
Formally validated specification
of a micro-payment protocol

P. Dargenton, D. Hirschkoff, P. Lescanne, E. Pommateau

1

Outline

1. sketch of a micro-payment protocol

2. its formalisation in Coq

3. proving state integrity

2

Origins of this work

• context: cooperation with industry

startup developping micro-payment technology

3

Origins of this work

• context: cooperation with industry

startup developping micro-payment technology

• micro-payment: scenario
client

↗↙

bank
←→ trusted agent ↑↓

↖↘
content seller

3

Light Signatures

• client-server protocol

• many frequent and small transactions

avoid heavy cryptography

• microtransactions: trade some security in favor of efficiency

4

A run of the protocol

• initialisation: client sends a (fresh) seed α

both parties compute (and store) H(α), H(H(α)), . . . , H2N(α)
H: one-way hash function

5

A run of the protocol

• initialisation: client sends a (fresh) seed α

both parties compute (and store) H(α), H(H(α)), . . . , H2N(α)
H: one-way hash function

• microtransactions
. client’s queries

(Clt1) Clt → Srv : 〈Clt,2 ∗ IClt,Sign(QIClt,2 ∗ IClt), QIClt〉
. server’s answers

(Srv1) Srv→Clt : 〈Srv,2 ∗ ISrv + 1,Sign(AISrv,2 ∗ ISrv + 1), AISrv〉

. signature function: Sign(C, k)
def
= H ′(C,N2N−1−k)

5

A run of the protocol

• initialisation: client sends a (fresh) seed α

both parties compute (and store) H(α), H(H(α)), . . . , H2N(α)
H: one-way hash function

• microtransactions
. client’s queries

(Clt1) Clt → Srv : 〈Clt,2 ∗ IClt,Sign(QIClt,2 ∗ IClt), QIClt〉
. server’s answers

(Srv1) Srv→Clt : 〈Srv,2 ∗ ISrv + 1,Sign(AISrv,2 ∗ ISrv + 1), AISrv〉

. signature function: Sign(C, k)
def
= H ′(C,N2N−1−k)

• finishing the session
no more nonces → actual money transaction

5

Introducing time-outs

• possibility of message losses, local failures, attacks

• the light signatures protocol specifies the behaviour of both

parties when an expected message does not arrive

. . . see paper

6

Mechanising the protocol:

traces and states

7

Paulson’s approach

• use a general-purpose theorem prover to

. specify the protocol

. formally check some of its properties

• protocol ↔ set of traces

• we use Coq instead of Isabelle

8

Generating traces

• traces are generated by and inductively defined relation

M ∈ T
add M ′ to T

9

Generating traces

• traces are generated by and inductively defined relation

M ∈ T
add M ′ to T

• such rules are used to describe

. the agents’ behaviour

. the emission of messages forged by the Spy

9

Reasoning about traces

• traces give us a global view of protocol runs

we can see everything is sent on the network

• use induction to prove theorems about the protocol

10

Reasoning about traces

• traces give us a global view of protocol runs

we can see everything is sent on the network

• use induction to prove theorems about the protocol

• in the present work, no proof about properties of the protocol

submitted to an attack (no Spy)

. build a specification

. proofs about the specification itself

10

Adding the agents’ state

• each agent maintains a state:

. current value of the index in the nonce sequence

. current value of time-out counter

• rules of the form
E & T

 E′ ; T ′

11

Rules: an example

Rule c1 : if c < N

〈〈c , TOC || 〉〉 & {{Srv, 2c+ 1, Sign(Ac,2c+ 1), Ac}}
 {{Clt, 2(c+ 1), Sign(Qc+1,2(c+ 1)), Qc+1}} ; 〈〈c+ 1 , 0 || 〉〉

E & T ↔ (micro e t)

c1 : (e:state)(t:trace)(micro e t) ->
(c:nat)
(in_set message t (msg Srv (S (mult (2) c))

(Sign (A c) (S (mult (2) c))) (A c)))
/\ (state_c e)=c
-> (micro (inc_c e) (add_set message

(msg Clt (S (mult (2) c))
(Sign (Q (S c)) (S (mult (2) c))) (Q (S c))) t))

| ..

12

Rules: an example

Rule c1 : if c < N

〈〈c , TOC || 〉〉 & {{Srv, 2c+ 1, Sign(Ac,2c+ 1), Ac}}
 {{Clt, 2(c+ 1), Sign(Qc+1,2(c+ 1)), Qc+1}} ; 〈〈c+ 1 , 0 || 〉〉

E & T ↔ (micro e t)

c1 : (e:state)(t:trace)(micro e t) ->
(c:nat)
(in_set message t (msg Srv (S (mult (2) c))

(Sign (A c) (S (mult (2) c))) (A c)))
/\ (state_c e)=c
-> (micro (inc_c e) (add_set message

(msg Clt (S (mult (2) c))
(Sign (Q (S c)) (S (mult (2) c))) (Q (S c))) t))

| ..

→ direct translation: gives confidence in the implementation

12

Local handling of state

• we did a simple extension to Paulson’s approach

• internal state of each agent is handled globally

. we are watching network traffic and all internal states . . .

. . . . but we have a simple presentation

• we may want to check state integrity

→ only a given agent can have an effet to its own state

variables

13

Examining traces

14

The status of proofs

• in Coq, an hypothesis saying (micro e t) is a term having

type (micro e t)

• difference w.r.t. Isabelle

. dependent types

. proofs are objects

i.e. traces contain their derivation

• we exploit this to establish state integrity

15

Dependently typed terms

lists

type list = nil : list | cons : int -> list -> list

[16;6;4] → cons(16,cons(6,cons(4,nil)))

16

Dependently typed terms

lists

type list = nil : list | cons : int -> list -> list

[16;6;4] → cons(16,cons(6,cons(4,nil)))

lists of length n

type list{nat} : nil : (list 0)

| cons : ∀ n. int -> (list n) -> (list (n+1))

[16;6;4] → cons(2,16,cons(1,6,cons(0,4,nil)))

16

Proving state integrity

• given H:(micro e’ t), we define (added message H), the last

message sent “in H”

• and we prove

Theorem wf_rules : (e,e’:state)(t:trace)
(H:(micro e’ t)) (next_state e H)

->
(* either the client is sending, and s is invariant ... *)

((state_s e)=(state_s e’) /\ (msg_sender (added_message H))=Clt) \/
(* ... or the server is sending, and c is invariant. *)

((state_c e)=(state_c e’) /\ (msg_sender (added_message H))=Srv).

• added message, next state are defined by inspection of the

structure of H

17

Computing on traces

• we could have done without dependent types to prove state
integrity
. show that (∀H), (H→H’) ⇒ . . .

18

Computing on traces

• we could have done without dependent types to prove state
integrity
. show that (∀H), (H→H’) ⇒ . . .

. ad hoc formalism to analyse the shape of protocol rules

18

Computing on traces

• we could have done without dependent types to prove state
integrity
. show that (∀H), (H→H’) ⇒ . . .

. ad hoc formalism to analyse the shape of protocol rules

• but the approach can be of interest
think of using trace analysis e.g.:

. to add hypotheses about the agents’ behaviour or
about protocol runs (e.g. fairness)

18

Computing on traces

• we could have done without dependent types to prove state
integrity
. show that (∀H), (H→H’) ⇒ . . .

. ad hoc formalism to analyse the shape of protocol rules

• but the approach can be of interest
think of using trace analysis e.g.:

. to add hypotheses about the agents’ behaviour or
about protocol runs (e.g. fairness)

. to make explicit causal relations between actions

18

Computing on traces

• we could have done without dependent types to prove state
integrity
. show that (∀H), (H→H’) ⇒ . . .

. ad hoc formalism to analyse the shape of protocol rules

• but the approach can be of interest
think of using trace analysis e.g.:

. to add hypotheses about the agents’ behaviour or
about protocol runs (e.g. fairness)

. to make explicit causal relations between actions

→ enrich the framework proposed by Paulson

18

Conclusions and future work

• a mechanised specification of a micro-payment protocol
(and a report on the application of formal methods to an industrial

product)

19

Conclusions and future work

• a mechanised specification of a micro-payment protocol
(and a report on the application of formal methods to an industrial

product)

• by adapting Paulson’s approach to the Coq theorem prover,
we have been able to do more

19

Conclusions and future work

• a mechanised specification of a micro-payment protocol
(and a report on the application of formal methods to an industrial

product)

• by adapting Paulson’s approach to the Coq theorem prover,
we have been able to do more in principle

dependent types allow us to reason on the shape of traces

19

Conclusions and future work

• a mechanised specification of a micro-payment protocol
(and a report on the application of formal methods to an industrial

product)

• by adapting Paulson’s approach to the Coq theorem prover,
we have been able to do more in principle

dependent types allow us to reason on the shape of traces

• future developments:
. study the protocol under attackks
. investigate applications of the methodology

19

