
Linearly Ordered Parameterized Systems (of finite-state
processes)

¬xy := false

∃L

∀LR

Remarks

• Infinite-state system:
• unbounded number of processes.
• Parameterized Verification: verify correctness regardless of the

number of processes.

• Problem undecidable in general.
• Challenge: find abstractions which work often.



Linearly Ordered Parameterized Systems (of finite-state
processes)

¬xy := false

∃L

∀LR

Remarks

• Infinite-state system:
• unbounded number of processes.
• Parameterized Verification: verify correctness regardless of the

number of processes.

• Problem undecidable in general.
• Challenge: find abstractions which work often.



Linearly Ordered Parameterized Systems (of finite-state
processes)

¬xy := false

∃L

∀LR

Remarks

• Infinite-state system:
• unbounded number of processes.
• Parameterized Verification: verify correctness regardless of the

number of processes.

• Problem undecidable in general.
• Challenge: find abstractions which work often.



Parameterized Burns’ Mutual Exclusion Protocol

f := false ∀L.¬f f := true ∀L.¬f

∀R .¬f

f := false

∃L.f

∃L.f



Burns Algorithm
Instance
Q: q1, . . . , q7
X : f ∈ B
T :

t1 :

 q1
tt→ f = ff

q2

 t2 :

 q2
∃Lf → {}

q1

 t3 :

 q2
∀L¬f → {}

q3


t4 :

 q3
tt→ f = tt

q4

 t5 :

 q4
∃Lf → {}

q1

 t6 :

 q4
∀L¬f → {}

q5


t7 :

 q5
∀R¬f → {}

q6

 t8 :

 q6
tt→ f = ff

q7

 t9 :

 q7
tt→ {}

q1


Initial Process State uinit : q1, f 7→ ff
Final Constraints ΦF : q6q6



Configurations

active process

left context right context

configuration



Configurations

active process

left context right context

configuration



Existential Global Transitions

∃R

∃L



Existential Global Transitions

∃R

∃L



Existential Global Transitions

∃R

∃L



Existential Global Transitions

∃R

∃L



Universal Global Transitions

∀R

∀R



Universal Global Transitions

∀R

∀R



Universal Global Transitions

∀R

∀R



Universal Global Transitions

∀R

∀R



Broadcast Transitions

∗



Broadcast Transitions

∗



Broadcast Transitions

∗



Ordering on Configurations

c1

c2

c1

c2



Upward-Closed Sets (UC)

generator



Upward-Closed Sets (UC)

critical section

generator

Why UC?

• Bad sets of states are UC
• safety properties = reachability of UC

• Uniquely characterized by generator
• simple representation = finite word



Upward-Closed Sets (UC)

critical section

generator

Why UC?

• Bad sets of states are UC
• safety properties = reachability of UC

• Uniquely characterized by generator
• simple representation = finite word



Backward Reachability Analysis (on UC)

symbolic representation = finite words.

PrePre

Required:

UC closed under Pre !!



Backward Reachability Analysis (on UC)

symbolic representation = finite words.

Pre

Pre

Required:

UC closed under Pre !!



Backward Reachability Analysis (on UC)

symbolic representation = finite words.

PrePre

Required:

UC closed under Pre !!



Backward Reachability Analysis (on UC)

symbolic representation = finite words.

PrePre

Required:

UC closed under Pre !!



Backward Reachability Analysis (on UC)

symbolic representation = finite words.

PrePre

Required:

UC closed under Pre !!



Backward Reachability Analysis (on UC)

symbolic representation = finite words.

PrePre

Required:

UC closed under Pre !!



Backward Reachability Analysis (on UC)

symbolic representation = finite words.

PrePre

Required:

UC closed under Pre !!



Monotonicity

c1 c2

c3

c4

Monotonicity implies UC is closed under
Pre

c1

c3

c2

c4

U :Upward ClosedPre(U):Upward Closed? Yes



Monotonicity

c1 c2

c3 c4

Monotonicity implies UC is closed under
Pre

c1

c3

c2

c4

U :Upward ClosedPre(U):Upward Closed? Yes



Monotonicity

c1 c2

c3 c4

Monotonicity implies UC is closed under
Pre

c1

c3

c2

c4

U :Upward ClosedPre(U):Upward Closed?

Yes



Monotonicity

c1 c2

c3 c4

Monotonicity implies UC is closed under
Pre

c1

c3

c2

c4

U :Upward ClosedPre(U):Upward Closed?

Yes



Monotonicity

c1 c2

c3 c4

Monotonicity implies UC is closed under
Pre

c1

c3

c2

c4

U :Upward ClosedPre(U):Upward Closed?

Yes



Monotonicity

c1 c2

c3 c4

Monotonicity implies UC is closed under
Pre

c1

c3

c2

c4

U :Upward ClosedPre(U):Upward Closed?

Yes



Monotonicity

c1 c2

c3 c4

Monotonicity implies UC is closed under
Pre

c1

c3

c2

c4

U :Upward ClosedPre(U):Upward Closed? Yes



Which transitions are monotonic?
Broadcast Transitions

Yes

∗



Which transitions are monotonic?
Broadcast Transitions

Yes
∗



Which transitions are monotonic?
Existential Global Transitions

Yes

∃R



Which transitions are monotonic?
Existential Global Transitions

Yes

∃R



Which transitions are monotonic?
Universal Global Transitions

No

∀R



Which transitions are monotonic?
Universal Global Transitions

No

∀R



Monotonic Abstraction (Over-Approximation)

∀R

A

Monotonic? Yes

A

A



Monotonic Abstraction (Over-Approximation)

∀R

A

Monotonic? Yes

A

A



Monotonic Abstraction (Over-Approximation)

∀R
A

Monotonic? Yes

A

A



Monotonic Abstraction (Over-Approximation)

∀R
A

Monotonic?

Yes

A

A



Monotonic Abstraction (Over-Approximation)

∀R
A

Monotonic? Yes

A

A



Backward Reachability Analysis on Abstract System

PrePre



Pre - Local Transitions

Pre



Pre - Existential Global Transitions

∃R Pre

Pre



Pre - Universal Global Transitions

∀R

Pre

Pre ∅



Backward Reachability Analysis on Abstract System

symbolic representation = finite words

PrePre

Termination

• Subword relation is a well quasi-ordering.

• Reachability algorithm guaranteed to terminate.



Backward Reachability Analysis on Abstract System

symbolic representation = finite words

PrePre

Termination

• Subword relation is a well quasi-ordering.

• Reachability algorithm guaranteed to terminate.



Backward Reachability Analysis on Abstract System

symbolic representation = finite words

PrePre

Termination

• Subword relation is a well quasi-ordering.

• Reachability algorithm guaranteed to terminate.



Summary

• Monotonicity allows working with upward
closed sets

• Symbolic representation = words:
• More powerful than finite-state

abstraction
• More powerful than counter abstraction
• Less heavy than general regular

expressions (transducer-based methods,
e.g., regular model checking)

• Simple abstraction gives monotonicity

• Works on difficult examples !!



Parameterized Systems with variables

x + 3 < yx = y

∃other 6= self.
self.y < other.y

∀other 6= self.
self.ynext > other.x



Parameterized Systems with variables

x + 3 < yx = y

∃other 6= self.
self.y < other.y

∀other 6= self.
self.ynext > other.x



Configurations

x 2 7 5 0
y 3 2 6 1



Transitions

∃other 6= self.
self.y < other.y

x 2 7 5 0
y 3 2 6 1

x 2 7 5 0
y 3 2 6 1



Transitions

∀other 6= self.
self.ynext > other.x

x 2 7 5 0
y 3 2 6 1

x 2 7 5 0
y 3 9 6 1



Ordering on Configurations (gap-order)

• Identical control
states

• Preserves equality

• Gaps in c1 ≤ Gaps
in c2

x 2 6 3 c1
y 3 2 5

v

x 2 0 0 9 7 4 0 c2
y 3 4 1 0 2 7 1



Ordering on Configurations (gap-order)

• Identical control
states.

• Preserves equality

• Gaps in c1 ≤ Gaps
in c2

x 2 6 3 c1
y 3 2 5

v

x 2 0 0 9 7 4 0 c2
y 3 4 1 0 2 7 1



Ordering on Configurations (gap-order)

• Identical control
states.

• Preserves equality

• Gaps in c1 ≤ Gaps
in c2

x 2 6 3 c1
y 3 2 5

v

x 2 0 0 9 7 4 0 c2
y 3 4 1 0 2 7 1



Gap-Order Constraints

x1 x2 x3
y1 y2 y3

x1 + 5 < y2
x2 = x3

x 2 0

0

0 9

9

7 9

9

0
y 3 4 1 8

8

2 7 1

upward closed set of configurations



Gap-Order Constraints

x1 x2 x3
y1 y2 y3

x1 + 5 < y2
x2 = x3

x 2 0

0

0 9

9

7 9

9

0
y 3 4 1 8

8

2 7 1

upward closed set of configurations



Gap-Order Constraints

x1 x2 x3
y1 y2 y3

x1 + 5 < y2
x2 = x3

x 2

0

0 0 9

9

7 9

9

0
y 3 4 1

8

8 2 7 1

upward closed set of configurations



Gap-Order Constraints

x1 x2 x3
y1 y2 y3

x1 + 5 < y2
x2 = x3

x 2 0

0

0

9

9 7

9

9 0
y 3 4 1 8

8

2 7 1

upward closed set of configurations



Gap-Order Constraints

x1 x2 x3
y1 y2 y3

x1 + 5 < y2
x2 = x3

x 2 0

0

0 9

9

7 9

9

0
y 3 4 1 8

8

2 7 1

upward closed set of configurations



Backward Reachability Analysis

x1 x2 x3 x4 x5
y1 y2 y3 y4 y5

x1 x2
y1 y2

x1 x2 x3 x4 x5
y1 y2 y3 y4 y5

Pre
x1 x2 x3 x4 x5
y1 y2 y3 y4 y5

x1 x2
y1 y2

Pre

x1 x2 x3
y1 y2 y3



Backward Reachability Analysis

x1 x2 x3 x4 x5
y1 y2 y3 y4 y5

x1 x2
y1 y2

x1 x2 x3 x4 x5
y1 y2 y3 y4 y5

Pre

x1 x2 x3 x4 x5
y1 y2 y3 y4 y5

x1 x2
y1 y2

Pre x1 x2 x3
y1 y2 y3



Backward Reachability Analysis

x1 x2 x3 x4 x5
y1 y2 y3 y4 y5

x1 x2
y1 y2

x1 x2 x3 x4 x5
y1 y2 y3 y4 y5

Pre
x1 x2 x3 x4 x5
y1 y2 y3 y4 y5

x1 x2
y1 y2

Pre x1 x2 x3
y1 y2 y3



Backward Reachability Analysis

x1 x2 x3 x4 x5
y1 y2 y3 y4 y5

x1 x2
y1 y2

x1 x2 x3 x4 x5
y1 y2 y3 y4 y5

Pre
x1 x2 x3 x4 x5
y1 y2 y3 y4 y5

x1 x2
y1 y2

Pre x1 x2 x3
y1 y2 y3



Backward Reachability Analysis

x1 x2 x3 x4 x5
y1 y2 y3 y4 y5

x1 x2
y1 y2

x1 x2 x3 x4 x5
y1 y2 y3 y4 y5

Pre
x1 x2 x3 x4 x5
y1 y2 y3 y4 y5

x1 x2
y1 y2

Pre x1 x2 x3
y1 y2 y3



Non-Atomic Global Conditions

• Replace global condition with protocol:
• Send request
• Acks sent successively
• Perform transition when all acks received

∀R



Non-Atomic Global Conditions

• Replace global condition with protocol:
• Send request
• Acks sent successively
• Perform transition when all acks received

∀R



Non-Atomic Global Conditions

• Replace global condition with protocol:
• Send request
• Acks sent successively
• Perform transition when all acks received

∀R



Non-Atomic Global Conditions

• Replace global condition with protocol:
• Send request
• Acks sent successively
• Perform transition when all acks received

∀R



Non-Atomic Global Conditions

• Replace global condition with protocol:
• Send request
• Acks sent successively
• Perform transition when all acks received

∀R



Non-Atomic Global Conditions

• Replace global condition with protocol:
• Send request
• Acks sent successively
• Perform transition when all acks received

∀R



Non-Atomic Global Conditions

• Replace global condition with protocol:
• Send request
• Acks sent successively
• Perform transition when all acks received

∀R



Non-Atomic Global Conditions

• Replace global condition with protocol:
• Send request
• Acks sent successively
• Perform transition when all acks received

∀R



Lamport’s Distributed Mut-Ex

QP : qidle , qwait , quse
QC : qempty , qreq1 , qack1 , qok1 , qreq2 , qack2 , qok2
XP : {id, num, aux ∈ N}
XC : {s id, r id, v ∈ N}

Part I: Distributed Computation of Number

t1 :

 qidle → qchoose B


aux′ = num ∧
∀ other 6= self· other·state = empty ∧ other·s id = self·id
⊃
other·state′ = req1 ∧ other·v′ = self·num






t2 :

 qchoose → qchoose B


∃ other 6= self·

other·state = ack1 ∧ other·s id = self·id
∧ other·v > self·aux

⊃
other·state′ = ok1 ∧ self·aux′ = other·v






t3 :

 qchoose → qchoose B


∃ other 6= self·

other·state = ack1 ∧ other·s id = self·id
∧ other·v ≤ self·aux

⊃
other·state′ = ok1






t4 :

 qchoose → qwait B


num′ > aux
∧
∀ other 6= self·
other·s id = self·id ⊃ other·state = ok1






Lamport’s Distributed Mut-Ex, Part II: Reply

t5 :

 qs → qs B


∃ other 6= self·

other·state = req1 ∧ other·r id = self·id
⊃
other·state′ = ack1 ∧ other·v′ = self·num




for any s ∈ {idle, choose,wait, use}

t6 :

 qs → qs B


∃ other 6= self·

other·state = req2 ∧ other·r id = self·id
⊃
other·state′ = ack2 ∧ other·v′ = self·num




for any s ∈ {idle,wait, use}



Lamport’s Distributed Mut-Ex, Part III: Entry and Exit

t7 :

 qwait → qwait B


∀ other 6= self·

other·state = ok1 ∧ other·s id = self·id
⊃
other·state′ = req2




t8 :


qwait → qwait B



∃ other 6= self·
other·state = ack2 ∧
other·s id = self·id ∧ other·v > 0 ∧(

self·num > other·v ∨(
other·v = self·num ∧ self·id > r id

) )


⊃
other·state′ = req2





t9 :


qwait → qwait B



∃ other 6= self·
other·state = ack2 ∧
other·s id = self·id ∧ other·v = 0 ∨

self·num < other·v ∨
(other·v = self·num ∧ self·id < r id)




⊃
other·state′ = ok2




t10 :

[
qwait → quse B

(
∀ other 6= self·
s id = self·id ⊃ other·state = ok2

) ]

t11 :

 quse → qidle B


num′ = 0
∧
∀ other 6= self·

other·state = ok2 ∧ other·s id = self·id
⊃
other·state′ = empty







Ordering on Configurations

c1

v

c2



Approximation

• We apply monotonic abstraction when testing that all
acknowledgments have been received (universal quantification)

• We delete all nodes and corresponding edges that have not
acknowledged the request (i.e. they do not satisfy the
condition we are checking)



Predecessor Computation

Pre Pre



Termination

• Finite representation of upward closed sets of configurations
(graphs)

• We use subgraph relation as entailment that is not a wqo for
generic graphs

• Termination of the backward analysis is not guaranteed in
general



Tree Topologies



Transitions

• Tree Arbiter Protocols

• Leader Election
Protocols

• Distributed Protocols



Transitions

• Tree Arbiter Protocols

• Leader Election
Protocols

• Distributed Protocols



Transitions

• Tree Arbiter Protocols

• Leader Election
Protocols

• Distributed Protocols



Ordering on Configurations



Monotonic Abstraction (Over-approximation)



Monotonicity

v

v



Monotonicity

v v



Monotonic Abstraction with Deletion



Monotonicity

v

v



Monotonicity

v v



Backward Reachability on Trees

Pre Pre



Termination

• Finite representation of upward closed sets of trees (with
labels over a finite alphabet)

• Tree embedding as entailment: it is a wqo

• Termination of the backward analysis is guaranteed


