumptions ΓNS = γNS
1 , . . . , γNS

n .
We call this set the requirements for S in ΓS

old and write

Reqs(S,ΓS

old) = ΓNS

Assume now to change the program P, leaving the fragment S untouched. Does S compile
in the new type environment ΓS

new (extracted from the updated program)? If it does, can
we say something about the corresponding binary?

55

If the requirements for S describe exactly the weakest assumptions in order to compile S in
B, then, as long as ΓS

new ` ΓNS we know that a recompilation of S would produce the same,
existing, binary B and, conversely, that ΓS

new 6` ΓNS implies that S cannot be compiled into
the same binary B.

This turns out to be true: indeed, during the compilation of a source S to a binary B, it
is possible to infer the weakest type assumptions ΓNS needed for compiling S to B. Then,
after some changes, as long as the new standard environment entails ΓNS, there is no need
to recompile the source as its recompilation would produce the same binary. We omit
the proof for the subset of Java modeled so far, since Theorem 4.2.9, in the next chapter,
proves this important property for a larger subset of Java. That proof ensures not only
that this approach is correct, but also that it is minimal in the following sense: whenever
a class is recompiled, either the recompilation fails, or it generates a different binary.

Let us sketch the algorithm here, to show the idea on the the example already discussed
in Section 3.1:

class P extends Object {
int f(Object o) { return 0 ; }
// int f(int i) { return i ; }
}
class U extends Object {}
class Y extends X {}
class X extends Object {}

class H extends P {
int g(P p) { return p.f(new(H)) ; }
int m() { return new H().g(new P()) ; }
U id(U u) { return u ; }
X em(Y y) { return y ; }
}

These classes compile successfully, and they form our example project. The compiler would
generate the following weakest environment for H:

ΓNS = ∃ P,∃ U,∃ X,∃ Y, P 6< H, P,int g(P), P,int m(),

P,U id(U), P,X em(Y), P.f(H)
res→ <Object, int>,

H.g(P)
res→ <P, int>, Y ≤ X

If we add a method f(int) in P, then class H still invokes the same method as before,
because the new method is not even applicable to the invocation with an argument of
type P. These considerations are formally captured by the entailment relation: the new
standard environment (that can be extracted from the new source for P and the old binary

56

of H) still entails ΓNS therefore there is no need to recompile H. For instance, the reader

can verify that P.f(H)
res→ <Object, int> can still be entailed. On the other hand, whereas

Javamake3 is able to detect that classes U, X and Y need not to be recompiled, since they
do not use P at all, it cannot distinguish between changes to a set of overloaded methods
that alter the resolution of a particular invocation and changes that do not. So, Javamake
would unnecessarily recompile class H, because it contains an invocation to P.f, producing
the same binary as before.

Our whole algorithm can be sketched as follows:

let S = {i | 1 ≤ i ≤ n and Fi has been modified}
let T = {1, . . . , n} \ S
let ΓS = extract({Si | i ∈ S} ∪ {Bj | j ∈ T})
for all j ∈ T if not entails(ΓS,ΓNS

j) then S = S ∪ {j}
for all i ∈ S if compile(ΓS, Si) = fail then fail

else (Bi,Γ
NS
i) = compile(ΓS, Si)

where n is the number of fragments, Fi, Si, Bi and ΓNS
i denote the name, source, binary

and weakest assumptions of the i-th fragment, respectively. The function extract extracts
the corresponding standard type environment from a set of sources and binaries, and
entails and compile implement the entailment relation and the compilation judgment of
the typing system, respectively. However, differently from what happens in the system,
both entails and compile do not need to check that the environment ΓS is well-formed,
indeed it can be proved that if entails(ΓS,ΓNS

i) = true and compile(ΓS, Si) = (Bi,Γi)
for all i ∈ 1, . . . , n, then ΓS is well-formed. Finally, compile(ΓS, Si) returns, besides the
binary Bi, also the weakest environment ΓNS

i s.t. Si compiles to Bi (hence, by definition
entails(ΓS,ΓNS

i) = true).

While the idea is simple, extending this approach to the full Java language is quite chal-
lenging, because some apparently orthogonal features of Java interact badly with separate
compilation, as we discuss in the next chapter.

3Version 1.3.1, the latest available when we run this test.

57

Chapter 4

Towards selective recompilation for
full Java

In the previous chapter we have presented a recompilation strategy which is optimal in the
sense that an unchanged fragment is recompiled if and only if its recompilation produces a
different result than the previous compilation (either a new binary or an error). However,
the subset of Java we have modeled so far does not include some Java-specific features
which badly interact with selective recompilation. Therefore, in this chapter we extend the
previous type system to these features in order to provide a solid basis for implementing a
compiler manager based on these ideas [Lag04b].

In Section 4.1, by means of some examples, we analyze the various kind of dependencies
that may be present among fragments and how to model them. In Section 4.2 we present
the extended type system and prove it can be used to obtain an optimal recompilation
strategy. Finally, in Section 4.3 we discuss some implementation issues.

4.1 An informal overview

In the previous chapter we have shown some examples of how method overloading interacts
with selective recompilation. In those example, however, we did not take into account the
accessibility of members; that is, the fact that different clients have different visibility of
the same class C. Accessibility affects selective recompilation too, as the following example
shows.

Consider, for instance, to compile (successfully) the following declarations, assuming each
declaration to be in a separate file named after the class.

58

class Client {

void f(C c) {

c.m(c) ;

}

}

class C {

void m(Object o) {}

}

If we added, for instance, a method m(C) to class C as private, then the most specific
method seen by Client would be still m(Object) and a recompilation of Client would be
useless, since it would produce a binary fragment equal to the existing one.

Another feature that affects the generated code, corresponding to a method invocation,
is the kind of the most specific method: an invocation to an instance method is trans-
lated into the JVM instruction invokevirtual, while an invocation of a static one into
invokestatic.

For these reasons, we need to extend the type assumption which describes the most specific
method for a method invocation as follows:

C�Mth(C′, m, T̄⊥) = [MK=MK?, RET=T, PAR=T̄]

with the informal meaning (the details are given in Section 4.2) that if some code contained
in class C invokes a method named m on an object of class C′ with arguments of type T̄

⊥,
then the most specific method must be T m(T̄) with kind MK? — T̄

⊥ is a sequence of types
which may contain the type of null and MK? specifies the kind of the method, that is,
whether it is an instance or a static method.

The assumption for the specific example is:

Client�Mth(C, m, C) = [MK=ε, RET=int, PAR=Object]

This means that the bytecode corresponding to the invocation inside class Client remains
the same as long as the most specific method:

• is an instance method (MK = ε, as opposed to static methods with MK = static);

• receives an Object;

• returns an int.

59

Note that in a different type environment the most specific method could be different (for
instance, it could be found in a different class), but as long as the type assumption hold,
that is, the most specific method matches all the characteristics listed above, the bytecode
corresponding to the method invocation does not change.

A similar reasoning applies to exception specifications (that is, throws clauses) of methods;
as the reader may have noted, there is no mention of exception specifications in the method
invocation assumptions. Of course, declared exceptions have to be taken into account when
typechecking, but they must be handled by their own type assumptions1 (as discussed
below). Indeed, a change to the exception specification, of the most specific method for a
given invocation, does not imply, by itself, that such an invocation is now incorrect (note
that a change to the exception specification never affect the generated bytecode, but it
might make the code containing the invocation illegal because it throws an undeclared
exception or because a piece of code becomes unreachable; both these events are discussed
below in their own sections).

4.1.1 Compile-time constant fields

Compile-time constant fields are static final fields, of a primitive type or String, which
are initialized by a compile-time constant. For the sake of brevity we will call them ctc-fields
from now on. Because the value of these fields is a compile-time constant (see2 JLS 15.28),
the bytecode generated for an access to a ctc-field is the same that would be generated if
the literal corresponding to the value of the field was used in its place.

Consider, for instance, the following declarations (assuming, as before, that each class is
declared in a separate file).

class A {

static final int CONST_A = 1 ;

}

class B {

static final int CONST_B = 1 ;

}

1In our previous work on the subject [Lag03, Lag04a] method invocation assumptions did contain
exception specifications. The idea was to specify the “maximum” set of allowed exceptions; while this
approach works, it is not expressive enough to model unreachable code and it has become redundant with
exception type assumptions we now use.

2From now on JLS stands for a reference to the the Java Language Specification [GJSB00].

60

class FirstClient {

int ma() {

return A.CONST_A ;

}

int mb() {

return B.CONST_B ;

}

}

class SecondClient {

int m() {

return A.CONST_A+B.CONST_B ;

}

}

These sources are compiled to the following binaries3:

class A {

static final int CONST_A = 1 ;

}

class B {

static final int CONST_B =1 ;

}

class FirstClient {

int ma() { return 1 ; }

int mb() { return 1 ; }

}

class SecondClient {

int m() { return 2 ; }

}

As shown in the example, in the binaries every symbolic reference to ctc-fields has disap-
peared. Indeed, there is no need to calculate at run-time a value which is a compile-time
constant. This means that every time the value of a ctc-field is changed and the class where
it has been declared is recompiled, its clients might need to be recompiled as well, in order
to have a sound compilation strategy. Indeed, the bytecode corresponding to the method
ma declared in class FirstClient changes each time the value of A.CONST A changes. So,
we need to keep track of the dependencies between the definition of ctc-fields and their uses.
However, the naive approach of using assumptions of the form “field name=value” is sound

3As in previous chapters, we use a very abstract view of the bytecode. In a real .class file the initializer
expressions for all ctc-fields are not present (JLS 13.4.8) and their values are stored as attributes of type
ConstantValue (see 4.7.2 of [LY99]).

61

but not minimal. As the example shows, client classes FirstClient and SecondClient

use both constants, but the former needs both A.CONST A and B.CONST B to be equal to
1 to be recompiled to the same bytecode, while the latter just needs their sum to be
equal to 2. Thus, if we change, say, CONST A to 0 and CONST B to 2, then the first client
has to be recompiled, while the second has not. Indeed, after the change, the expres-
sion A.CONST A+B.CONST B has still the same value it had before, so class SecondClient

would be recompiled to the same existing binary. Hence, to achieve minimality we use
type assumptions of the form “expression=value” where the expression is built on values
and references to fields (which must be constant). Moreover, we also need to keep track
of the fact that a certain accessed field f is not a ctc-field. This is needed because every
access to f is compiled to a field-access instruction in the bytecode but, if f became a
ctc-field, then the compile-time value of f would be directly used instead. In our frame-
work this is modeled by two judgments whose derivation is mutually exclusive, as we detail
in Section 4.2.

Note that, in this case, the generated bytecode is different, even though its semantics is
the same (fetching the value of a ctc-field has the same result of using directly its value),
except for timing issues. However, these timing issues might introduce subtle bugs in
multithreaded environments; for this reason, we prefer to stick to the choice of recompiling
a fragment each time the produced bytecode is different from the existing one.

Note that compiling a single source expression may lead to several assumptions; for in-
stance, the source expression A.CONST A+aMethod(A.CONST A>=B.CONST B), is compiled4

to 1+aMethod(true) and generates two type assumptions:

1. A.CONST A=1 and

2. A.CONST A>=B.CONST B = true.

These assumptions model the fact that this source expression is compiled to the same
bytecode whenever A.CONST A is equal to 1 (because this is the value of the left operand of
the sum) and B.CONST B is any integer less or equal to 1 (that is, the value A.CONST A is
constrained to be by the first assumption). In some cases these assumptions could be simpli-
fied; for instance, the second one can be simplified, as just noted, to 1>=B.CONST B = true.
In the general case, anyway, this would require an analysis of assumptions deduced from
different expressions, which we think it is not worth the effort.

4Ignoring method invocation annotations, which are of no interest in the context of this example.

62

4.1.2 Unreachable code

The way Java handles unreachable code is peculiar: what is a warning in most languages
is a compile-time error in Java, JLS 14.20. The relation between this choice and selective
recompilation lies in the fact that a change in some source may make unreachable a piece
of code, contained in an unchanged source, which was reachable before. So, a source which
was perfectly legal is not correct anymore. In this case, a sound recompilation strategy
must trigger the compilation on that source, in order to raise the error (unreachable code)
that a global recompilation would raise.

Two ways to make unreachable a piece of code, which was reachable, without changing its
source are: changing the value of a ctc-field and changing the exception specification of a
method. Examples of both cases are shown below, starting with the simpler one: changing
the value of a ctc-field (making it a member of the infamous “inconstant constants5”
club ,). For instance, consider:

class ThirdClient {

void m() {

int x = 0 ;

while (A.CONST_A==B.CONST_B)

++x ;

}

}

This client6 class is successfully compiled only when both ctc-fields A.CONST A and B.CONST B

have the same value; indeed, when they do not, the increment of x can never be reached.

The following example shows that changing an exception specification can do the trick too.

class E extends Exception { ... }

class Foo {

Foo m() throws E { ... }

Foo m2() { ... }

}

class Client {

...

try {

new Foo().m().m2() ;

} catch (E e) {

++x ;

}

5JLS 13.4.8.
6of classes A and B which have been defined in Section 4.1.1.

63

...

}

If E is removed from the exception specification of method m, then the increment of x

inside the catch becomes unreachable. As for ctc-fields, we introduce a new assumption
to model the requirements which guarantee a piece of code to be reachable. Again, a
naive assumption like “method m throws E” is not enough to obtain a minimal, although
sound, compilation strategy: indeed, if we move E from the exception specification of m

to the exception specification of m2, then the code inside the catch remains reachable.
The nesting of try statements complicates the matter further; consider, for instance, the
following code:

try {

m1() ;

try {

m2() ;

} catch (E1 e1) { }

} catch (E2 e2) { ++x ; }

In this example the increment of x is reachable if and only if:

• method m1 has an exception specification which includes a subclass of E2 (which can,
of course, be E2 itself) or

• method m2 has an exception specification which includes a subclass of E2 which is
not a subclass of E1 (otherwise such an exception would be captured by the catch

clause of the inner try).

More precisely, assumptions like those above are not related to a fixed method, say m1,
but to the most specific method for the invocation. Indeed, an invocation like “m1()” may
throw all the exceptions which are specified in the throw clause of the most specific method
named m1, without parameters, on an object of type Foo as seen by class Client.

Using ε(Client� Foo.m()) to indicate the exception specification of the most specific
method for an invocation of m() on a receiver of type Foo inside class Client, we can
express the above assumptions as shown below:

(ε(Client� Foo.m1()) ∪Exc (ε(Client� Foo.m2()) \Exc {E1})) ⊇Exc {E2}

The operators ∪Exc, \Exc and ⊇Exc are similar to set union, minus and containment, but
they take also in account the exception hierarchy. These operators are discussed in the
next section.

64

4.2 Formalization

In this section we formalize the ideas presented so far. Section 4.2.1 describes the subset of
Java we model, both at source and binary level. Section 4.2.2 introduces type environments
and describes how these can be extracted from fragments. Section 4.2.3 lists all the type
assumptions which model the fine-grained requirements which needs to be checked both
to compile a source fragment and to decide whether it has to be recompiled after some
changes have been made. Section 4.2.4 presents the typing rules. Section 4.2.5 proves
the type system can used to provide a sound and minimal compilation strategy. Finally,
Section 4.2.6 show how type environments can be checked incrementally.

4.2.1 The language

In this chapter we model a substantial subset of Java at both source (Figure 4.1) and
binary (Figure 4.2) level. As before, our model of bytecode is rather abstract: it is basically
source code enriched with some annotations (discussed below). However, this time, the
same source level expression can be compiled to different kinds of binary level expressions,
as it happens in Java. For instance, a method invocation x.m() can be translated to a
virtual method invocation or an interface method invocation depending on the static type
of x.

With the exception of arrays and inner-classes, we model all the major features of Java:
classes (including abstract classes), interfaces, primitive types, access modifiers (including
packages, but without the import directive), constructors, (instance/static) fields (both in
classes and interfaces), (instance/static/abstract) methods, super field accesses and method
invocations, exceptions. The treatment of arrays and inner-classes would complicate the
model without apparently giving further insights. In the few points where inner-classes
would make a difference we briefly discuss the issue.

Figure 4.1 gives the syntax of the source language. A source fragment S can be a class
declaration or an interface declaration. The former consists of: an access modifier AM, a
class kind CK (either ε or abstract), the name of the class, the name of the superclass,
the list of the implemented interfaces and the declaration of constructors, fields and meth-
ods. Analogously, an interface declaration consists of an access modifier, the name of the
interface, the names of the superinterfaces and the declaration of fields and methods.

A constructor declaration KDs consists of an access modifier AM, a constructor header KH,
the invocation of a superclass’s constructor7 and a sequence of statements STMTSs. A
constructor header consists of the sequence of the parameters with their types and the

7Invocations of a constructor of the same class (using this) are not considered since they are simply
syntactic shortcuts – JLS 8.8.5.

65

S ::= AM CK class C extends C′ implements I1 . . . In { KDSs FDSs MDSs } |
AM interface I extends I1 . . . In { FDSs MDSs }

AM ::= public | protected | ε | private
CK ::= ε | abstract

KDSs ::= KDs1 . . . KD
s
n

FDSs ::= FDs1 . . . FD
s
n

MDSs ::= MDs1 . . . MD
s
n

KDs ::= AM KH { super(Es1, . . . , E
s
n); STMTSs }

FDs ::= AM FINAL FK T f = Es ;
MDs ::= AM MK MH { STMTSs return Es; } | AM abstract MH ;
KH ::= (T1 x1, . . . , Tn xn) throws ES

MK ::= ε | static | abstract
MH ::= T m(T1 x1, . . . , Tn xn) throws ES

FINAL ::= ε | final
FK ::= ε | static
T ::= RT | int | bool
RT ::= C | I
ES ::= {C1, . . . , Cn}
Es ::= PRIMARYs | ASSIGNs | ν | Es1 + Es2 | Es1 − Es2 | . . .
ν ::= β | ι
β ::= true | false
ι ::= 0 | 1 | −1 | 2 | −2 | . . .

PRIMARYs ::= null | this | NEWs | x | INVOKEs | super.f | PRIMARYs.f | RT.f
ASSIGNs ::= x = Es | PRIMARYs.f = Es | super.f = Es | RT.f = Es

NEWs ::= new C(Es1, . . . , E
s
n)

INVOKEs ::= PRIMARYs.m(Es1, . . . , E
s
n) | super.m(Es1, . . . , E

s
n) | C.m(Es1, . . . , E

s
n)

STMTSs ::= STMTs1 . . . STMT
s
n

STMTs ::= {STMTSs} | SEs ; | if (Es) STMTs1 else STMTs2 | while (Es) STMTs |
try {STMTSs } CATCHESs finally { STMTSs1 } | throw Es ; | break ;

SEs ::= ASSIGNs | INVOKEs | NEWs
CATCHESs ::= CATCHs1 . . . CATCH

s
n

CATCHs ::= catch (C x) { STMTSs }

Assumptions:

• interface names in S are distinct;

• field names in FDSs are distinct;

• method (constructor) name/parameters (parameters) in MDSs (KDSs) are distinct;

• parameter and exception names in both KH and MH are distinct;

• class names in CATCHESs are distinct.

Figure 4.1: Syntax - Sources
66

exception specification ES. We assume for simplicity that any class can be an exception,
that is, we do not model the predefined class Throwable. So, an exception specification is
just a sequence of class names.

A field declaration FDs consists of an access modifier AM, a final modifier FINAL, a field kind
FK, a type T, the name of the field f and the initialization expression Es (for simplicity we
assume an initialization expression to be always present).

A method declaration MDs can be either concrete or abstract. In the former case it consists
of an access modifier AM, a method kind MK, a method header MH, a sequence of statements
STMTSs and a return expression Es (for simplicity we do not model void methods). In the
latter case it just consists of an access modifier AM, the keyword abstract and a method
header. A type T can be a reference type RT or a primitive type (int or bool). We
distinguish between class names C and interface names I for clarity, even though they
actually range over the same set of names.

An expression Es can be: a primary expression, an assignment expression, a value ν (either
a boolean literal β or an integer literal ι) or a binary expression. We show just two examples
of arithmetic expressions; they only matter since values can be composed to obtain other
values; the syntax for composing them is immaterial. Some expressions, SEs, can be used
as statements; they are: assignment ASSIGNs, method invocation INVOKEs and instance
creation NEWs.

While Java permits accessing a static member of a class/interface RT via both the type
name RT or any expression which has static type RT, here we allow only the former kind
of access (because allowing both kinds of access would require additional, uninteresting,
typing rules).

A statement STMTs can be: a block (that is, a sequence of statements STMTSs between
curly braces), a statement expression (followed by “;”), a conditional if, a while loop,
a try-catch-finally block, the throw of an exception, and break. These are a strict
subset of what Java offers, but they are enough to model all the issues related to selective
recompilation.

Figure 4.2 gives the syntax of the binary language. As already said, it mostly mimics the
source language, except for it is enriched with some annotations enclosed between “�”
and “�”. Annotations are:

• Constructors. Each invocation of a constructor (via super or new expression) is
annotated with� C(T̄)�c, where T̄ specifies the parameter types of the constructor
of class C to be invoked. Note that, for mimicking the real translation to the JVM
instruction invokespecial, the annotation must specify the class name even when
compiling super invocations.

67

B ::= AM CK class C extends C′ implements I1 . . . In { KDSb FDSb MDSb } |
AM interface I extends I1 . . . In { FDSb MDSb }

KDSb ::= KDb1 . . . KD
b
n

MDSb ::= MDb1 . . . MD
b
n

FDSb ::= FDb1 . . . FD
b
n

KDb ::= AM KH { � C(T̄)�c (Eb1, . . . , E
b
n); STMTSb }

FDb ::= AM FINAL FK T f = Eb

MDb ::= AM MK MH { STMTSb return Eb; } | AM abstract MH ;
Eb ::= PRIMARYb | ASSIGNb | N | true | false |

. . . | Eb1 + Eb2 | Eb1 − Eb2 | . . .
PRIMARYb ::= null | this | NEWb | x | INVOKEb

PRIMARYb.� C.T�if f |� RT.T�sf f

ASSIGNb ::= x = Eb | PRIMARYb.� C.T�if f = Eb |� RT.T�sf f = Eb

NEWb ::= new � C(T̄)�c (Eb1, . . . , E
b
n)

INVOKEb ::= PRIMARYb.� C.T (T̄)�vrt m(Eb1, . . . , E
b
n) |

� C.T (T̄)�spr m(Eb1, . . . , E
b
n) |

� C.T (T̄)�stt m(Eb1, . . . , E
b
n) |

PRIMARYb.� I.T (T̄)�int m(Eb1, . . . , E
b
n)

STMTSb ::= STMTb1 . . . STMT
b
n

STMTb ::= {STMTSb} | SEb ; | if (Eb) STMTb1 else STMTb2 | while (Eb) STMTb

try {STMTSb } CATCHESb finally { STMTSb1 } | throw Eb ; | break ;
SEb ::= ASSIGNb | INVOKEb | NEWb

CATCHESb ::= CATCHb1 . . . CATCH
b
n

CATCHb ::= catch (C x) { STMTSb }

Assumptions:

• interface names in B are distinct;

• field names in FDSb are distinct;

• method (constructor) name/parameters (parameters) in MDSb (KDSb) are distinct;

• class names in CATCHESb are distinct.

Figure 4.2: Syntax - Binaries

68

• Field accesses/assignments. Each field access/assignment is annotated with the static
type of the expression on which the field is accessed/assigned, and the type T of the
declared type of the field. As instance field accesses and static field accesses are
translated into different JVM instructions (respectively getfield and getstatic),
we use two different kinds of annotation: � C.T�if for instance fields and
� RT.T �sf for static fields. In the former case the annotation consists of the class
name (interfaces cannot declare instance fields) and the type of the field T; in the
latter case the annotation consists of the reference type (either a class or an interface
name) and the type of the field T.

• Method invocations. We model four different kinds of method invocations; each one
corresponds to a different JVM instruction and needs a different kind of annotation.
The kinds are:

– Virtual, used for instance method invocations. The annotation � C.T (T̄)�vrt

consists of the type of the receiver C (a class because invocations via an interface
require a special, different, bytecode to be emitted), the return type T and the
parameter types T̄. For simplicity, we do not distinguish between invocations of
private and non-private methods, even though an invocation of a private method
in Java uses a particular JVM instruction different from the “normal” instance
method invocation. The reason is that a private method cannot be overridden,
so the treatment is analogous to the static case (JLS 15.12.3).

– Super, used for invoking a method defined in the superclass. The annotation
� C.T (T̄)�spr consists of the name of the superclass C, the return type T and
the parameter types T̄. Note that there is no corresponding super-annotation
for field accesses, because a field access has a static binding and there is no
difference in using super.f or C.f (assuming C to be the name of superclass). As
for constructor invocation annotations, the annotation contains the (redundant)
name of the superclass for mimicking the JVM instruction invokespecial which
is used to compile non-virtual invocations.

– Static, used for static method invocations. The annotation � C.T (T̄) �stt

consists of the type of the receiver C (a class because interfaces cannot declare
static methods), the return type T and the parameter types T̄.

– Interface, used for invocations where the static type of the receiver is an interface
I. In this case, the annotation � I.T (T̄) �int consists of the name of the
interface I, the return type T and the type of the parameters T̄.

69

ΓS ::= γS
1 . . . γ

S
n

γS ::= C 7→ [TYPE=class, AM=AM, CK=CK, PARENT=C′, IS=I1 . . . In, KSS=KSS, FSS=FSS, NHS=NHS] |
I 7→ [TYPE=interface, AM=AM, IS=I1 . . . In, FSS=FSS, NHS=NHS]

T⊥ ::= T | ⊥
KS ::= AM T̄ throws ES

FS ::= AM FINAL FK T f | AM final static T f = Es

NH ::= AM MK T m(T̄) throws ES

T̄ ::= T1 . . . Tn
T̄
⊥ ::= T⊥1 . . . T

⊥
n

KSS ::= KS1 . . . KSn
FSS ::= FS1 . . . FSn
NHS ::= NH1 . . . NHn

Figure 4.3: Type environments

4.2.2 Type environments

In this chapter, since we focus on selective recompilation, we use standard type environ-
ments only. A (standard) type environment ΓS, is a sequence of type assignments γS, which
maps class/interface names to their respective types. Type environments are defined in
Figure 4.3.

The assignment C 7→ [TYPE=class, AM=AM, CK=CK, PARENT=C′, IS=I1 . . . In, KSS=KSS, FSS=FSS, NHS=NHS]
has the meaning “the class C has access modifier AM and kind CK, extends C’, implements
I1 . . . In and has constructor signatures KSS, field signatures FSS and naked (method)
headers NHS”.

A naked (method) header is a method header without the parameter names; roughly
speaking it is the “signature” of the method, but this terminology would conflict with the
one used by [GJSB00], where a method signature is just the pair consisting of the method
name and parameter types. In the following we use the terms “naked (method) header”
and “method header” interchangeably where there is no ambiguity.

Analogously, a type assignment I 7→ [TYPE=interface, AM=AM, IS=I1 . . . In, FSS=FSS, NHS=NHS]
has the meaning “the interface I has access modifier AM, extends I1 . . . In, and has field
signatures FSS and method headers NHS”.

In the following we use the dot notation to extract a component from a class/interface
type. For instance, we use ΓS(C).PARENT = C′ as a shortcut for
ΓS(C) 7→ [TYPE=class, AM= , CK= , PARENT=C′, IS= , KSS= , FSS= , NHS=].

In order to handle ctc-fields (see Section 4.1.1), a field signature FS of a final static field
may contain, among the other information, the initialization expression of the field. Any
final static field with an initialization expression Es is a ctc-field when Es can be evaluated,
at compile-time, to a value of primitive type.

70

T (AM CK class C extends C′ implements I1 . . . In { KDSs FDSs MDSs }) =
C 7→ [TYPE=class, AM=AM, CK=CK, PARENT=C′, IS=I1 . . . In, KSS=T (KDSs), FSS=T (FDSs), NHS=T (MDSs)]
T (AM CK class C extends C′ implements I1 . . . In { KDSb FDSb MDSb }) =

C 7→ [TYPE=class, AM=AM, CK=CK, PARENT=C′, IS=I1 . . . In, KSS=T (KDSb), FSS=T (FDSb), NHS=T (MDSb)]

T (AM interface I extends I1 . . . In { FDSs MDSs }) =
I 7→ [TYPE=interface, AM=AM, IS=I1 . . . In, FSS=T (FDSs), NHS=T (MDSs)]

T (AM interface I extends I1 . . . In { FDSb MDSb }) =
I 7→ [TYPE=interface, AM=AM, IS=I1 . . . In, FSS=T (FDSb), NHS=T (MDSb)]

T (KDs1 . . . KD
s
n) = T (KDs1) . . . T (KDsn)

T (KDb1 . . . KD
b
n) = T (KDb1) . . . T (KDbn)

T (FDs1 . . . FD
s
n) = T (FDs1) . . . T (FDsn)

T (FDb1 . . . FD
b
n) = T (FDb1) . . . T (FDbn)

T (MDs1 . . . MD
s
n) = T (MDs1) . . . T (MDsn)

T (MDb1 . . . MD
b
n) = T (MDb1) . . . T (MDbn)

T (AM (T1 x1, . . . , Tn xn) throws ES { . . . }) = AM T1 . . . Tn throws ES

T (AM FINAL FK T f = Es ;) = AM FINAL FK T f if FINAL = ε or FK = ε
T (AM final static T f = Es ;) = AM final static T f = Es

T (AM FINAL FK T f = Eb ;) = AM FINAL FK T f if FINAL = ε or FK = ε
T (AM final static T f = Eb ;) = AM final static T f = ν if Eb is the value ν.
T (AM final static T f = Eb ;) = AM final static T f if Eb is not a value.

T (AM abstract T m(T1 x1, . . . , Tn xn) throws ES ;) = AM abstract T m(T1 . . . Tn) throws ES

T (AM MK T m(T1 x1, . . . , Tn xn) throws ES { . . . }) = AM MK T m(T1 . . . Tn) throws ES

Figure 4.4: Definition of the type extraction function T .

71

A type environment can be extracted from source and binary fragments using the function
T defined in Figure 4.4. This function discards all code retaining just type information; the
only exception are final static fields with an initialization expression which can be ctc-fields.
In this case, the initialization expressions must be retained as well. When extracting
type information from source fragments, a (trivial) optimization can be performed: if an
expression Es contains a method invocation or a new expression, then Es can be never
evaluated at compile-time. Hence, a field initialized by Es can never be a ctc-field and
its initialization expression Es can be ignored. This reasoning does not apply to binary
fragments because the initialization expression of a ctc-field is, by definition, compiled
directly into a value, so any (final static) field which is initialized by anything but a
value is not a ctc-field.

Because compile-time constant initialization expressions, contained in the sources, are lost
in the translated binaries, the type information for a fragment must be always extracted
from its source. This is not a real limitation: if only the binary is available for, say, class
C, then C is part of an external library and:

• the values of ctc-fields declared by C are really constant (that is, they cannot change
because of a recompilation) being C available only in binary form;

• it is safe to assume that, being part of an external library, class C does not depend
on our sources (as a result, it never has to be recompiled because our sources has
changed).

Our selective recompilation strategy requires the extraction of a type environment ΓS from
the fragments each time the selective recompilation is run. So, the approach of extracting
type information from sources, which requires to parse them, may seem, at first sight, very
expensive. Fortunately, some simple considerations show it is indeed feasible:

• the type information extracted for each source can be cached;

• when a source is changed, it must be recompiled, therefore it must be parsed anyway
(and, assuming the compilation manager to be tightly integrated with the compiler,
the parse tree used to extract type information can be directly used by the compiler
at a later stage).

4.2.3 Type assumptions

Type assumptions γ, defined in Figure 4.5, describe fine-grained type requirements. Note
that, differently from the assumptions of the type system given in the previous chapter,

72

γ ::= T ≤ T′ |
RT�∃ T |
RT�∃cls CK? C |
RT�∃ifc I |
RT�Cns(C, T̄⊥) = [PAR=T̄] |
RT�Fld(RT′, f) = [FINAL=FINAL?, FK=FK, T=T] |
RT�Mth(RT′, m, T̄⊥) = [MK=MK?, RET=T, PAR=T̄] |
RT� Es = ν |
RT� EE ⊇Exc ES

RT� EE ⊆Exc ES

EE ::= ε(RT� C(T̄)) | ε(RT� RT′.m(T̄⊥)) | ES | EE1 ∪Exc EE2 | EE \Exc ES

CK? ::= CK | any
FINAL? ::= FINAL | any

MK? ::= MK | not-static

Figure 4.5: Type assumptions

these assumptions describe requirements which directly affect code generation only. Well-
formedness of type environments is dealt separately, as detailed in Section 4.2.6.

In order to typecheck expressions we need to introduce the type of null, called ⊥. A type
T⊥, defined in Figure 4.3, can be either a regular type T (which can be used in source
programs) or ⊥ (which, conversely, cannot be used in source programs). The assumptions
are:

• T ≤ T′ with the meaning “T is a subtype of T′”;

• RT�∃ T with the meaning “type T exists and is accessible from code contained in
RT”8;

• RT�∃cls CK? C with the meaning “class C, with kind CK?, exists and is accessible from
code contained in RT”. CK? = any means “any kind”, that is, we do not care whether
the class is abstract or not;

• RT�∃ifc I with the meaning “interface I exists and is accessible from code contained
in RT”;

8If the reader thinks the symbol “� ” as an eye, then she/he can interpret any assumption of the form
“RT � . . . ” as: “RT sees . . . ” and this is supposed to help ,.

73

• RT�Cns(C, T̄⊥) = [PAR=T̄] with the meaning “the most specific constructor for class
C and argument types T̄

⊥, invoked from code contained in RT, has parameter types
T̄;

• RT�Fld(RT′, f) = [FINAL=FINAL?, FK=FK, T=T] with the meaning “if code contained in
RT looks up a field named f in type RT′, then it finds a field with a final modifier
FINAL?, kind FK and type T”. FINAL? = any means we do not care whether the field
is final or not;

• RT�Mth(RT′, m, T̄⊥) = [MK=MK?, RET=T, PAR=T̄] with the meaning “the most specific
method, invoked from code contained in RT, for a method named m, with argument
types T̄

⊥ on a receiver with static type RT′ is a method which has kind MK?, return
type T and parameter types T̄”;

• RT� Es = ν with the meaning “inside RT, the expression Es is a compile-time constant
with value ν”;

• RT� EE ⊇Exc ES and RT� EE ⊆Exc ES with the meaning: “inside RT the exception
expression EE contains (resp., is contained in) the exception set ES”.

Exception expressions EE describe a set of exceptions in an abstract way. The exception
expression ε(RT� C(T̄)) represents the exception specification for the constructor of class C
with argument type T̄.

The exception expression ε(RT� RT′.m(T̄⊥)) represents the exception specification of the
most specific method named m, for an invocation with argument types T̄⊥, on an object of
type RT’. Note the asymmetry: in the former case the constructor is fixed, while in the
latter case the method is defined as “the most specific for. . . ”. This difference is due in how
constructor invocations (via super or new) and method invocations are annotated. When
a constructor invocation, on a class C, is annotated with T̄, then the selected constructor
is always the only constructor with parameter types T̄ declared in class C (constructors are
never inherited). On the other hand, if a method invocation is annotated with RT.T(T̄),
then the most specific method can be declared in RT or in any of its supertypes, because
the type RT, contained in the annotation, specifies the static type of the receiver, not the
declaring type (since Java 1.4; in previous versions the reference type in method annotation
was the declaring type, so there would be no difference between constructors and methods
if we modeled an earlier version of Java).

These exception expressions, and also the actual sets of exceptions ES, can be combined
together using the operators “union” ∪Exc and “minus” \Exc which, in first approximation,
can be thought as the corresponding set operations. However, they have to deal with the
fact that any exception C actually stands for “C or any subclass”; see Figure 4.14 for more
details.

74

The rules defining the judgment ΓS ` γ are shown in Figures from 4.6 to 4.14. For the time
being we assume ΓS to be a well-formed environment; that is, we assume its type hierarchy
is acyclic and the Java rules on method overriding/hiding are respected. In Section 4.2.6
we formalize this idea and discuss how we can incrementally check it.

Figure 4.6 shows the metarules for deriving subtyping judgments. The first five metarules
define subtyping between types, while the rules (6)-(8) define subtyping between access
modifiers and method kinds. These judgments are then used to define a subtyping between
method headers and between field signatures which are used when typechecking class and
interface declarations.

The primitive types, int and bool, are subtypes of themselves only (metarule (1)). A class
C is a subtype of itself, its (direct) superclass, and every implemented interface Ij (metarule
(2)). Analogously, an interface I is a subtype of itself, Object, and every extended interface
Ij (metarule (3)).

The type of null, ⊥, is a subtype of any reference type, that is, every type except for
primitive ones (last consequence in both metarules (2) and (3)).

Subtyping relation is transitively closed and extended to sequence of types in the usual
way (metarules (4) and (5)).

The subtyping between access modifiers, defined in metarules (6) and (7), and between
method kinds, defined in metarule (8), are used to enforce the requirements in method
overriding (JLS 8.4.6.3). That is:

1. the access modifier of an overriding (or hiding for the static case) method must
provide at least as much access as the overridden (or hidden) method (JLS 8.4.6.3);

2. an instance method cannot override a static method and vice versa (JLS 8.4.6.1 and
JLS 8.4.6.2).

A method header AM1 MK1 T m(T̄) throws ES1 is a subtype of another method header
AM2 MK2 T m(T̄) throws ES2 when:

• they have the same name m, the same parameter types T̄ and the same return type
T;

• the access modifier of the former provides at least as much access as the latter,
ΓS ` AM1 ≤ AM2;

• they are both instance (ε or abstract) or both static, ΓS ` MK1 ≤ MK2;

• the former may only throws exceptions which are subclasses of the ones thrown by
the latter, ΓS ` ES2 ⊇Exc ES1.

75

(1)
ΓS ` int ≤ int

ΓS ` bool ≤ bool

(2)

ΓS(C).PARENT = C′

ΓS(C).IS = I1 . . . In

ΓS ` C ≤ C

ΓS ` C ≤ C′

ΓS ` C ≤ Ij
ΓS ` ⊥ ≤ C

(3)
ΓS(I).IS = I1 . . . In

ΓS ` I ≤ I

ΓS ` I ≤ Object

ΓS ` I ≤ Ij
ΓS ` ⊥ ≤ I

(4)
ΓS ` RT1 ≤ RT2 ΓS ` RT2 ≤ RT3

ΓS ` RT1 ≤ RT3

(5)
ΓS ` T1 ≤ T′1 . . . Tn ≤ T′n
ΓS ` T1 . . . Tn ≤ T′1 . . . T

′
n

(6)
ΓS ` public ≤ protected

ΓS ` protected ≤ ε
ΓS ` ε ≤ private

ΓS ` AM ≤ AM

(7)
ΓS ` AM1 ≤ AM2 ΓS ` AM2 ≤ AM3

ΓS ` AM1 ≤ AM3

(8)
ΓS ` MK ≤ MK

ΓS ` abstract ≤ ε
ΓS ` ε ≤ abstract

(9)

ΓS ` AM1 ≤ AM2

ΓS ` MK1 ≤ MK2

ΓS ` ES2 ⊇Exc ES1

ΓS ` AM1 MK1 T m(T̄) throws ES1 ≤ AM2 MK2 T m(T̄) throws ES2

(10)

ΓS ` RT1 ≤ RT2

ΓS ` T̄1 ≤ T̄2

ΓS ` RT1. m(T̄1) throws ≤ RT2. m(T̄2) throws

(11)
ΓS ` RT1 ≤ RT2

ΓS ` RT1.FS1 ≤ RT2.FS2

FS1 = AM1 FK1 T1 f . . .
FS2 = AM2 FK2 T2 f . . .

Figure 4.6: Rules defining subtyping

76

Annotated method headers, which we will use when resolving overloading, consist of
method headers prefixed by the name of the declaring types (of the methods). We extend
subtyping of method headers to annotated method headers in metarule (10): an annotated
method header RT1.NH1 is a subtype of another RT2.NH2 when both the declaring type and
parameter types of the former are subtypes of the declaring type and the parameter types
of the latter. This definition corresponds to the definition of more specific methods given
in JLS 15.12.2.2.

Finally, in metarule (11), we define an annotated field signature (which is the analogous of
an annotated method header) as a subtype of another when they declare a field with the
same name f and the declaring type of the former is a subtype of the declaring type of the
latter. This corresponds to the fact that, in contrast to what happens for methods, there
are no requirements when a field hides inherited fields (JLS 8.3).

Figure 4.7 shows the metarules for deriving judgments related to accessibility. Primitive
types can be accessed by any type (metarule (1)). Classes and interfaces can be accessed
by any other type when they are public (metarules (2) and (5)), but only by members
in their own package when they have a default access modifier ε – JLS 6.6.1 (metarules
(3) and (6)). As we do not model import keyword, we assume that every name C and I

is fully-qualified, so the declaring package of any name can be extracted by the function
pck . Metarules (4) and (7) define that any accessible class or interface can be seen as an
accessible type.

The auxiliary predicate isAcc(ΓS, RT, RT′, AM), defined at the bottom of Figure 4.7, is true
when, in a type environment ΓS, the code contained in a type RT can access a member of
RT′ declared with access modifier AM as described in JLS 6.6.1.

Figure 4.8 contains the definitions of some auxiliary functions on sets of annotated method
headers ANHS:

1. nonPrivate(ANHS) returns all the non-private members contained in ANHS;

2. accΓS(RT, KSS) returns all the constructor signatures KS contained in KSS which are
accessible from RT;

3. accΓS(RT, AFSS) returns all the annotated field signatures AFS contained in AFSS which
are accessible from RT;

4. accNPΓS(RT, AFSS) returns all the non-private annotated field signatures AFS con-
tained in AFSS which are accessible from RT (note that being accessible does not
imply to be non-private, see the explanation below);

5. accΓS(RT, ANHS) returns all the annotated method headers ANH contained in ANHS

which are accessible from RT;

77

(1)
ΓS ` RT�∃ int
ΓS ` RT�∃ bool

(2)
ΓS(C).TYPE = class ΓS(C).AM = public ΓS(C).CK = CK

ΓS ` RT�∃cls CK C

(3)
ΓS(C).TYPE = class ΓS(C).AM = ε ΓS(C).CK = CK

ΓS ` RT�∃cls CK C
pck(RT) = pck(C)

(4)
ΓS ` RT�∃cls C

ΓS ` RT�∃cls any C

ΓS ` RT�∃ C

(5)
ΓS(I).TYPE = interface ΓS(I).AM = public

ΓS ` RT�∃ifc I

(6)
ΓS(I).TYPE = interface ΓS(I).AM = ε

ΓS ` RT�∃ifc I
pck(RT) = pck(I)

(7)
ΓS ` RT�∃ifc I

ΓS ` RT�∃ I

isAcc(ΓS, RT, RT′, AM) =

RT = RT′ if AM = private

pck(RT) = pck(RT′) if AM = ε
pck(RT) = pck(RT′) ∨ ΓS ` RT ≤ RT′ if AM = protected

true if AM = public

Figure 4.7: Accessibility (1/2)

78

nonPrivate(ANHS) = {RT.AM . . . ∈ AFSS|AM 6= private}

accΓS(RT, KSS) = {KS ∈ KSS|KS = AM . . . , isAcc(ΓS, RT, RT′, AM) }

accΓS(RT, AFSS) = {AFS ∈ AFSS|AFS = RT′.AM . . . , isAcc(ΓS, RT, RT′, AM) }
accNPΓS(RT, AFSS) = nonPrivate(AFSS) ∩ accΓS(RT, AFSS)

accΓS(RT, ANHS) = {ANH ∈ ANHS|ANH = RT′.AM . . . , isAcc(ΓS, RT, RT′, AM) }
accNPΓS(RT, ANHS) = nonPrivate(ANHS) ∩ accΓS(RT, ANHS)
nonAccΓS(RT, ANHS) = ANHS \ accNPΓS(RT, ANHS)
nonAccNPΓS(RT, ANHS) = nonPrivate(ANHS) \ accNPΓS(RT, ANHS)

abs(ANHS) = {RT.AM abstract . . . ∈ ANHS}
nonAbs(ANHS) = ANHS \ abs(ANHS)
ann(RT, NHS) = {RT.NH|NH ∈ NHS}

Figure 4.8: Accessibility (2/2)

6. accNPΓS(RT, ANHS) returns all the non-private annotated method headers ANH con-
tained in ANHS which are accessible from RT;

7. nonAccΓS(RT, ANHS) returns all the annotated method headers ANH contained in ANHS

which are not accessible from RT;

8. nonAccNPΓS(RT, ANHS) returns all the non-private annotated method headers ANH

contained in ANHS which are not accessible from RT;

9. abs(ANHS) returns all the abstract annotated method headers ANH contained in ANHS;

10. nonAbs(ANHS) returns all the non-abstract annotated method headers ANH contained
in ANHS;

11. ann(RT, NHS) returns the annotated method headers obtained by prefixing all the
headers NH in NHS with the type RT.

As strange as it may seem, some of these functions distinguish between private and non-
private members, even when using accessibility levels. In our model, which considers
only top-level classes, private members are never accessible from classes different than
the declaring one, so this extra-level of specification is redundant, except when selecting
inaccessible members (which can be either private or non-private). Even if this is useful
only in a single case, discussed below, we decided to model this extra-level consistently.

79

This is due to the fact that private members, even if accessible, are never inherited – JLS
8.2. For instance, inner classes can access private members of other inner classes (declared
inside the same outer), but they do not inherit those members even when one inner class
extends the other.

Figure 4.9 shows three metarules for deriving the full types of classes and interfaces. The
full type of a reference type RT consists of three components:

• member fields: the set of annotated field signatures of all the fields that are inherited
(and not hidden) by RT and of the fields directly declared by RT;

• member methods: the set of annotated method headers of all the methods that are
inherited (and not overridden/hidden) by RT and of the methods directly declared
by RT;

• non-overridden/hidden methods: the set of all the methods declared by superclasses
and not yet overridden/hidden.

The first two components are the members of RT, as defined in JLS 6.4, and are used to
resolve field accesses and method invocations; the third component, instead, is used only
for technical reasons and is always empty for interfaces. Among non-overridden/hidden
methods there are “ghost” methods; that is, methods that are not inherited (because they
are not accessible), and that will never become members. These methods are to be taken
into account because they may become accessible in subclasses, and affect the typechecking.
The point is that inherited members of a class C are the non-private accessible members
of the direct superclass C′ – JLS 8.2 – but a method declared in C can override a method
declared in a superclass C′′ (different from C′) which is not a member of C′ – JLS 8.4.6.1.
Consider, for instance, the following example:

package p1 ;

public class A {

int answer() { return 42 ; }

}

package p2 ;

public class B extends p1.A {}

package p1 ;

class C extends p2.B {

double answer() { return 42.0 ; } // error: bad overriding of A.answer()

}

80

ΓS ` Object : 〈AFSS=∅, ANHS=∅, NOVR=∅〉

ΓS(I).TYPE = interface

ΓS(I).AM = AM

ΓS(I).FSS = FSS

ΓS(I).NHS = NHS

ΓS(I).IS = I1 . . . In
∀j ∈ {1, . . . , n}{

ΓS ` I�∃ifc Ij
ΓS ` Ij : 〈AFSS=AFSSj, ANHS=ANHSj, NOVR=∅〉

ΓS ` I : 〈 AFSS=(
⋃
i∈{1,...,n} AFSSi)[AFSS]ΓS ,

ANHS=(
⊕

i∈{1,...,n} ANHSi)[ANHS]ΓS ,

NOVR=∅
〉

AFSS = ann(I, FSS)
ANHS = ann(I, NHS)
AM ∈ {ε, public}
∀FS ∈ FSS :

accessModifier(FS) = public

fieldKind(FS) = static

finalModifier(FS) = final

∀NH ∈ NHS :{
accessModifier(NH) = public

methodKind(FS) = abstract

ΓS(C).AM = AM

ΓS(C).CK = CK

ΓS(C).PARENT = C′

ΓS ` C�∃cls any C′

ΓS ` C′ : 〈AFSS=AFSS0, ANHS=ANHS0, NOVR=ANHSNO〉
ÃFSS0 = accNPΓS(C, AFSS0)

ÃNHS0 = accNPΓS(C, ANHS0)
ΓS(C).KSS = KSS

ΓS(C).FSS = FSS

ΓS(C).NHS = NHS

ΓS(C).IS = I1 . . . In
∀j ∈ {1, . . . , n}{

ΓS ` C�∃ifc Ij
ΓS ` Ij : 〈AFSS=AFSSj, ANHS=ANHSj, NOVR=∅〉

ΓS ` C : 〈AFSS=(ÃFSS0 ∪ (
⋃
i∈{1,...,n} AFSSi))[AFSS]ΓS ,

ANHS=(abs(ÃNHS0)⊕ (
⊕

i∈{1,...,n} ANHSi))[nonAbs(ÃNHS0)[ANHS]ΓS]ΓS ,

NOVR= accNPΓS(C, ANHSNO)[nonPrivate(ANHS)]ΓS∪
nonAccNPΓS(C, ANHSNO)

〉

KSS 6= ∅
AFSS = ann(C, FSS)
ANHS = ann(C, NHS)
AM ∈ {ε, public}
CK = ε =⇒
abs(ANHS ∪ ANHSNO)

= ∅

Figure 4.9: Full types

81

ANHS1 ⊕ ANHS2 =

ANHS1 ∪ ANHS2 if ∀ANH1 ∈ ANHS1, ANH2 ∈ ANHS2 :

nAndP(ANH1) = nAndP(ANH2) =⇒
ret(ANH1) = ret(ANH2)

⊥ otherwise

ANHS[{ANH1, . . . , ANHn}]ΓS = ANHS[ANH1]ΓS . . . [ANHn]ΓS

ANHS[RT′.NH′]ΓS =

{RT.NH′} ∪ {ANH : ANH ∈ ANHS,
nAndP(ANH) 6= nAndP(ANH′)}

if ∀RT.NH ∈ ANHS :
nAndP(NH) = nAndP(NH′) =⇒

ΓS ` NH′ ≤ NH

⊥ otherwise

AFSS[{AFS1, . . . , AFSn}]ΓS = ANHS[AFS1]ΓS . . . [AFSn]ΓS

AFSS[AFS′]ΓS = {AFS′} ∪ {AFS ∈ AFSS : name(AFS) 6= name(AFS′)}

nAndP(RT.NH) = nAndP(NH)
nAndP(AM MK T m(T̄) throws ES) = m(T̄)
ret(RT.AM MK T m(T̄) throws ES) = T

name(RT.AM FINAL FK T f) = f

name(RT.AM final static T f = ν) = f

accessModifier(AM FINAL FK T f) = AM

accessModifier(AM final static T f = ν) = AM

accessModifier(AM MK T m(T̄) throws ES) = AM

fieldKind(AM FINAL FK T f) = FK

fieldKind(AM final static T f = ν) = FK

finalModifier(AM FINAL FK T f) = FINAL

finalModifier(AM final static T f = ν) = final

methodKind(AM MK T m(T̄) throws ES) = MK

Figure 4.10: Auxiliary operators and functions

82

In this example class p1.A declares a method named answer which returns an int. This
method, having a default access, is not accessible in package p2 so the method is not a
member of class p2.B (which has no members). Class p1.C, extending p2.B, inherits all
its members (that is, none) and declares a method named answer which returns a double.
However, being A and C declared in the same package, the method A.answer is accessible
from C (albeit code inside p1 cannot invoke it through objects of type C because answer

is not inherited) and, so, the requirements on method overriding must be met by int

answer() and double answer(). In this example, of course, they are not, because the
return type of the latter method differs from the return type of the former.

In order to check the requirements on overriding and hiding – JLS 8.4.6.3 – and to check
whether a class has abstract methods – JLS 8.1.1.1 – we need to keep track of all the
methods (declared in superclasses) which are not overridden. Indeed, the presence of a
ghost abstract method m prevents a class to be declared non-abstract, albeit m is “invisible”.

Because all members are public in interfaces, all members are inherited by subinterfaces
therefore we do not need to keep track of ghost methods as we do with classes.

The metarules in Figure 4.9 use some auxiliary operators which are defined in Figure 4.10:

• Operator ⊕ is used to merge sets of annotated method headers; it corresponds to set
union, apart that it is only defined when there are no two different method headers
with the same name and parameter types but different return type. This restriction
is due to the fact that a class (or an interface) can inherit more than one method with
the same name and parameter types (from the superclass and/or superinterfaces) as
long as all the methods have the same return type – JLS 8.4.6.4 for classes and JLS
9.4.1 for interfaces.

• Operator []ΓS is used to encode overriding/hiding on both methods and fields. That
is, ANHS[ANHS′]ΓS corresponds to the set union of the annotated method headers in
ANHS′ with the annotated method headers in ANHS which are not overridden/hidden
by a header in ANHS′. This operation is defined only when the requirements on method
overriding/hiding are met. Analogously, AFSS[AFSS′]ΓS corresponds to the set union
of the annotated field signatures in AFSS′ with the annotated field signatures in AFSS

which are not hidden by a signature in AFSS′. This operation is always defined
because there are no requirements on hiding of fields.

The full type of Object (first metarule in Figure 4.9) simply consists of three empty sets
as, for simplicity, we ignore all the predefined methods of Object (defined in JLS 4.3.2).

The members of an interface I consist of all the declared fields and methods, annotated
with I, plus all the (annotated) members of its superinterfaces which have not been hidden
by those declared in I. So, the full type of an interface consists of the member fields, the
member methods and, as said before, an empty set.

83

ΓS(C).KSS = KSS

mostSpecΓS(accΓS(RT, KSS), T̄⊥) = {AM T̄ throws ES}
ΓS ` RT�Cns(C, T̄⊥) = [PAR=T̄]

mostSpecΓS(KSS, T̄⊥) = {KS| KS ∈ applΓS(KSS, T̄⊥),

∀KS′ ∈ applΓS(KSS, T̄⊥),ΓS ` params(KS) ≤ params(KS′)}
applΓS(KSS, T̄⊥) = {KS|KS ∈ KSS,ΓS ` T̄⊥ ≤ params(KS)}
params(AM T̄ throws ES) = T̄

Figure 4.11: Constructors

The full type of a class C is the most complex to calculate, so let us describe the components
one by one. The first component, corresponding to fields, is the easiest to calculate: the
member fields consists of all the declared fields, annotated with C, plus the accessible fields
inherited from the superclass and all the fields inherited from the superinterfaces (they are
always accessible) which have not been hidden by a field declared in the class.

The second component, corresponding to methods, is rather complex so let us consider
abstract and non-abstract methods separately. The inherited abstract methods are the
(non-private) accessible ones inherited from the superclass C′ and all the members of the
superinterfaces Ij which have not been overridden by a declaration in the class C or by a
non-abstract member inherited from the superclass – JLS 8.4.6.4 (note that in this case the
method is not declared in C, otherwise the one declared in C would override them all). To
the set of these abstract methods we must add the (non-private) accessible non-abstract
methods inherited from C′, which have not been overridden by a declaration in C, and,
finally, all the methods declared in the class (annotated with C).

The third component must keep track, as said, of all declared methods not yet overridden.
This component consists of:

• all the non-private methods declared in the class9;

• all the accessible not overridden methods which are still not overridden;

• all the non-accessible methods not overridden (which, being inaccessible, cannot be
overridden by any method in C).

Figure 4.11 show the metarule for deriving which is the most specific constructor for a
constructor invocation (via super or new). Because constructors are never inherited, all

9Technically, every method is overridden by itself but here we consider only proper overriding; that is,
overriding by a method defined in a proper subclass.

84

the information about the constructors of a class C can be found looking at C only. An in-
vocation is correct only if there is a unique most specific constructor that is both applicable
and accessible – JLS 15.9.3.

Figure 4.12 show the metarules for resolving field accesses and for evaluating constant
expressions. This latter metarule uses the auxiliary function eval , defined in the same
figure. A field access is successful resolved only when there is only one field which is
accessible. If there are no accessible fields then the field access is undefined and, conversely,
if there are more than one field then the access is ambiguous – JLS 15.11.1. In our model
the judgment for resolving a field access can be derived only when the field is not a ctc-field.
That is, when the field is not static or final (first metarule) or when, despite being both
static and final, its initialization expression cannot be evaluated at compile-time (second
metarule). This choice reflects the fact that a field access expression is compiled to a field
access binary expression only if the field is not a ctc-field. When it is, as the reader may
recall, the field access expression must be directly compiled to the (constant) value of the
field.

Figure 4.13 show the metarules for resolving method invocations. An invocation is success-
fully resolved if a single most specific method can be found among the maximally specific
ones. A method is said to be maximally specific for a method invocation if it is applicable,
accessible and there is no other applicable and accessible method that is more specific;
see the definition of maxSpec. If there is only one maximally specific method, then it is
the most specific one – JLS 15.12.2.2; in the definition of mostSpec, this case is seen as a
special case of the other following subcase:

• if all the maximally specific methods have the same name and parameter types:

– if one is not abstract (this includes the case where there is just one non-abstract
method in ANHS), then it is the most specific (there cannot be more than one
non-abstract methods since non-abstract methods can only be inherited from
superclasses);

– if they are all abstract (this includes the case where there is just one abstract
method in ANHS), then the most specific method is chosen arbitrarily among the
maximally specific methods. However, the most specific method is considered to
throw an exception if and only if that exception has a superclass in the throws
clause of each of the maximally specific methods.

• Otherwise, the method invocation is ambiguous.

Figure 4.14 show the metarules for evaluating exception expressions ((1) and (2)); they
use an auxiliary judgment ΓS ` EE →Exc ES which can be derived when the exception
expression EE is equivalent to the set of exception (that is, class) names ES in ΓS.

85

ΓS ` RT′ : 〈AFSS=AFSS, ANHS= , NOVR= 〉
mostSpecΓS(accΓS(RT, AFSS), f) = {RT′′.AM FINAL FK T f }

ΓS ` RT�Fld(RT′, f) = [FINAL=FINAL, FK=FK, T=T]
ΓS ` RT�Fld(RT′, f) = [FINAL=any, FK=FK, T=T]

ΓS ` RT′ : 〈AFSS=AFSS, ANHS= , NOVR= 〉
mostSpecΓS(accΓS(RT, AFSS), f) = {RT′′.AM final static T f = Es }
evalΓS(RT, Es, ∅) = ⊥

ΓS ` RT�Fld(RT′, f) = [FINAL=FINAL, FK=FK, T=T]
ΓS ` RT�Fld(RT′, f) = [FINAL=any, FK=FK, T=T]

mostSpecΓS(AFSS, f) = {AFS| AFS ∈ applΓS(AFSS, f),
∀AFS′ ∈ applΓS(AFSS, f) : ΓS ` AFS ≤ AFS′}

applΓS(AFSS, f) = {AFS|AFS ∈ AFSS, name(AFS) = f}
name(AM FINAL FK T f . . .) = f

evalΓS(RT, Es, pending) =

ν if Es = ν
ι1 Θ ι2 if Es = Es1 Θ Es2

Θ ∈ {+,−, . . .}
evalΓS(RT, Es1, pending) = ι1
evalΓS(RT, Es2, pending) = ι2

ν if Es = RT′.f
ΓS ` RT′ : 〈AFSS= , ANHS=AFSS, NOVR= 〉
mostSpecΓS(accΓS(RT, AFSS), f) =
{RT′′.AM final static T f = Esinit }

RT′′.f 6∈ pending
evalΓS(RT′′, Esinit, pending ∪ {RT′′.f}) = ν

⊥ otherwise

evalΓS(RT, Es, ∅) = ν

ΓS ` RT� Es = ν

Figure 4.12: Fields and constants

86

ΓS ` RT′ : 〈AFSS= , ANHS=ANHS, NOVR= 〉
mostSpecΓS(accΓS(RT, ANHS), m(T̄⊥)) = AM static T m(T̄) throws ES

RT�Mth(RT′, m, T̄⊥) = [MK=static, RET=T, PAR=T̄]

ΓS ` RT′ : 〈AFSS= , ANHS=ANHS, NOVR= 〉
mostSpecΓS(accΓS(RT, ANHS), m(T̄⊥)) = AM MK T m(T̄) throws ES

RT�Mth(RT′, m, T̄⊥) = [MK=not-static, RET=T, PAR=T̄]
MK ∈ {ε, abstract}

mostSpecΓS(ANHS, m(T̄⊥)) =

ANH if maxSpecΓS(ANHS, m(T̄⊥)) = ANHS′

∀ANH1, ANH2 ∈ ANHS′ : nAndP(ANH1) = nAndP(ANH2)
nonAbs(ANHS′) = {ANH}

⊥.public abstract

T m(T̄) throws ES

if maxSpecΓS(ANHS, m(T̄⊥)) = ANHS′

ANHS′ 6= ∅
∀ANH1, ANH2 ∈ ANHS′ : nAndP(ANH1) = nAndP(ANH2)
nonAbs(ANHS′) = ∅
T = ret(ANH′), for any ANH′ ∈ ANHS′

ES = {C|∀ANH′ ∈ ANHS′ ∃C′ ∈ throws(ANH′) : ΓS ` C ≤ C′}
⊥ otherwise

maxSpecΓS(ANHS, m(T̄⊥)) = {ANH| ANH ∈ applΓS(ANHS, m(T̄⊥)),

∀ANH′ ∈ applΓS(ANHS, m(T̄⊥)) :
ΓS ` ANH′ ≤ ANH =⇒ ANH = ANH′ }

applΓS(ANHS, m(T̄⊥)) = {ANH|ANH ∈ ANHS, nAndP(ANH) = m(T̄),ΓS ` T̄⊥ ≤ T̄}

throws(RT.AM MK T m(T̄) throws ES) = ES

Figure 4.13: Methods

87

(1)
ΓS ` EE→Exc ES

′

ΓS ` EE ⊇Exc ES
∀C ∈ ES ∃C′ ∈ ES′ : ΓS ` C ≤ C′

(2)
ΓS ` EE→Exc ES

′

ΓS ` EE ⊆Exc ES
∀C′ ∈ ES′ ∃C ∈ ES : ΓS ` C′ ≤ C

(3)

ΓS(C).KSS = KSS

AM T̄ throws ES ∈ accΓS(RT, KSS)

ΓS ` ε(RT� C(T̄))→Exc ES

(4)

ΓS ` RT′ : 〈AFSS= , ANHS=ANHS, NOVR= 〉
mostSpecΓS(accΓS(RT, ANHS), m(T̄⊥)) = AM MK T m(T̄) throws ES

ΓS ` ε(RT� RT′.m(T̄⊥))→Exc ES

(5)
ΓS ` ES→Exc ES

(6)
ΓS ` EE1 →Exc ES1 ΓS ` EE2 →Exc ES2

ΓS ` EE1 ∪Exc EE2 →Exc ES1 ∪ ES2

(7)
ΓS ` EE1 →Exc ES1 ΓS ` EE2 →Exc ES2

ΓS ` EE1 \Exc EE2 →Exc {C1 ∈ ES1| 6 ∃C2 ∈ ES2 : ΓS ` C1 ≤ C2}

Figure 4.14: Rules defining exception related judgments

88

Metarule (3) evaluates the exceptions that may be thrown by an invocation, inside RT, of
the constructor of class C with parameter types T̄.

Metarule (4) evaluates, using the auxiliary function mostSpec defined in Figure 4.13, the
exceptions that may be thrown by an invocation, inside RT, of a method named m with
parameter types T̄

⊥. Metarules (5) and (6) are trivial; they respectively state that a set
of exception names ES evaluates to itself, and that the union of two exception expressions
evaluates to the union of their respective sets of exception names. The last metarule, (7),
is more interesting: the “difference” between two sets of exceptions is defined as the set
of exception names C1 which are contained in the first set ES1, such that they cannot be
captured by any exception C2 contained in the second set ES2. That is, such that there
is none of their superclasses in ES2. An in-depth discussion of these issues, regarding the
formalization of Java exceptions, can be found in [ALZ01].

The next subsection shows how and when these assumptions are used in the process of
compilation.

4.2.4 Compilation

Compilation of expressions is expressed by the following judgment:

ΓS; Π; RT ` Es ; Eb : T throws: EE

with the meaning “expression Es has type T, throws exceptions EE and compiles to binary
expression Eb when contained in type RT, in a type environment ΓS and local environment
Π”. Type RT is needed to model the access control; for instance, private methods of RT can
be invoked only by expressions inside RT. The local environment Π maps parameter names
and this to their respective types (this is undefined when typing expressions contained
in static contexts).

Figures 4.15 to 4.17 show the metarules defining this judgment.

Rules (1) and (2) in Figure 4.15 model the compilation of a compile-time constant expres-
sion of type, respectively, int and bool. As explained in Section 4.1.1, these expressions
are compiled directly to their corresponding value and, obviously, their evaluation throws
no exceptions (so EE is the empty set).

In rule (3) two expressions, which are not both compile-time constants, are combined using
an operator Θ: the result is a non-constant expression that can throw any exception its
operands can throw.

The literal null is compiled into itself, has type ⊥, and throws no exception, metarule (4).

The keyword this is compiled into itself, has type Π(this), and throws no exceptions,

89

(1)
ΓS ` RT� Es = ι

ΓS; Π; RT ` Es ; ι : int throws: ∅

(2)
ΓS ` RT� Es = β

ΓS; Π; RT ` Es ; β : bool throws: ∅

(3)

ΓS; Π; RT ` Es1 ; Eb1 : int throws: EE1

ΓS; Π; RT ` Es2 ; Eb2 : int throws: EE2

ΓS; Π; RT ` Es1 Θ Es2 ; Eb1 Θ Eb2 : int throws: EE1 ∪Exc EE2

Θ ∈ {+,−, . . .}
Eb1 or Eb2 is not a value

(4)
ΓS; Π; RT ` null; null : ⊥ throws: ∅

(5)
ΓS; Π; RT ` this; this : Π(this) throws: ∅

(6)
ΓS; Π; RT ` x; x : Π(x) throws: ∅

(7)

∀i ∈ {1, . . . , n} ΓS; Π; RT ` Esi ; Ebi : Ti throws: EEi
ΓS ` RT�∃cls ε C
ΓS ` RT�Cns(C, T1 . . . Tn) = [PAR=T̄]

ΓS; Π; RT ` new C(Es1, . . . , E
s
n) ;

new � C(T̄)�c (Eb1, . . . , E
b
n) : C

throws: EE1 ∪Exc . . . ∪Exc EEn ∪Exc ε(RT� C(T̄))

(8)

ΓS; Π; RT ` Es0 ; Eb0 : C throws: EE0

ΓS ` RT�∃cls any C

∀i ∈ {1, . . . , n} ΓS; Π; RT ` Esi ; Ebi : Ti throws: EEi
ΓS ` RT�Mth(C, m, T1 . . . Tn) = [MK=not-static, RET=T, PAR=T̄]

ΓS; Π; RT ` Es0.m(Es1, . . . , E
s
n) ;

Eb0.� C.T (T̄)�vrt m(Eb1, . . . , E
b
n) : T

throws: EE0 ∪Exc . . . ∪Exc EEn ∪Exc ε(RT� C.m(T1 . . . Tn))

(9)

ΓS; Π; RT ` Es0 ; Eb0 : I throws: EE0

ΓS ` RT�∃ifc I
∀i ∈ {1, . . . , n} ΓS; Π; RT ` Esi ; Ebi : Ti throws: EEi
ΓS ` RT�Mth(I, m, T1 . . . Tn) = [MK=abstract, RET=T, PAR=T̄]

ΓS; Π; RT ` Es0.m(Es1, . . . , E
s
n) ;

Eb0.� I.T (T̄)�int m(Eb1, . . . , E
b
n) : T

throws: EE0 ∪Exc . . . ∪Exc EEn ∪Exc ε(RT� I.m(T1 . . . Tn))

Figure 4.15: Expression typing rules (1/3)

90

metarule (5). Because this can be used only in non-static contexts, the local type envi-
ronment Π is defined on this only when it can be used; see Figure 4.20 and Figure 4.21.

A parameter name x is compiled into itself, has type Π(x), and throws no exceptions,
metarule (6).

An instance creation expression of a class C has type C and throws any exception that can
be thrown by evaluating the arguments and the exceptions specified by the most specific
constructor, metarule (7). The premise ΓS ` RT�∃cls ε C ensures that the class C is both
accessible from RT and not abstract.

Metarules from (8) to (11) define the compilation of a method invocation; for each invo-
cation only one metarule can be instantiated, and each one compiles to a different binary
expression. The first of them, metarule (8), models the compilation of a virtual method
invocation. That is, an invocation of an instance method of a class C. The premise
ΓS ` RT�∃cls any C ensures that the type of the receiver Es0 is a class C, which is accessible
from RT. The whole expression has type T, the return type of the most specific method
found, and throws any exception that can be thrown by evaluating the receiver Es0 or the
arguments Esi , and the exceptions declared by the most specific method for the invocation.

The same reasoning applies to metarule (9), except that in this case the receiver must
be an accessible interface I (so, the method kind of the most specific method must be
abstract).

Metarule (10) deals with static invocations; in this case the receiver must be a class C

(interfaces can only define abstract methods).

Finally, metarule (11) defines the compilation of invocations via keyword super. The
invocation is resolved as any instance method invocation, but starting the search from the
superclass C′. Because C′ is found using Π(this), invocation via super cannot be compiled
in static contexts, as it must be.

Metarules (12) to (14) define the compilation of the three kinds of field accesses: via super,
instance and static access. Note that, differently from method invocations, a static field
can be defined by both classes and interfaces. If the field is accessed via an interface type,
then the field must necessarily be final, but we do not need to check this here because we
assume ΓS to be well-formed, hence any field found starting the search from an interface
type is automatically final.

Metarules (15) to (18) define the compilation of the various forms of assignment, depending
on the target. The target can be, respectively, a parameter, a field inherited by superclass
(via super), an instance field and a static field. In all field assignments the type of the
target is always a class C, because interface fields are always static final hence cannot
be assigned (they can only be initialized once and for all via the initialization expression
specified in the declaration).

91

(10)

∀i ∈ {1, . . . , n} ΓS; Π; RT ` Esi ; Ebi : Ti throws: EEi
ΓS ` RT�Mth(C, m, T1 . . . Tn) = [MK=static, RET=T, PAR=T̄]

ΓS; Π; RT ` C.m(Es1, . . . , E
s
n) ;

� C.T (T̄)�stt m(Eb1, . . . , E
b
n) : T

throws: EE1 ∪Exc . . . ∪Exc EEn ∪Exc ε(RT� C.m(T1 . . . Tn))

(11)

∀i ∈ {1, . . . , n} ΓS; Π; C ` Esi ; Ebi : Ti throws: EEi
ΓS ` C�Mth(C′, m, T1 . . . Tn) = [MK=not-static, RET=T, PAR=T̄]

ΓS; Π; C ` super.m(Es1, . . . , E
s
n) ;

� C′.T (T̄)�spr m(Eb1, . . . , E
b
n) : T

throws: EE1 ∪Exc . . . ∪Exc EEn ∪Exc ε(C� C′.m(T1 . . . Tn))

Π(this) = C

ΓS(C).PARENT = C′

(12)
ΓS ` C�Fld(C′, f) = [FINAL=any, FK=ε, T=T]

ΓS; Π; C ` super.f;
this.� C′.T�if f : T

throws: ∅

Π(this) = C

ΓS(C).PARENT = C′

(13)

ΓS; Π; RT ` Es ; Eb : C throws: EE
ΓS ` RT�Fld(C, f) = [FINAL=any, FK=ε, T=T]

ΓS; Π; RT ` Es.f;
Eb.� C.T�if f : T

throws: EE

(14)
ΓS ` RT�Fld(RT′, f) = [FINAL=any, FK=static, T=T]

ΓS; Π; RT ` RT′.f;
� RT′.T�sf f : T

throws: ∅

(15)

ΓS; Π; RT ` Es ; Eb : T throws: EE
ΓS ` T ≤ T′

ΓS; Π; RT ` x = Es ;
x = Eb : T′

throws: EE

Π(x) = T′

Figure 4.16: Expression typing rules (2/3)

92

(16)

ΓS(C).PARENT = C′

ΓS ` C�Fld(C′, f) = [FINAL=ε, FK=ε, T=T]
ΓS; Π; C ` Es ; Eb : T′ throws: EE
ΓS ` T′ ≤ T

ΓS; Π; C ` super.f = Es ;
this.� C′.T�if f = Eb : T

throws: EE

Π(this) = C

(17)

ΓS; Π; RT ` Es1 ; Eb1 : C throws: EE1

ΓS ` RT�Fld(C, f) = [FINAL=ε, FK=ε, T=T]
ΓS; Π; RT ` Es2 ; Eb2 : T′ throws: EE2

ΓS ` T′ ≤ T

ΓS; Π; RT ` Es1.f = Es2 ;
Eb1.� C.T�if f = Eb2 : T

throws: EE1 ∪Exc EE2

(18)

ΓS ` RT�Fld(C, f) = [FINAL=ε, FK=static, T=T]
ΓS; Π; RT ` Es ; Eb : T′ throws: EE
ΓS ` T′ ≤ T

ΓS; Π; RT ` C.f = Es ;
� C.T�sf f = Eb : T

throws: EE

Figure 4.17: Expression typing rules (3/3)

93

Compilation of statements is expressed by the following judgment:

ΓS; Π; RT ` STMTs ; STMTb throws: EE ccn: β

with the meaning “statement STMTs is compiled to STMTb, throws exceptions EE and can
complete normally (boolean flag β) when contained in type RT, in a local environment Π,
and in a type environment ΓS”. Figure 4.18 and Figure 4.19 show the metarules defining
this judgment.

Both the exception expression EE and the flag β are required to model unreachable code.
The intuitive idea is that a reachable statement can complete normally (so the flag β is
true) when, at run-time, the flow of execution may continue beyond such a statement. For
instance, a sequence of statements can complete normally if and only if all statements it
consists of can complete normally (see metarules (1) and (2) of Figure 4.18), the evaluation
of a statement expression SEb always completes normally (metarule (3)), while a statement
break cannot ever complete normally (metarule (4)). These notions are described in detail
in JLS 14.20. The metarules contain an apparent asymmetry in how the statements if

(metarule (5)) and while (metarule (7)) are handled. That is, while (false) {...} is not
allowed, because its body would be unreachable, but the similar cases if (false) {...}
else {...} and if (true) {...} else {...} are ok (even though in both cases one of
the two branches is indeed unreachable). The typing rules reflect the language specification
which allows this use of statement if as a way to express conditional compilation.

The two metarules in Figure 4.19 deal with throwing and catching exceptions. A statement
throw, whose expression Es has type C, can throw all the exceptions the evaluation of Es

can throw, plus, of course, C itself. A statement throw never completes normally. The last
rule is the trickiest of all: a statement try can throw the exceptions its body can throw
EE0, minus all the caught ones {C1, . . . Cn}, plus the ones that can be thrown by statement
inside its catch or finally clauses. Moreover, the statement try can complete normally
only when at least its body STMTs0 or one of the catch clauses STMTsi can complete normally
and the finally clause can complete normally.

In our model “running the compilation” on a fragment S amounts to derive the following
judgment:

ΓS ` S; B

Figure 4.20 and Figure 4.21 show the metarules defining this judgment.

In defining the compilation of a set of classes we assume to compile them one by one, that is,
we assume that no global optimizations take place. This reflects the fact that in languages
with dynamic linking like Java, the concept of “program” is only significant at run-time
so it is safer to leave cross class optimizations to virtual machines like HotSpot [SUN01].

94

(1)
ΓS; Π; RT ` {}; {} throws: ∅ ccn: true

(2)

i ∈ 1..(n− 1) ΓS; Π; RT ` STMTsi ; STMTbi throws: EEi ccn: true
ΓS; Π; RT ` STMTsn ; STMTbn throws: EEn ccn: β

ΓS; Π; RT ` {STMTs1 . . . STMTsn};
{STMTb1 . . . STMTbn}
throws: EE1 ∪Exc . . . ∪Exc EEn ccn: β

n ≥ 1

(3)
ΓS; Π; RT ` SEs ; SEb : T throws: EE

ΓS; Π; RT ` SEs ; ; SEb ; throws: EE ccn: true

(4)
ΓS; Π; RT ` break ; ; break ; throws: ∅ ccn: false

(5)

ΓS; Π; RT ` Es ; Eb : bool throws: EE0

i ∈ 1..2 ΓS; Π; RT ` STMTsi ; STMTbi throws: EEi ccn: βi

ΓS; Π; RT ` if (Es) STMTs1 else STMTs2 ;
if (Eb) STMTb1 else STMTb2
throws: EE0 ∪Exc EE1 ∪Exc EE2 ccn: β1 ∨ β2

(6)

ΓS; Π; RT ` Es ; Eb : bool throws: EE0

ΓS; Π; RT ` STMTs ; STMTb throws: EE1 ccn:

ΓS; Π; RT ` while (Es) STMTs ;
while (Eb) STMTb

throws: EE0 ∪Exc EE1 ccn: true

Eb is not a value

(7)

ΓS; Π; RT ` Es ; true : bool throws: ∅
ΓS; Π; RT ` STMTs ; STMTb throws: EE ccn:

ΓS; Π; RT ` while (Es) STMTs ;
while (true) STMTb

throws: EE ccn: β

β = there is a break for this
while inside STMTs

Figure 4.18: Statement typing rules (1/2)

95

(8)
ΓS; Π; RT ` Es ; Eb : C throws: EE

ΓS; Π; RT ` throw Es ; ;
throw Eb ;
throws: EE ∪Exc {C} ccn: false

(9)

ΓS; Π; RT ` STMTs0 ; STMTb0 throws: EE0 ccn: β0

i ∈ 1..n ΓS; Π[xi 7→ Ci]; RT ` STMTsi ; STMTbi throws: EEi ccn: βi
ΓS; Π; RT ` STMTsn+1 ; STMTbn+1 throws: EEn+1 ccn: βn+1

i ∈ 1..n ΓS ` RT� (EE0 \Exc {C1, . . . , Ci−1}) ⊇Exc {Ci}
ΓS; Π; RT ` try { STMTs0 }

catch (C1 x1) { STMTs1 }
. . .
catch (Cn xn) { STMTsn }
finally { STMTsn+1 } ;
try { STMTb0 }
catch (C1 x1) { STMTb1 }
. . .
catch (Cn xn) { STMTbn }
finally { STMTbn+1 }
throws: (EE0 \Exc {C1, . . . , Cn}) ∪Exc EE1 ∪Exc . . . ∪Exc EEn+1

ccn: (β0 ∨ . . . ∨ βn) ∧ βn+1

Figure 4.19: Statement typing rules (2/2)

96

(1)

` ΓS�
ΓS; C ` KDSs ; KDSb

ΓS; C ` FDSs ; FDSb

ΓS; C ` MDSs ; MDSb

ΓS ` S;
AM CK class C extends C′

implements I1, . . . , Im {
KDSb

FDSb

MDSb

}

S = AM CK class C extends C′

implements I1, . . . , Im {
KDSs

FDSs

MDSs

}
T (S) = ΓS(C)

(2)

` ΓS�
ΓS; I ` FDSs ; FDSb

ΓS; I ` MDSs ; MDSb

ΓS ` S;
AM interface I extends I1, . . . , Im {
FDSb

MDSb

}

S = AM interface I

extends I1, . . . , Im {
FDSs

MDSs

}
T (S) = ΓS(I)

(3)
∀i ∈ 1..n ΓS; C ` KDsi ; KDbi

ΓS; C ` KDs1 . . . KDsn ; KDb1 . . . KD
b
n

(4)
∀i ∈ 1..n ΓS; RT ` FDsi ; FDbi

ΓS; RT ` FDs1 . . . FDsn ; FDb1 . . . FD
b
n

(5)
∀i ∈ 1..n ΓS; RT ` MDsi ; MDbi

ΓS; RT ` MDs1 . . . MDsn ; MDb1 . . . MD
b
n

Figure 4.20: Compilation rules (1/2)

97

(6)

∀i ∈ {1, . . . , n} ΓS ` C�∃ Ti
∀i ∈ {1, . . . ,m} ΓS; Π; C ` Esi ; Ebi : T′i throws: EEi
ΓS; Π; C ` STMTSs ; STMTSb throws: EE0 ccn:
ΓS ` C�Cns(C′, T′1 . . . T

′
m) = [PAR=T̄]

ΓS ` C� (EE0 ∪Exc . . . ∪Exc ESn ∪Exc ε(C� C′(T̄))) ⊆Exc ES

ΓS; C ` AM (T1 x1, . . . , Tn xn) throws ES {
super(Es1, . . . , E

s
m); STMTSs

} ;
AM (T1 x1, . . . , Tn xn) throws ES {
super(Eb1, . . . , E

b
n)� C′(T̄)�c; STMTSb

}

ΓS(C).PARENT = C′

Π = { x1 7→ T1,
. . . ,
xn 7→ Tn,
this 7→ C}

(7)

ΓS; Π; RT ` Es ; Eb : T′ throws: EE
ΓS ` RT� EE ⊆Exc ∅
ΓS ` T′ ≤ T

ΓS; RT ` AM FINAL FK T f = Es ; ; AM FINAL FK T f = Eb ;
Π = This(FK, C)

(8)

∀i ∈ {0, . . . , n} ΓS ` C�∃ Ti
ΓS; Π; C ` STMTSs ; STMTSb throws: EE ccn: true
ΓS; Π; C ` Es ; Eb : T′ throws: EE′

ΓS ` C� EE ∪Exc EE′ ⊆Exc ES

ΓS ` T′ ≤ T0

ΓS; C ` AM MK T0 m(T1 x1, . . . , Tn xn) throws ES {
STMTSs return Es;
};
AM MK T0 m(T1 x1, . . . , Tn xn) throws ES {
STMTSb return Eb;
}

Π = { x1 7→ T1,
. . . ,
xn 7→ Tn}∪
This(MK, C)

MK 6= abstract

(9)
∀i ∈ {0, . . . , n} ΓS ` RT�∃ Ti

ΓS; RT ` AM abstract T0 m(T1 x1, . . . , Tn xn) throws ES;
AM abstract T0 m(T1 x1, . . . , Tn xn) throws ES

This(, I) = ∅
This(static, C) = ∅;
This(ε, C) = {this 7→ C}

Figure 4.21: Compilation rules (2/2)

98

4.2.5 Proofs

As we stated in Section 3.3, in this system the set of type assumptions Γ used in the proof
tree of a compilation judgment

Γold ` S; B

are the weakest type assumptions ΓNS needed for compiling S to B.

That is, as long as a new environment entails Γ, there is no need to recompile the source
as its recompilation would produce the same binary.

Theorem 4.2.9 proves this important property, using the following auxiliary lemmas and
theorems.

Lemma 4.2.1 If

• judgments ; Π; RT ` ; Eb : T1 throws: and

• ; Π; RT ` ; Eb : T2 throws: are derivable,

then T1 = T2.

Proof Trivial due to the annotations of constructor/method invocations: if a source ex-
pression Es is successfully compiled into a binary expression Eb, then the type of Es can be
directly extracted from Π and Eb.

2

Lemma 4.2.2 If

• judgments ; Π; RT ` ; Eb : throws: EE1 and

• ; Π; RT ` ; Eb : throws: EE2 are derivable,

then EE1 = EE2.

Proof This can be proved by structural induction on the metarules defining the judgment.
The proof is trivial on all the metarules except for:

• Metarule (7): the first part of the exception expression is the same by inductive
hypothesis, the last part is completely determined by RT and Eb;

99

• Metarule (8): the first part of the exception expression is the same by inductive
hypothesis, the last part is determined by RT, Eb and Lemma 4.2.1;

• Metarules (9), (10) and (11): analogous to metarule (8).

2

Lemma 4.2.3 If

• judgments ; Π; RT ` ; Eb : T1 throws: EE1 and

• ; Π; RT ` ; Eb : T2 throws: EE2 are derivable,

then T1 = T2 and EE1 = EE2.

Proof Follows by Lemma 4.2.1 and Lemma 4.2.2.

2

Theorem 4.2.4 If the judgment ΓS
1; Π; RT ` Es ; Eb : T throws: EE can be derived, using

the type assumptions Γ = {γ1, . . . , γn} in the proof tree, then for all type environment ΓS
2

such that ΓS
2(RT) = ΓS

1(RT):

ΓS

2; Π; RT ` Es ; Eb : throws: ⇐⇒ ΓS

2 ` Γ

Proof

⇒)

First, by Lemma 4.2.3, we know that any derivation ΓS
2; Π; RT ` Es ; Eb : throws:

must actually be a derivation for ΓS
2; Π; RT ` Es ; Eb : T throws: EE.

Second, we note there is only one metarule to derive any binary expression, so the proof
tree in ΓS

2 must consist of the same metarules of the one in ΓS
1.

To prove that even the type assumptions used as premises of the metarules are the same,
we note that every variable of these assumptions is:

• fixed by the metarule, or

• RT, or

• contained in Es or in Eb, or

100

• the type of a subexpression of Es, which is the same in every environment by Lemma 4.2.1.

For these reasons, to compile Es in Eb inside RT there is no choice but using the same
assumptions Γ in every type environment. Therefore, it must be ΓS

2 ` Γ as well.

⇐)

Trivial: the proof tree of ΓS
1; Π; RT ` Es ; Eb : T1 throws: EE1 can be derived in ΓS

2 as
well because the side-conditions only depend on Π and ΓS

2(RT), which is equal to ΓS
1(RT) by

hypothesis.

2

Theorem 4.2.4 fixes three things: the name of the type RT containing the expression, the
local type environment Π and the standard type environment for RT, that is, ΓS(RT). On
the one hand, if we think only in term of compiling a source expression Es into a binary
expression Eb, these requirements are stronger than they could be: for instance, an unused
parameter need not to be in Π. If a method receives three arguments but it does not use
any of them, the result of the compilation of its body, and any contained expression, is
necessarily independent from Π. So, we could avoid fixing RT, Π and ΓS(RT) using some
form of type assumptions, as we have done for the other requirements.

On the other hand, in Java expressions cannot be compiled in isolation. The only way to
compile an expression Es is to compile the fragment S which contains the declaration of the
type RT containing Es. Because RT, Π and ΓS(RT) are extracted directly from S, they can
only differs from a previous version, used to compile Es, when the fragment S is changed.
But, if S is changed, then it has to be recompiled anyway, so for our particular application
it does not make sense trying to weaken the requirements for compiling expression any
more.

Compilation of statements enjoys properties similar to the compilation of expressions, as
the following lemmas and theorem state.

Lemma 4.2.5 If

• judgments ; Π; RT ` ; STMTb throws: EE1 ccn: and

• ; Π; RT ` ; STMTb throws: EE2 ccn: are derivable,

then EE1 = EE2.

Proof This can be proved by structural induction on the metarules defining the judgment.
The proof is trivial on all the metarules except for:

101

• Metarule (3): follows by Lemma 4.2.2;

• Metarule (5): follows by inductive hypothesis and Lemma 4.2.2;

• Metarules(6) and (7): analogous to metarule (5);

• Metarule (8): follows by inductive hypothesis and Lemma 4.2.3;

• Metarule (9): follows by inductive hypothesis and the fact that the set {C1, . . . , Cn}
is determined by Eb.

2

Lemma 4.2.6 If

• judgments ; Π; RT ` ; STMTb throws: ccn: β1 and

• ; Π; RT ` ; STMTb throws: ccn: β2 are derivable,

then β1 = β2.

Proof This can be proved by structural induction on the metarules defining the judgment.
The proof is trivial on all the metarules except for metarule (7); in this case note that β is
determined by Eb.

2

Lemma 4.2.7 If

• judgments ; Π; RT ` ; STMTb throws: EE1 ccn: β1 and

• ; Π; RT ` ; STMTb throws: EE2 ccn: β2,

then EE1 = EE2 and β1 = β2.

Proof Follows by Lemma 4.2.5 and Lemma 4.2.6.

2

Theorem 4.2.8 If the judgment ΓS
1; Π; RT ` STMTs ; STMTb throws: EE ccn: β can be

derived, using the type assumptions Γ = {γ1, . . . , γn} in the proof tree, then for all type
environment ΓS

2 such that ΓS
2(RT) = ΓS

1(RT):

ΓS

2; Π; RT ` STMTs ; STMTb throws: ccn: ⇐⇒ ΓS

2 ` Γ

102

Proof This theorem is analogous to Theorem 4.2.4, and the thesis can be proved with the
same reasoning, using Lemma 4.2.7 and Theorem 4.2.4 for the expressions contained in the
statement.

2

Building up the results shown so far, the following theorem shows that the type assumptions
used in compiling a fragment S totally characterize its compilation into a particular binary
B. This result is the key to obtain the sound and minimal compilation strategy we strive
for.

Theorem 4.2.9 If Γold and Γnew are two type environments such that the fragment S,
named RT, compiles into B in Γold, that is, the judgment Γold ` S ; B can be derived.
Then,

Γnew ` S; B ⇐⇒

` Γnew�
Γnew(RT) = Γold(RT)
Γnew ` Reqs(RT,Γold)

Proof

The thesis follows by Theorem 4.2.4 and Theorem 4.2.8, using the same reasoning used to
prove them.

2

By Theorem 4.2.9, recompiling an unchanged source S if and only if the new environment
does not entail the requirements of S is both sound and minimal.

4.2.6 Incremental environment checking

Many judgments we have defined rely on a type environment ΓS to be well-formed; that is,
not containing cycles in the type hierarchy and respecting the rules on hiding/overriding.
We now formalize this idea.

A typing environment ΓS is well-formed, ` ΓS�, if ΓS ` okOvr RT can be derived for any of
its types, Figure 4.22.

The judgment
ΓS ` okOvr RT

has the meaning “RT correctly extends its parent types (up to Object) in ΓS”. That is, the
hierarchy of RT is acyclic and the Java rules on method overriding/hiding are respected.
The metarules defining such a judgment are shown in Figure 4.22.

103

ΓS ` RT : 〈AFSS= , ANHS= , NOVR= 〉
ΓS ` okOvr RT

∀RT ∈ Def (ΓS) ΓS ` okOvr RT

` ΓS�

Figure 4.22: Well-formed standard environments

The idea behind our compilation strategy is to determine which (unchanged) sources have
to be recompiled testing which assumptions, generated by a previous compilation, still hold
in the new environment Γnew (that is, the environment extracted by the updated fragments).
Because the results of such tests are meaningful only if Γnew is a well-formed environment,
we need to check the well-formedness of Γnew each time our compilation manager is run.

Checking the whole environment can be expensive; fortunately, if we know a previous
well-formed environment Γold, we can use it to avoid checking the “old” part of a new
environment Γnew. That is, we can check only the “updated” part of Γnew, with respect to
Γold, instead of checking the whole Γnew.

Note that Γold can be any well-formed environment, although the “old” in Γold expresses
the idea that an implemented compilation manager would probably save a type environ-
ment as soon as it is proved to be well-formed. In this way, the compilation manager can
check any new environment Γnew against Γold (instead of checking the whole Γnew) in the
subsequent runs. When a new environment Γnew is found to be well-formed, then it is saved
to be used later as “Γold”, and so on.

Because any well-formed Γold can be used, requiring the knowledge of a “previous” well-
formed type environment does not limit the applicability of our incremental checking: the
first time our approach is used the empty environment, which is trivially well-formed, can
be used as Γold.

We now formalize these ideas.

Def. 4.2.10 A type environment Γnew is well-formed w.r.t. another type environment Γold

iff the following conditions hold:

[add] RT ∈ leavesΓnew
(Def (Γnew) \ Def (Γold)) =⇒ Γnew ` okOvr RT

[rmv] ∀RT ∈ Def (Γold) \ Def (Γnew),

∀RT′ ∈ Def (Γold) Γold ` RT′ ≤ RT =⇒
{

RT′ 6∈ Def (Γnew) or
directSuper(Γnew(RT

′)) ∈ Def (Γnew)

104

[cng] RT ∈ Def (Γold) ∩ Def (Γnew), Γold(RT) 6= Γnew(RT) =⇒
∀RT′ ∈ leavesΓnew

(RT) Γnew ` okOvr RT′

where:

leavesΓS(RT) = {RT′|ΓS ` RT′ ≤ RT ∧ ∀RT′′ ΓS ` RT′′ ≤ RT′ =⇒ RT′′ = RT′}
leavesΓS({RT1, . . . , RTn}) = leavesΓS(RT1) ∪ . . . ∪ leavesΓS(RTn)

directSuper([TYPE=class, AM= , CK= , PARENT=C′, IS=I1 . . . In, KSS= , FSS= , NHS=]) = {C′, I1, . . . , In}
directSuper([TYPE=interface, AM= , IS=I1 . . . In, FSS= , NHS=]) = {I1, . . . , In}

Lemma 4.2.11 If RT is a supertype of RT′ in ΓS, then ΓS ` okOvr RT′ implies ΓS `
okOvr RT.

Proof

Trivial. 2

Theorem 4.2.12 If ` Γold� holds, then Γnew is well-formed w.r.t. Γold ⇔ ` Γnew�.

Proof

⇒)

We must show that the judgment Γnew ` okOvr RT is derivable for any RT ∈ Def (Γnew).
This can be proved by case analysis. Consider Def (Γnew) as the union of three disjoint sets:
U , C and N . These sets contain, respectively, the unchanged, changed and new types in
Γnew with respect to Γold. Formally:

U = {RT|RT ∈ Def (Γnew) ∩ Def (Γold),Γnew(RT) = Γold(RT)}
C = {RT|RT ∈ Def (Γnew) ∩ Def (Γold),Γnew(RT) 6= Γold(RT)}
N = Def (Γnew) \ Def (Γold)

Let us consider N ∪ C first. For any new type RT, contained in N , the judgment Γnew `
okOvr RT is derivable by the hypothesis, see [add] of Definition 4.2.10, and Lemma 4.2.11.
For any changed type RT, contained in C, the judgment Γnew ` okOvr RT is derivable
because of [cng] of Definition 4.2.10 and Lemma 4.2.11.

It remains to prove that the judgment is derivable for the unchanged types, contained in
U . Since they are unchanged the direct supertypes of any type in U are the same in Γold

and Γnew. Furthermore, each direct supertype of RT ∈ U must be contained in Def (Γold)
and in Def (Γnew). Indeed, if a direct supertype of RT, say RT′, were in Γold but not in Γnew,
then by the hypothesis [rmv] :

105

• RT has been removed too, but this is impossible because RT ∈ U , or

• directSuper(Γnew(RT)) ∈ Def (Γnew).

Hence, these direct supertypes must be contained in Def (Γold) ∩ Def (Γnew) which, by
definition, is equal to: U ∪ C. If a direct supertype is in U , then the same reasoning can
be applied; so, for any RT ∈ U , only two cases are possible:

• all supertypes of RT are in U ; then, the hierarchy of RT has not changed and by the
hypothesis ` Γold� the judgment Γnew ` okOvr RT is derivable too;

• there exists a supertype RT′ of RT which is in C, whose subtypes till RT are in U .
Then, by [cng] there exists a type RT′′ such that RT′′ ≤ RT and Γnew ` okOvr RT′′

holds. So, Γnew ` okOvr RT is derivable too by Lemma 4.2.11.

⇐)

Requirements [add] and [cng] , of Definition 4.2.10, are trivially met because the judgment
Γnew ` okOvr RT is derivable for any RT ∈ Def (Γnew) by the hypothesis ` Γnew�.

Requirement [rmv] can be proved by contradiction. Suppose there exist RT ∈ Def (Γold) \
Def (Γnew), RT

′ ∈ Def (Γold) such that Γold ` RT′ ≤ RT and both:

• RT′ ∈ Def (Γnew)

• directSuper(Γnew(RT
′)) 6∈ Def (Γnew)

This is absurd because, by hypothesis, the judgment Γnew ` okOvr RT′ can be derived and
it could not be if directSuper(Γnew(RT

′)) would not be contained in Def (Γnew).

2

4.3 Implementation issues

As we have proved for a substantial subset of Java, our recompilation strategy is both sound
and minimal ; from a theoretical point of view this is the best we can achieve. Yet, from
a practical point of view, there is another point to ponder: the cost of checking whether
the requirements Γ of a fragment S are entailed by a type environment ΓS. If this checking
costed more than compiling the source S, then the whole idea would be useless.

A simple optimization is to use our recompilation strategy as a refinement of some other
less precise (but faster) strategy; for instance, as a refinement for a cascading recompilation

106

strategy à la make [Fel79]. In practice, though, what really matters is not to compile the
minimum number of sources, but to have a fast sound recompilation strategy.

Because in the global cost of a recompilation we must take into account both the time spent
in checking the entailment, for deciding which unchanged sources we have to recompile,
and the time spent in recompiling the selected sources, choosing the minimum number
of sources to be recompiled does not necessarily mean choosing the fastest recompilation
strategy. Therefore, it makes sense to simplify the type assumptions, making them less
“precise”, in order to speed up the entailment checking step. Basically, trading a speed up
in the average case with the possibility of performing some “useless” recompilations once
in a while.

For instance, instead of using the abstract exception expressions to model all the possible
cases in which different throws clauses do not affect reachability, we could check for equality
of throws clauses and decide to recompile a fragment S when the clause of the most specific
method for an invocation in S changes. Of course, this simplification needs to take into
account the type hierarchy of the exceptions (because the meaning of a throws clause
depends on that).

In the formal model we have not modeled imports, assuming all names to be fully-qualified.
Of course, an actual implementation must keep track of the members of each package too,
as a simple name may become ambiguous when a new type is introduced.

We now consider a series of issues which should help in simplifying, and so speeding up,
the entailment checking step:

• Members of standard classes/interfaces are likely to remain the same, so one could
ignore the type assumptions for method invocations/field accesses on standard classes
(to be on the safe side, a global recompilation may be needed when the SDK is
upgraded since new methods may affect overloading resolution and, less likely but
not impossible, new fields may hide old ones).

• As said before, instead of evaluating exception expressions we could keep track of
the throws clause of the most specific method for a method invocation and check for
equality (as long as the exception hierarchy does not change).

• Ctc-fields are tricky: if they are correctly used, that is, as long as constants do not
change, they are not a problem, and we do not need any type assumption for tracking
ctc-fields. Evaluating their initialization expressions every time we extract a new
environment seems, on the average, too expensive (after all, they are supposed not to
change). We could cache their values and recalculate them only when necessary, but
there are two simpler solutions which seem appropriate. We can either ignore them
(assuming to be in a perfect world) or keep track of which fragment uses, directly or
indirectly, a ctc-field and recompile every client each time a ctc-field changes.

107

The former solution is the easiest and fastest, but of course it is not sound. On the
other hand, the latter solution is sound but may trigger unnecessary recompilations.
A sensible tradeoff could be letting the user to decide (for instance via a compiler
option) whether propagate the recompilation in these cases. The compiler manager
may facilitate the user’s choice issuing a warning each time a change in the definition
of a ctc-field is detected.

A compiler manager for full Java, based on these ideas, is under development.

108

Chapter 5

Related work

5.1 Formalizations of Java

An important stream of research related to this thesis is devoted to the formal definition of
Java (see [AF99] for a survey). As already mentioned, the type judgment which we consider
at the source level is based on the many existing formal Java type systems, in particular
those in [DE99]. For what concerns an integrated formal model covering all Java aspects,
the most remarkable amount of work in this direction is that of Sophia Drossopoulou and
her group. The already cited [DE99] provides a formal type system at the source level for
a substantial subset Javas of Java and a translation of this language into a binary language
Javab, which is in turn a subset of a language Javar of run-time terms for which an opera-
tional semantics is given. This allows to prove type safety of the Java subset. In [DWE98]
the focus is on binary compatibility. In [Dro01] a model is defined for dynamic loading and
linking, distinguishing five components in a Java implementation: evaluation, resolution,
loading, verification, and preparation, with their associated checks. These five together are
proved to guarantee type soundness. This paper is the most important reference for the
execution model of our small binary language given in Chapter 2; however, in our case the
main aim is not to define a realistic model of the JVM, taking into account all features, but
to show how absence of linkage errors can be guaranteed by a compilation schema, so we
take a much more abstract view. Finally, [DVE00] enhances the previous formal descrip-
tion of Java in [DE99], introducing, among other improvements, an account of separate
compilation. Indeed, type information used in typechecking Javas can also be extracted
from the binary language Javar, analogously to what we do in this paper by means of the
T function. However, the judgment for typechecking source classes defined in [DVE00] do
not correspond to separate compilation as happens in our framework, simply because its
validity requires the type environment extracted from the compilation environment to be
well-formed.

109

5.2 Separate compilation

The seminal paper on separate typecheck of fragments is [Car97]. There, the basic idea
is to distinguish a phase of intra-checking, which models separate compilation, in which a
single fragment is type-checked w.r.t. a typing environment (which expresses the interface
of the fragment in terms of both imported and exported services), and a phase of inter-
checking which models (static) linking, in which it is checked that all the fragments we
want to link have been type-checked w.r.t. compatible type environments.

Formally1, intra-checking is modeled by a judgment Γ ` f : T (in [Car97] issues of code
generation are avoided by always working at the source level, even when discussing linking),
expressing that the fragment f has type T in the type environment Γ. Inter-checking takes
place on linksets which are, roughly, collections of named fragment xi 7→ Γi ` fi : T i∈1..n

i ,
and succeeds if and only if intra-checking succeeds (that is, each Γi ` fi : Ti holds) and,
moreover, for each j, k ∈ 1..n, xj has type Tj in Γk. This corresponds to require exact
agreement among the actual interface of a fragment and that assumed in another: in
realistic systems, this condition should be weakened, for instance requiring some subtyping
relation.

As we discussed, Java has many features which make this view not immediately applicable:
class files play the dual roles of interfaces (type environments) and object files; there is no
separate linking phase, since linking takes place at run-time; compilers usually incorporate
some inter-checks, but not enough to guarantee safe run-time linking.

In literature several interesting papers can be found on separate compilation for ML (see
among many others [SA93, Ler94, Blu99]). All these papers clearly show that separate
compilation in ML is not a simple issue, and for this reason, needs to be properly formalized.
However, ML separate compilation is based on traditional static linking, therefore many
problems arising in Java disappear in ML; for instance, the static type-checks proposed in
[SA93] are sensible for a static linker, but cannot be performed at run-time by a virtual
machine without seriously compromising efficiency. Furthermore, it seems that no unifying
frameworks have been defined for investigating ML separate compilation, and in fact, this
would be useful to compare all the technical results and to understand how they can
contribute all together to the design of a better compiler/linker for ML. For instance,
using the terminology used in our paper to model the overall compilation process, [SA93]
is mainly concerned with the definition of the type extraction function, while [Ler94] with
the typechecking of sources and [Blu99] with the definition of the dependency function.

1We use slightly different notations from [Car97].

110

5.3 Selective recompilation

The approach to selective compilation presented in Chapter 3 and Chapter 4, which extends
the ideas in [AL03, Lag03, Lag04a], is similar to attribute recompilation, according to the
classification given in [ATW94] - here attributes correspond to assumptions.

A very interesting framework for handling selective recompilation, in presence of these
kind of inter-module dependencies and with the ability of trading off space usage, speed
of processing and selectivity of invalidation is given in [CDG95]. In such a paper, the
authors discuss how they developed a highly selective dependency mechanism for the Cecil
object-oriented language [Cha93], and their method lookup filtering nodes play the same
role of our method invocation assumptions.

In the context of procedural languages, [CKT86] discusses strategies to determine which
procedures need to be recompiled after some changes, when inter-procedural optimizations
introduce dependencies between sources.

The only Java-specific paper we know of is, as said, Dmitriev’s [Dmi02], which describes
a make technology, based on smart dependency checking, that aims to keep a project
consistent while reducing the number of files to be recompiled.

111

Chapter 6

Conclusion and future work

The main contributions of this thesis can be summarized as follows.

• We have provided the first, at our knowledge, formalization of the Java typechecking
and code generation process in the general case in which compilation takes place in a
context of both source and binary fragments. This process was neither clearly speci-
fied in the Java official documentation, making the semantics of separate compilation
implementation dependent, nor taken into account in previous type systems. More
precisely, we have modeled the overall compilation process by the formal notion of
compilation schema, in which the aspects which concern truly separate typechecking
(source type judgment and binary type judgment) are isolated from the definition of
dependencies, which models propagation of typechecking, and the extraction of the
type information from fragments.

• By means of this model, we have been able to express, in a formal way, the fact that
Java separate compilation is not type safe, in the sense that there is no guarantee that
in running a successfully compiled class we get no linkage errors. This model has also
permitted to show how type safety can be achieved by modifying two components of
the SDK compilation schema. The ingredients are both stronger dependencies, which
propagate typechecking to all classes which could be possibly loaded at run-time, and
having a non trivial binary type judgment.

• We have defined an innovative type system where a single class declaration can be
compiled in total isolation (true separate compilation), providing a set of type as-
sumptions on missing classes. In Java separate compilation, instead, a class is typed
in a global type environment containing full type information on used classes, ex-
tracted from available source and binary fragments. The relevance of this result is
twofold. At theoretical level, it shows that the possibility to define type systems

112

for Java-like languages which fit in the modular approach to typechecking based on
intra-checking and inter-checking phases, as promoted by [Car97]. From the practical
point of view, the type system can be fruitfully used to implement a selective recom-
pilation strategy which is both sound and minimal, that is, a strategy equivalent to
global recompilation which never triggers useless recompilations (i.e., recompilations
which produce binaries equal to the existing ones). This strategy consists in gener-
ating, the first time a source S is successfully compiled into a binary B, the weakest
type assumptions which describe the requirements for S to be compiled into that
specific binary B. So, each time some sources are changed, we can decide whether an
unchanged source has to be recompiled checking whether its assumptions still hold.

• Finally, we have extended the type system in order to handle a substantial subset
of Java, obtaining a formal basis for a smart compilation manager for Java, which
is currently under development. As side result, we have also obtained the most
complete, at our knowledge, formal type system for Java covering many aspects
which were not considered until now. The reason is probably the rather low-level
nature of most of the previously uncovered features, which, however, become relevant
for selective recompilation. Indeed, another important side result of our work is
that we can formally express a criticism to the design of some Java features, e.g.,
compile-time constant fields and reachability of code; that is, that they badly interact
with modularity. In our framework this is clearly illustrated by the involved type
assumptions required to handle these two features.

There are two main directions for future work related with this thesis.

First, an interesting topic is the development of a formal framework for Microsoft’s .NET
analogous to that we have developed in Chapter 2 for Java separate compilation. Indeed,
although .NET shares many features with Java, our model cannot properly model the
novel concept of assembly, which allows to decouple the logical and physical notions of
reusable types [Ric02]. Hence, our framework should be extended to take this extra level
of indirection into account.

Second, a limitation of the type system for true separate compilation presented here is that,
since in Java the same source fragment can generate different binary fragments depending
on the context, it is not possible to infer the minimal set of assumptions needed for compil-
ing a class by just inspecting the source code. This problem has been solved in this thesis
by defining the minimal set of assumptions needed for generating a given binary code.
While this approach, as illustrated above, works well for selective recompilation, where the
minimal assumptions can be generated the first time a source is compiled, it prevents from
having a type inference algorithm for Java-like languages. Hence, the direct use of this
type system would put the burden of writing the type assumptions on programmers. This
activity would be both tedious and rather time-consuming for real projects.

113

An interesting alternative direction is the development of a more expressive type system
where we can infer infer the minimal set of assumptions needed for typechecking a class
by just inspecting the source code, abstracting from the different binaries which would be
generated in different contexts. This approach would require polymorphic types, hence it
requires the introduction of a more abstract notion of bytecode, where type annotations
are allowed to be polymorphic.

114

Bibliography

[AF99] J. Alves-Foss, editor. Formal Syntax and Semantics of Java. Number 1523 in
Lecture Notes in Computer Science. Springer, 1999.

[AL03] D. Ancona and G. Lagorio. Stronger Typings for Separate Compilation of Java-
like Languages. Technical report, DISI, March 2003.

[ALZ01] D. Ancona, G. Lagorio, and E. Zucca. A core calculus for Java exceptions. In ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages and
Applications (OOPSLA 2001), SIGPLAN Notices. ACM Press, October 2001.

[ALZ02] D. Ancona, G. Lagorio, and E. Zucca. A formal framework for Java separate com-
pilation. In B. Magnusson, editor, ECOOP 2002 - Object-Oriented Programming,
number 2374 in Lecture Notes in Computer Science, pages 609–635. Springer,
2002.

[ATW94] Rolf Adams, Walter Tichy, and Annette Weinert. The cost of selective recompi-
lation and environment processing. ACM Transactions on Software Engineering
and Methodology, 3(1):3–28, January 1994.

[AZ04] D. Ancona and E. Zucca. Principal typings for Java-like languages. In ACM Symp.
on Principles of Programming Languages 2004, pages 306–317. ACM Press, Jan-
uary 2004.

[Blu99] M. Blume. Dependency analysis for standard ML. ACM Transactions on Pro-
gramming Languages and Systems, 21(4):790–812, 1999.

[Car97] L. Cardelli. Program fragments, linking, and modularization. In ACM Symp. on
Principles of Programming Languages 1997, pages 266–277. ACM Press, 1997.

[CDG95] Craig Chambers, Jeffrey Dean, and David Grove. A framework for selective
recompilation in the presence of complex intermodule dependencies. In Proceed-
ings: 17th International Conference on Software Engineering, pages 221–230.
IEEE Computer Society Press / ACM Press, 1995.

115

[Cha93] Craig Chambers. The cecil language: Specification and rationale. Technical
report, University of Washington, March 1993.

[CKT86] Keith D. Cooper, Ken Kennedy, and Linda Torczon. Interprocedural optimiza-
tion: eliminating unnecessary recompilation. ACM SIGPLAN Notices, 21(7):58–
67, July 1986.

[DE99] S. Drossopoulou and S. Eisenbach. Describing the semantics of Java and proving
type soundness. In J. Alves-Foss, editor, Formal Syntax and Semantics of Java,
number 1523 in Lecture Notes in Computer Science, pages 41–82. Springer, 1999.

[Dmi02] M. Dmitriev. Language-specific make technology for the Java programming lan-
guage. ACM SIGPLAN Notices, 37(11):373–385, 2002.

[Dro01] S. Drossopoulou. Towards an abstract model of Java dynamic linking and verfi-
cation. In R. Harper, editor, TIC’00 - Third Workshop on Types in Compilation
(Selected Papers), volume 2071 of Lecture Notes in Computer Science, pages 53–
84. Springer, 2001.

[DVE00] S. Drossopoulou, T. Valkevych, and S. Eisenbach. Java type soundness revisited.
Technical report, Dept. of Computing - Imperial College of Science, Technology
and Medicine, September 2000.

[DWE98] S. Drossopoulou, D. Wragg, and S. Eisenbach. What is Java binary compatibil-
ity? In ACM Symp. on Object-Oriented Programming: Systems, Languages and
Applications 1998, volume 33(10) of SIGPLAN Notices, pages 341–358, October
1998.

[Fel79] Stuart I. Feldman. Make-a program for maintaining computer programs. Software
- Practice and Experience, 9(4):255–65, 1979.

[GJSB00] J. Gosling, B. Joy, G. Steele, and G. Bracha. The JavaTM Language Specification,
Second Edition. Addison-Wesley, 2000.

[IPW99] A. Igarashi, B. Pierce, and P. Wadler. Featherweight Java: A minimal core
calculus for Java and GJ. In ACM Symp. on Object-Oriented Programming:
Systems, Languages and Applications 1999, pages 132–146, November 1999.

[Lag03] G. Lagorio. Towards a smart compilation manager for Java. In Blundo and
Laneve, editors, Italian Conf. on Theoretical Computer Science 2003, number
2841 in Lecture Notes in Computer Science, pages 302–315. Springer, October
2003.

116

[Lag04a] G. Lagorio. Another step towards a smart compilation manager for Java. In
Hisham Haddad, Andrea Omicini, Roger L. Wainwright, and Lorie M. Liebrock,
editors, Proceedings of the 2004 ACM Symposium on Applied Computing (SAC),
Nicosia, Cyprus, March 14-17, 2004, pages 1275–1280. ACM, March 2004.

[Lag04b] G. Lagorio. Smart Recompilation for Java. Submitted for journal publication,
March 2004.

[Ler94] X. Leroy. Manifest types, modules and separate compilation. In ACM Symp. on
Principles of Programming Languages 1994, pages 109–122. ACM Press, 1994.

[LY99] T. Lindholm and F. Yellin. The Java Virtual Machine Specification. The Java
Series. Addison-Wesley, Second edition, 1999.

[Ric02] Jeffrey Richter. Applied Microsoft .NET Framework. Microsoft Press, 2002.

[SA93] Z. Shao and A.W. Appel. Smartest recompilation. In ACM Symp. on Principles
of Programming Languages 1993, pages 439–450. ACM Press, 1993.

[SUN01] SUN Microsystems. The Java HotSpot Virtual Machine, 2001. Technical White
Paper.

[Sym99] D. Syme. Proving Java type sound. In Jim Alves-Foss, editor, Formal Syntax and
Semantics of Java, number 1523 in Lecture Notes in Computer Science, pages
83–118. Springer, 1999.

[vON99] D. von Oheimb and T. Nipkow. Machine-checking the Java specification: Proving
type-safety. In Jim Alves-Foss, editor, Formal Syntax and Semantics of Java,
number 1523 in Lecture Notes in Computer Science, pages 119–156. Springer,
1999.

117

