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Remarks

e Infinite-state system:

e unbounded number of processes.
e Parameterized Verification: verify correctness regardless of the
number of processes.

e Problem undecidable in general.
e Challenge: find abstractions which work often.



Parameterized Burns' Mutual Exclusion Protocol
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Burns Algorithm

Instance

Q: a1, , qr

X: feB

T:
[ 01 1 i g2 1

[ tt—>f=ff tr : 3[_f->{} t3 :
L a2 ] L qi ]
[ as 1 i g4 1

th:| tt—=Ff=tt ts: | Af—{} te
L g4 i L qi ]
[ as i (3

t7 : VR_H"—){} tg : tt — f=ff tg :
L de L q7

Initial Process State uj,;:: g1, — ff
Final Constraints ®r: gegs

q2
VLﬁf — {}

as3

qa
VL—J" — {}

as
qr ]
tt — {}

q1




Configurations

2 | 5ad 14y [ 6 || fa
0‘35% e o“:za 0‘320 o‘:zo
configuration — QO P DDD

(*




Configurations

(*




Existential Global Transitions
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Ordering on Configurations
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Upward-Closed Sets (UC)
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Upward-Closed Sets (UC)
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Why UC?

e Bad sets of states are UC

e safety properties = reachability of UC
e Uniquely characterized by generator

e simple representation = finite word
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Backward Reachability Analysis (on UC)

symbolic representation = finite words.

000

......... >< ”

Required:
UC closed under Pre !l

Pre



Monotonicity
aqQ——O
I
3



Monotonicity
aqQ——O

M1 M



Monotonicity
aqQ——O

M1 M

Monotonicity implies UC is closed under
Pre

Pre(U):Upward Closed? U:Upward Closed



Monotonicity
aqQ——O

M1 M

Monotonicity implies UC is closed under
Pre

€1

Pre(U):Upward Closed? U:Upward Closed



Monotonicity
aqQ——O

M1 M

Monotonicity implies UC is closed under
Pre

3
LI
€1

Pre(U):Upward Closed? U:Upward Closed



Monotonicity

aqQ——O
I ]
3——C4
Monotonicity implies UC is closed under
Pre
3
Ll
€1 €2

Pre(U):Upward Closed? U:Upward Closed



Monotonicity
aqQ——O

M1 M

Monotonicity implies UC is closed under
Pre

3/ \-ca
N / \|_||
c] )

Pre(U):Upward Closed? Yes U:Upward Closed




Which transitions are monotonic?

Broadcast Transitions
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Which transitions are monotonic?

Universal Global Transitions

o
\V/RO
* )
000 » 909
I

000000



Which transitions are monotonic?

Universal Global Transitions

No

o
\V/RO
* )
000 » 909
I

000000 >



Monotonic Abstraction (Over-Approximation)
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Backward Reachability Analysis on Abstract System
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Backward Reachability Analysis on Abstract System

symbolic representation = finite words
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Termination

e Subword relation is a well quasi-ordering.

e Reachability algorithm guaranteed to terminate.



Summary

Monotonicity allows working with upward
closed sets
Symbolic representation = words:

e More powerful than finite-state
abstraction

e More powerful than counter abstraction

e Less heavy than general regular
expressions (transducer-based methods,
e.g., regular model checking)

Simple abstraction gives monotonicity

Works on difficult examples !!



Parameterized Systems with variables
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Parameterized Systems with variables
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Ordering on Configurations (gap-order)
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Gap-Order Constraints
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Backward Reachability Analysis
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Backward Reachability Analysis
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Non-Atomic Global Conditions

e Replace global condition with protocol:

e Send request
o Acks sent successively
e Perform transition when all acks received
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Non-Atomic Global Conditions

e Replace global condition with protocol:

e Send request
o Acks sent successively
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Lamport’s Distributed Mut-Ex

Qp:
Qc :
Xp :
: {s-id, r.id, v € N'}

Xc

Part I:

ty -

ty :

t3

ty :

Gidle s Qwait s use
dempty > Qreqy » Gackq » ok » Areqn s dacky » Goky
{id, num, aux € N'}

Distributed Computation of Number
aux” = num A
V other # self-
Gidle = Gchoose > other-state = empty A other-s.id = self-id
)
other-state’ = req; N\ other-v/ = self-num

3 other # self-
other-state = ack; A other-s.id = self-id
Gchoose — Gchoose B A other-v > self-aux
)
other - state’ = oky A self-aux’ = other-v

3 other # self-
other-state = ack; A other-s_id = self-id
Gehoose —* Gchoose > A other-v < self-aux
o]
other - state’ = ok;

num’ > aux

— it > A
Gchoose Gwait V other # self-

other-s_id = self-id D other-state = okj




Lamport’s Distributed Mut-Ex, Part Il: Reply

3 other # self-
other-state = req; A other-r_id = self-id
t5 : gs — qs D> S
other-state’ = ack; A other-v/ = self-num
for any s € {idle, choose, wait, use}
3 other # self-
other-state = reqp A other-r.id = self-id
t : gs — qs > o)
= self-num

other-state’ = acky A other-v’

for any s € {idle, wait, use}




Lamport’s Distributed Mut-Ex, Part Il1l: Entry and Exit
[ V other # self-
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other - state’ = reqo

r 3 other # self-
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other-s_id = self-id A other-v > 0A
tg : Quait — Quait > self-num > other-v V
( other-v = self-num A self-id > r.id )
D
L other - state’ = reqo

r 3 other # self-
other-state = acky A
other-s_id = self-id A
other-v =0V
self-num < other-v V
(other-v = self-num A self-id < r.id)

tg Qwait — Qwait >

)
L other-state’ = ok

o N > V other # self-:
10 - | Gwait — quse s.id = self-id O other-state = okp
num’ =0
A
V other # self-
t1: Guse = Jidle > 7

other-state = okp A other-s_id = self-id
)
other - state’ = empty




Ordering on Configurations
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Approximation

e We apply monotonic abstraction when testing that all
acknowledgments have been received (universal quantification)

e We delete all nodes and corresponding edges that have not
acknowledged the request (i.e. they do not satisfy the
condition we are checking)



Predecessor Computation
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Termination

e Finite representation of upward closed sets of configurations
(graphs)

e We use subgraph relation as entailment that is not a wqo for
generic graphs

e Termination of the backward analysis is not guaranteed in
general
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Monotonic Abstraction (Over-approximation)
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Monotonic Abstraction with Deletion
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Backward Reachability on Trees
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Termination

e Finite representation of upward closed sets of trees (with
labels over a finite alphabet)

e Tree embedding as entailment: it is a wqo
e Termination of the backward analysis is guaranteed



