
Parameterized Systems

• Models

Families of finite-state machines indexed on N=number of
processese
Checking safety properties=parameterized reachability

• Application

Consistency protocols designed for multiprocessors systems
with local caches

CC-UMA Multiprocessor Systems

CPU

Cache

Memory

CacheCache

CPU CPU

Bus

Cache Coherence Protocol

• Goal

To ensure the consistency of the data stored in caches and
main memory

• Specification

Behavior of a single cache on read/write commands from
Bus/CPU

• Assumptions

Caches have a finite number of possible states
They all behave identically

We consider single cache lines

Formal Model for Protocols

A protocol is a tuple P = 〈Q,Σ,Σ, τ〉 where

• Q = cache states

• Σ = CPU commands

• Σ = Bus commands

• τ = transition relation, totally defined over Σ

Global Machine with n processors

• Global state

〈s1, . . . , sn〉 ∈ Qn

• Transition relation

τM(〈s1, . . . , sn〉, σ) = 〈s ′1, . . . , s
′
n〉

if and only if

τ(si , σ) = s ′i and for all j 6= i τ(sj , σ) = s ′j

Global Conditions

To specify coherence policies we need actions ‘guarded’ by
predicates

P ::= P ∧ P | P ∨ P | #q = c | #q ≥ c | true

#q = number of caches in state q ∈ Q in the current global state

University of Illinois Protocol: Read Cycle

invalid

dirty sharedR

R

¬P → R

P → R

valid
exclus.

R
R

R
R

R = read cache
P ≡ #dirty = 0 ∧ #shared = 0 ∧ #valid = 0

University of Illinois Protocol: Write Cycle

invalid

dirty shared

W
W

valid
exclus.

W

W

W
W

W

W

W = write in cache

Sample Run for n=3

mem=fresh

〈inv , inv , inv〉
↓ cpu1 : R

mem=fresh

〈valid excl , inv , inv〉

↓ cpu2 : R , bus : R
mem=fresh

〈shared , shared , inv〉

↓ cpu2 : W , bus : W
mem=obsolete

〈inv , dirty , inv〉
↓ cpu2 : Rep

mem=fresh

〈inv , inv , inv〉

Safety Properties

• Data consistency

In every reachable global state there is at most one dirty

cache;
furthermore, dirty and shared caches cannot coexist

• Parameterized reachability problem

A safety property is violated whenever there exists N such that
an unsafe state is reachable in the global machine with N

processors

Counting Abstraction

G = 〈s1, . . . , sn〉 −→ G# = 〈Occq1(G), . . . ,OccqK (G)〉

Occq(G)=number of occurrences of q ∈ Q in G

〈shared , shared , invalid〉 −→ 〈1, 2, 0, 0〉

Abstract Protocol = Extended Finite-state Machine
(EFSM)

Transition −→ Guarded command over integer counters

τ(invalid ,R) = valid if #valid = 0
becomes

xinvalid ≥ 1, xvalid = 0, x ′invalid = xinvalid − 1, x ′valid = xvalid + 1

Sample Abstract Run for n=3

mem=fresh

〈inv , inv , inv〉 〈3, 0, 0, 0〉
↓ cpu1 : R ↓

mem=fresh

〈valid excl , inv , inv〉 〈2, 1, 0, 0〉

↓ cpu2 : R , bus : R ↓
mem=fresh

〈shared , shared , inv〉 〈1, 0, 2, 0〉

↓ cpu2 : W , bus : W ↓
mem=obsolete

〈inv , dirty , inv〉 〈2, 0, 0, 1〉
↓ cpu2 : Rep ↓

mem=fresh

〈inv , inv , inv〉 〈3, 0, 0, 0〉

Verification = EFSM Reachability

• Initial states

ΦI = xinvalid ≥ 0, xdirty = 0, xshared = 0, xvalid = 0

• Unsafe states ΦU = xdirty ≥ 2 ∨ xdirty ≥ 1, xshared ≥ 1

• Reachability = Full Test The protocol is safe iff ΦU is not
EFSM-reachable from ΦI

Symbolic Model Checking

• Symbolic Representation = Integer Constraints

[[xinvalid ≥ 2]] = {〈2, 0, . . .〉, 〈3, 1, . . .〉, . . .}
= {〈invalid , invalid〉,

〈invalid , shared , invalid〉, . . .}

• Entailment Test

ϕ ⊑ ψ if and only if [[ψ]] ⊆ [[ϕ]]

• Symbolic Predecessor Operator

sym pre(ϕ(x′)) =
∨

i∈I ∃ x′. ψτ (x, x′) ∧ ϕ(x′)

Decidable Issues

For generic guards

Parameterized verification is undecidable: counter machines
(i.e. with zero test) are a subclass of EFSM

Backward reachability may not terminate, each step is
effective: verification procedure (it may find bugs)

Decidable Subclass: L-constraints

Let x1, . . . , xn be variables over natural numbers Let us

restrict our attention to L-constraints, i.e., conjunctions of
atomic formulas of the following form

xi1 + . . . + xin ≥ c

where xl 6= xm or l 6= m

A Decidable Subclass

• Guards are restricted to L-constraints (i.e. no test for
zero/constants)

• Set of states are symbolically expressed via sets of
L-constraints

Properties

• L-constraints represent upward closed set of tuples of natural
numbers ordered via pointwise ordering

• L-constraints are closed under application of sym pre

• L-constraints are always satisfiable

• checking containment of sets of L-constraints is co-NP
complete

• entailment (i.e., given two L-constraints φ and ψ, does φ
entail ψ?) is co-Np-complete

S-constraints

Conjunctions of atomic formulas of the form xi ≥ c

• they are not closed under application of sym pre

• containment of sets of S-constraints is polynomial

• entailment is polynomial

• L-constraints can be reduced to sets of L-constraints
xi1 + . . . + xim ≥ c can be decomposed as follows:

∨

c1+...+cm=c

xi1 ≥ c1 ∧ xi2 ≥ c2 ∧ . . . ∧ xim ≥ cm

Possible algorithms for model checking

• Keep constraints in S-normal form
Entailment and containment: polynomial in size of sets and
constraints
Size of intermediate results: each step exponential explosion

• Keep constraints in L-form
Entailment: polynomial in size of constraints
Size of Intermediate results: each step polynomial (in the
constants)
Replace ‘full containment test’ (in co-NP) with ‘local
containment (in P)’

Termination

• For EFSMs in which guards are L-constraints, symbolic
backward reachability with pointwise entailment terminates

• Indeed, the entailment relation over L- and S-constraints is a
wqo

• This follows from Dickson’s lemma and by composition
properties of wqo’s

