Parameterized Systems

e Models
Families of finite-state machines indexed on N=number of

processese
Checking safety properties=parameterized reachability

e Application
Consistency protocols designed for multiprocessors systems
with local caches
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Cache Coherence Protocol

e Goal
To ensure the consistency of the data stored in caches and
main memory

e Specification
Behavior of a single cache on read/write commands from
Bus/CPU

e Assumptions
Caches have a finite number of possible states
They all behave identically
We consider single cache lines



Formal Model for Protocols

A protocol is a tuple P = (@, %, %, 7) where
e @ = cache states
e ¥ = CPU commands
e Y = Bus commands
e T = transition relation, totally defined over ¥



Global Machine with n processors

¢ Global state
(S1,...,80) € Q"

e Transition relation

Tm((S15- -, 5n),0) = (S, ..., 5p)
if and only if
7(si,0) =s; and for all j#i 7(s;,7) =s;



Global Conditions

To specify coherence policies we need actions ‘guarded’ by
predicates

P = PAP|PVP|#q=c|#qg>c| true

#q = number of caches in state g € Q in the current global state



University of lllinois Protocol: Read Cycle
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R = read cache
P = #dirty = 0 A #shared = 0 A #valid =0



University of lllinois Protocol: Write Cycle
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Sample Run for n=3

mem=fresh
(inv,inv,inv)
1
mem=fresh
(valid_excl, inv, inv)
1
mem=fresh
(shared, shared, inv)

1

mem=obsolete
(inv, dirty, inv)
1
mem=fresh
(inv,inv,inv)

cpuy :

cpuy :

cpup

cpuy :

R

R, bus: R
W, bus: W
Rep



Safety Properties

e Data consistency
In every reachable global state there is at most one dirty
cache;
furthermore, dirty and shared caches cannot coexist

e Parameterized reachability problem
A safety property is violated whenever there exists N such that
an unsafe state is reachable in the global machine with N
processors



Counting Abstraction

G={(s,...,5) — G# =(0ccq(G),...,Occq(G))
Occq(G)=number of occurrences of g € Q in G

(shared, shared, invalid) — (1,2,0,0)



Abstract Protocol = Extended Finite-state Machine
(EFSM)

Transition — Guarded command over integer counters

T(invalid, R) = valid if #valid = 0
becomes

/ / _
Xinvalid = 1y Xvalid = 0, X aiig = Xinvalid — 15 Xyajig = Xvalid + 1



Sample Abstract Run for n=3

mem=fresh
(inv, inv, inv) (3,0,0,0)
J cpur - R 1
mem=fresh
(valid_excl, inv, inv) B (2,1,0,0)
1 cpuy - R, bus: R 1
mem=fresh
(shared, shared, inv) o (1,0,2,0)
J cpuy - W, bus: W N
mem=obsolete
(inv, dirty, inv) (2,0,0,1)
4 cpuz : Rep \
mem=fresh

(inv,inv, inv) (3,0,0,0)



Verification = EFSM Reachability

¢ Initial states
S = Xinvalid > 0, Xdirty = 0, Xshared = 0, Xvalig = 0
e Unsafe states Oy = Xxgiy > 2 V' Xdiry > 1, Xshared = 1

¢ Reachability = Full Test The protocol is safe iff &y is not
EFSM-reachable from @,



Symbolic Model Checking

e Symbolic Representation = Integer Constraints

|[Xinvalid 2 2]] = {<2, 07 . .), <3, ].7 .. .>, .. }
= {(invalid, invalid),
(invalid, shared, invalid), . . .}
e Entailment Test
@C v if and only if [¢] € [#]
e Symbolic Predecessor Operator

sym_pre(p(x) = Vo) 3% vr(xx) A ()



Decidable Issues

For generic guards

Parameterized verification is undecidable: counter machines
(i.e. with zero test) are a subclass of EFSM

Backward reachability may not terminate, each step is
effective: verification procedure (it may find bugs)



Decidable Subclass: L-constraints

Let x1,...,x, be variables over natural numbers Let us

restrict our attention to L-constraints, i.e., conjunctions of
atomic formulas of the following form

X,'l—i-...—i-X,'nZC

where x; # xp, of | £ m



A Decidable Subclass

e Guards are restricted to L-constraints (i.e. no test for
zero/constants)

e Set of states are symbolically expressed via sets of
L-constraints



Properties

L-constraints represent upward closed set of tuples of natural
numbers ordered via pointwise ordering

L-constraints are closed under application of sym_pre
L-constraints are always satisfiable

checking containment of sets of L-constraints is co-NP
complete

entailment (i.e., given two L-constraints ¢ and v, does ¢
entail ¥?) is co-Np-complete



S-constraints

Conjunctions of atomic formulas of the form x; > ¢
e they are not closed under application of sym_pre
e containment of sets of S-constraints is polynomial
e entailment is polynomial

e }-constraints can be reduced to sets of L-constraints
Xj, + ...+ Xj, > ¢ can be decomposed as follows:

\/ Xi12C1/\Xi22C2/\.../\X,-mZCm

c1+...+cm=c



Possible algorithms for model checking

e Keep constraints in S-normal form
Entailment and containment: polynomial in size of sets and
constraints
Size of intermediate results: each step exponential explosion

o Keep constraints in L-form
Entailment: polynomial in size of constraints
Size of Intermediate results: each step polynomial (in the
constants)
Replace ‘full containment test’ (in co-NP) with ‘local
containment (in P)’



Termination

e For EFSMs in which guards are L-constraints, symbolic
backward reachability with pointwise entailment terminates

e Indeed, the entailment relation over L- and S-constraints is a
wqo

e This follows from Dickson's lemma and by composition
properties of wqo's



