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Parameterized Burns’ Mutual Exclusion Protocol

f := false ∀L.¬f f := true ∀L.¬f

∀R .¬f

f := false

∃L.f

∃L.f



Burns Algorithm
Instance
Q: q1, . . . , q7
X : f ∈ B
T :

t1 :

 q1
tt→ f = ff

q2

 t2 :

 q2
∃Lf → {}

q1

 t3 :

 q2
∀L¬f → {}

q3


t4 :

 q3
tt→ f = tt

q4

 t5 :

 q4
∃Lf → {}

q1

 t6 :

 q4
∀L¬f → {}

q5


t7 :

 q5
∀R¬f → {}

q6

 t8 :

 q6
tt→ f = ff

q7

 t9 :

 q7
tt→ {}

q1


Initial Process State uinit : q1, f 7→ ff
Final Constraints ΦF : q6q6
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Pre - Existential Global Transitions

∃R Pre

Pre



Pre - Universal Global Transitions

∀R

Pre

Pre ∅
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Summary

• Monotonicity allows working with upward
closed sets

• Symbolic representation = words:
• More powerful than finite-state

abstraction
• More powerful than counter abstraction
• Less heavy than general regular

expressions (transducer-based methods,
e.g., regular model checking)

• Simple abstraction gives monotonicity

• Works on difficult examples !!
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Lamport’s Distributed Mut-Ex

QP : qidle , qwait , quse
QC : qempty , qreq1 , qack1 , qok1 , qreq2 , qack2 , qok2
XP : {id, num, aux ∈ N}
XC : {s id, r id, v ∈ N}

Part I: Distributed Computation of Number

t1 :

 qidle → qchoose B


aux′ = num ∧
∀ other 6= self· other·state = empty ∧ other·s id = self·id
⊃
other·state′ = req1 ∧ other·v′ = self·num






t2 :

 qchoose → qchoose B


∃ other 6= self·

other·state = ack1 ∧ other·s id = self·id
∧ other·v > self·aux

⊃
other·state′ = ok1 ∧ self·aux′ = other·v






t3 :

 qchoose → qchoose B


∃ other 6= self·

other·state = ack1 ∧ other·s id = self·id
∧ other·v ≤ self·aux

⊃
other·state′ = ok1






t4 :

 qchoose → qwait B


num′ > aux
∧
∀ other 6= self·
other·s id = self·id ⊃ other·state = ok1






Lamport’s Distributed Mut-Ex, Part II: Reply

t5 :

 qs → qs B


∃ other 6= self·

other·state = req1 ∧ other·r id = self·id
⊃
other·state′ = ack1 ∧ other·v′ = self·num




for any s ∈ {idle, choose,wait, use}

t6 :

 qs → qs B


∃ other 6= self·

other·state = req2 ∧ other·r id = self·id
⊃
other·state′ = ack2 ∧ other·v′ = self·num




for any s ∈ {idle,wait, use}



Lamport’s Distributed Mut-Ex, Part III: Entry and Exit

t7 :

 qwait → qwait B


∀ other 6= self·

other·state = ok1 ∧ other·s id = self·id
⊃
other·state′ = req2




t8 :


qwait → qwait B



∃ other 6= self·
other·state = ack2 ∧
other·s id = self·id ∧ other·v > 0 ∧(

self·num > other·v ∨(
other·v = self·num ∧ self·id > r id

) )


⊃
other·state′ = req2





t9 :


qwait → qwait B



∃ other 6= self·
other·state = ack2 ∧
other·s id = self·id ∧ other·v = 0 ∨

self·num < other·v ∨
(other·v = self·num ∧ self·id < r id)




⊃
other·state′ = ok2




t10 :

[
qwait → quse B

(
∀ other 6= self·
s id = self·id ⊃ other·state = ok2

) ]

t11 :

 quse → qidle B


num′ = 0
∧
∀ other 6= self·

other·state = ok2 ∧ other·s id = self·id
⊃
other·state′ = empty







Ordering on Configurations

c1

v

c2



Approximation

• We apply monotonic abstraction when testing that all
acknowledgments have been received (universal quantification)

• We delete all nodes and corresponding edges that have not
acknowledged the request (i.e. they do not satisfy the
condition we are checking)



Predecessor Computation

Pre Pre



Termination

• Finite representation of upward closed sets of configurations
(graphs)

• We use subgraph relation as entailment that is not a wqo for
generic graphs

• Termination of the backward analysis is not guaranteed in
general



Tree Topologies
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Monotonic Abstraction (Over-approximation)
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Monotonic Abstraction with Deletion
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Backward Reachability on Trees

Pre Pre



Termination

• Finite representation of upward closed sets of trees (with
labels over a finite alphabet)

• Tree embedding as entailment: it is a wqo

• Termination of the backward analysis is guaranteed


