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Outline

1. sketch of a micro-payment protocol

2. its formalisation in Coq

3. proving state integrity
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Origins of this work

• context: cooperation with industry

startup developping micro-payment technology

• micro-payment: scenario
client

↗↙

bank
←→ trusted agent ↑↓

↖↘
content seller
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Light Signatures

• client-server protocol

• many frequent and small transactions

avoid heavy cryptography

• microtransactions: trade some security in favor of efficiency
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A run of the protocol

• initialisation: client sends a (fresh) seed α

both parties compute (and store) H(α), H(H(α)), . . . , H2N(α)
H: one-way hash function
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• microtransactions
. client’s queries

(Clt1) Clt → Srv : 〈Clt,2 ∗ IClt,Sign(QIClt,2 ∗ IClt), QIClt〉
. server’s answers
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both parties compute (and store) H(α), H(H(α)), . . . , H2N(α)
H: one-way hash function

• microtransactions
. client’s queries

(Clt1) Clt → Srv : 〈Clt,2 ∗ IClt,Sign(QIClt,2 ∗ IClt), QIClt〉
. server’s answers

(Srv1) Srv→Clt : 〈Srv,2 ∗ ISrv + 1,Sign(AISrv,2 ∗ ISrv + 1), AISrv〉

. signature function: Sign(C, k)
def
= H ′(C,N2N−1−k)

• finishing the session
no more nonces → actual money transaction
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Introducing time-outs

• possibility of message losses, local failures, attacks

• the light signatures protocol specifies the behaviour of both

parties when an expected message does not arrive

. . . see paper
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Mechanising the protocol:

traces and states
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Paulson’s approach

• use a general-purpose theorem prover to

. specify the protocol

. formally check some of its properties

• protocol ↔ set of traces

• we use Coq instead of Isabelle
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Generating traces

• traces are generated by and inductively defined relation

M ∈ T
add M ′ to T
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Generating traces

• traces are generated by and inductively defined relation

M ∈ T
add M ′ to T

• such rules are used to describe

. the agents’ behaviour

. the emission of messages forged by the Spy
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Reasoning about traces

• traces give us a global view of protocol runs

we can see everything is sent on the network

• use induction to prove theorems about the protocol
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Reasoning about traces

• traces give us a global view of protocol runs

we can see everything is sent on the network

• use induction to prove theorems about the protocol

• in the present work, no proof about properties of the protocol

submitted to an attack (no Spy)

. build a specification

. proofs about the specification itself
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Adding the agents’ state

• each agent maintains a state:

. current value of the index in the nonce sequence

. current value of time-out counter

• rules of the form
E & T

 E′ ; T ′
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Rules: an example

Rule c1 : if c < N

〈〈c , TOC || 〉〉 & {{Srv, 2c+ 1, Sign(Ac,2c+ 1), Ac}}
 {{Clt, 2(c+ 1), Sign(Qc+1,2(c+ 1)), Qc+1}} ; 〈〈c+ 1 , 0 || 〉〉

E & T ↔ (micro e t)

c1 : (e:state)(t:trace)(micro e t) ->
(c:nat)
(in_set message t (msg Srv (S (mult (2) c))

(Sign (A c) (S (mult (2) c))) (A c)))
/\ (state_c e)=c
-> (micro (inc_c e) (add_set message

(msg Clt (S (mult (2) c))
(Sign (Q (S c)) (S (mult (2) c))) (Q (S c))) t))

| ..
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〈〈c , TOC || 〉〉 & {{Srv, 2c+ 1, Sign(Ac,2c+ 1), Ac}}
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(in_set message t (msg Srv (S (mult (2) c))

(Sign (A c) (S (mult (2) c))) (A c)))
/\ (state_c e)=c
-> (micro (inc_c e) (add_set message

(msg Clt (S (mult (2) c))
(Sign (Q (S c)) (S (mult (2) c))) (Q (S c))) t))

| ..

→ direct translation: gives confidence in the implementation
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Local handling of state

• we did a simple extension to Paulson’s approach

• internal state of each agent is handled globally

. we are watching network traffic and all internal states . . .

. . . . but we have a simple presentation

• we may want to check state integrity

→ only a given agent can have an effet to its own state

variables
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Examining traces
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The status of proofs

• in Coq, an hypothesis saying (micro e t) is a term having

type (micro e t)

• difference w.r.t. Isabelle

. dependent types

. proofs are objects

i.e. traces contain their derivation

• we exploit this to establish state integrity
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Dependently typed terms

lists

type list = nil : list | cons : int -> list -> list

[16;6;4] → cons(16,cons(6,cons(4,nil)))
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Dependently typed terms

lists

type list = nil : list | cons : int -> list -> list

[16;6;4] → cons(16,cons(6,cons(4,nil)))

lists of length n

type list{nat} : nil : (list 0)

| cons : ∀ n. int -> (list n) -> (list (n+1))

[16;6;4] → cons(2,16,cons(1,6,cons(0,4,nil)))
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Proving state integrity

• given H:(micro e’ t), we define (added message H), the last

message sent “in H”

• and we prove

Theorem wf_rules : (e,e’:state)(t:trace)
(H:(micro e’ t)) (next_state e H)

->
(* either the client is sending, and s is invariant ... *)

( (state_s e)=(state_s e’) /\ (msg_sender (added_message H))=Clt ) \/
(* ... or the server is sending, and c is invariant. *)

( (state_c e)=(state_c e’) /\ (msg_sender (added_message H))=Srv ).

• added message, next state are defined by inspection of the

structure of H
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Computing on traces

• we could have done without dependent types to prove state
integrity
. show that (∀H), (H→H’) ⇒ . . .
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Computing on traces

• we could have done without dependent types to prove state
integrity
. show that (∀H), (H→H’) ⇒ . . .

. ad hoc formalism to analyse the shape of protocol rules

• but the approach can be of interest
think of using trace analysis e.g.:

. to add hypotheses about the agents’ behaviour or
about protocol runs (e.g. fairness)

. to make explicit causal relations between actions

→ enrich the framework proposed by Paulson
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Conclusions and future work

• a mechanised specification of a micro-payment protocol
(and a report on the application of formal methods to an industrial

product)
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Conclusions and future work

• a mechanised specification of a micro-payment protocol
(and a report on the application of formal methods to an industrial

product)

• by adapting Paulson’s approach to the Coq theorem prover,
we have been able to do more in principle

dependent types allow us to reason on the shape of traces

• future developments:
. study the protocol under attackks
. investigate applications of the methodology
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