Linearly Ordered Parameterized Systems (of finite-state
processes)

AR

(- e

Linearly Ordered Parameterized Systems (of finite-state

processes)

Ed

P

N

>

Linearly Ordered Parameterized Systems (of finite-state

processes)
s o] [&

Lo
Pee

(v Q
Remarks

e Infinite-state system:

e unbounded number of processes.
e Parameterized Verification: verify correctness regardless of the
number of processes.

e Problem undecidable in general.
e Challenge: find abstractions which work often.

Parameterized Burns' Mutual Exclusion Protocol

f := false

o o
YR.~f
o
<0 <0 <0
I || N | S 53 on0n
N &

Burns Algorithm

Instance

Q: a1, , qr

X: feB

T:
[01 1 i g2 1

[tt—>f=ff tr : 3[_f->{} t3 :
L a2] L qi]
[as 1 i g4 1

th:| tt—=Ff=tt ts: | Af—{} te
L g4 i L qi]
[as i (3

t7 : VR_H"—){} tg : tt — f=ff tg :
L de L q7

Initial Process State uj,;:: g1, — ff
Final Constraints ®r: gegs

q2
VLﬁf — {}

as3

qa
VL—J" — {}

as
qr]
tt — {}

q1

Configurations

2 | 5ad 14y [6 || fa
0‘35% e o“:za 0‘320 o‘:zo
configuration — QO P DDD

(*

Configurations

(*

Existential Global Transitions

!
000000

Existential Global Transitions

oo
000000

Existential Global Transitions

Existential Global Transitions

|
000000

0090000

Universal Global Transitions

!
000000

Universal Global Transitions

Universal Global Transitions

Vil
QTOOOO
000000

Universal Global Transitions

Vil
QTOOOO
000000

!
000000

000000

Broadcast Transitions

!
000000

Broadcast Transitions

SO Y
000000

Broadcast Transitions

Ordering on Configurations

a1
|

I oo
|
|

/ \
/ | \
Q9999900 —

Upward-Closed Sets (UC)

000000
090000
09000 0000
9000
0009
009

generator

Upward-Closed Sets (UC)

9900000

909000
000 0000
0000

@ < critical section

generator

Upward-Closed Sets (UC)

9900000

909000
000 0000
0000

@ < critical section

generator

Why UC?

e Bad sets of states are UC

e safety properties = reachability of UC
e Uniquely characterized by generator

e simple representation = finite word

Backward Reachability Analysis (on UC)

Backward Reachability Analysis (on UC)

990

Pre \,9/
oo/

Backward Reachability Analysis (on UC)

@90

990

e00g/ Pre Pre \,3/

Backward Reachability Analysis (on UC)

@90

990

......... 00 Pre Pre \.,/
......... W \QJ

Backward Reachability Analysis (on UC)

990

Backward Reachability Analysis (on UC)

990

Backward Reachability Analysis (on UC)

symbolic representation = finite words.

000

......... >< ”

Required:
UC closed under Pre !l

Pre

Monotonicity
aqQ——O
I
3

Monotonicity
aqQ——O

M1 M

Monotonicity
aqQ——O

M1 M

Monotonicity implies UC is closed under
Pre

Pre(U):Upward Closed? U:Upward Closed

Monotonicity
aqQ——O

M1 M

Monotonicity implies UC is closed under
Pre

€1

Pre(U):Upward Closed? U:Upward Closed

Monotonicity
aqQ——O

M1 M

Monotonicity implies UC is closed under
Pre

3
LI
€1

Pre(U):Upward Closed? U:Upward Closed

Monotonicity

aqQ——O
I]
3——C4
Monotonicity implies UC is closed under
Pre
3
Ll
€1 €2

Pre(U):Upward Closed? U:Upward Closed

Monotonicity
aqQ——O

M1 M

Monotonicity implies UC is closed under
Pre

3/ \-ca
N / \|_||
c])

Pre(U):Upward Closed? Yes U:Upward Closed

Which transitions are monotonic?

Broadcast Transitions

09 a1
I
000000

Which transitions are monotonic?

Broadcast Transitions

Yes

00 a1
I I
000000 >» 99009000

Which transitions are monotonic?

Existential Global Transitions

000 >» 009
1N
000000

Which transitions are monotonic?

Existential Global Transitions

Yes

o
dr@
")
000 >»909
1N I

000000 >» 000000

Which transitions are monotonic?

Universal Global Transitions

o
\V/RO
*)
000 » 909
I

000000

Which transitions are monotonic?

Universal Global Transitions

No

o
\V/RO
*)
000 » 909
I

000000 >

Monotonic Abstraction (Over-Approximation)
¥

) 0000000
VRO

Monotonic Abstraction (Over-Approximation)

P 0003090

VRO

Monotonic Abstraction (Over-Approximation)

P 0003090
v ;o A

000 O O

Monotonic Abstraction (Over-Approximation)

o 0003030
VRO A
@
200 @ O
Monotonic?
00 A > 0
M

0090000

Monotonic Abstraction (Over-Approximation)

o 0003030
VRO A
*]
Q090 O O
Monotonic? Yes
00 A > 90
I 1N
A

0900000 >» 0000

Backward Reachability Analysis on Abstract System

@90

_________ M Pre Pre \../

Pre - Local Transitions

Pre - Existential Global Transitions

o pefes/] =\

VRO

Pre - Universal Global Transitions

Pre

Pre

Backward Reachability Analysis on Abstract System

990

Backward Reachability Analysis on Abstract System

symbolic representation = finite words

900

000

......... >< Pre Pre 00

Backward Reachability Analysis on Abstract System

symbolic representation = finite words

......... >< Pre Pre 00

Termination

e Subword relation is a well quasi-ordering.

e Reachability algorithm guaranteed to terminate.

Summary

Monotonicity allows working with upward
closed sets
Symbolic representation = words:

e More powerful than finite-state
abstraction

e More powerful than counter abstraction

e Less heavy than general regular
expressions (transducer-based methods,
e.g., regular model checking)

Simple abstraction gives monotonicity

Works on difficult examples !!

Parameterized Systems with variables

T

T EEE

" oo

Parameterized Systems with variables

o

>0

%

(-

st

() O H>9 O

self.y"™* > other.x

X=y x+3<y

Vother # self.

—

Jother # self.
self.y < other.y

Configurations

Transitions

X
y
o
Jother # self.
self.y < other.y
)
X

Transitions

x
y
o
Vother # self.
self.y"™* > other.x
o
X

Ordering on Configurations (gap-order)

999
x|2]6(3 o]
Y13121]5
e |dentical control :
states ; ; ||—|
e Preserves equality
" oapsinc = Gaps NOELE0E
ne x[2]0[0]9[7]4[0]| €

Ordering on Configurations (gap-order)

99O
x|2]6]3 o]
Y13[2]5
e |dentical control :
states. :; -.': | |_|
e Preserves equality
" oapsinc = Gaps DOROEOE
ne x[2]0[0]9[7]4[0]| C

Ordering on Configurations (gap-order)

99O
x|2]6(3 o]
Y13[2]5
e |dentical control :
states. :; -.': | |_|
e Preserves equality
" oapsinc = Gaps DREOEOE
ne x[2]0[0]9[7]4[0]| C

Gap-Order Constraints

L

X1

X2

X3

1

Y2

Y3

x1+5 < w

X2

X3

Gap-Order Constraints

x1+5 < w
X2 = X3

X1 |Xo[x3

sos

Yi(y2|y3

Gap-Order Constraints

)

X110l x3 [X1+5 < yzﬂi
X2 = X3

yi|y2|y3

Gap-Order Constraints

)]
X110l x3 [X1+5 < W

X2 = X3
yi|y2|y3

Gap-Order Constraints

)

X110l x3 [X1+5 < W
X0 = X3

yi|y2|y3

upward closed set of configurations

Backward Reachability Analysis

x1 |x2|x3
Yi|y2|y3

Backward Reachability Analysis

oo
x1 [x2|x3[xa]| x5 El
Y1|Y2|Y3|ya|Ys

o0
=
yi]y2]

5|Q)

Y1|y2

Y3

Backward Reachability Analysis

x1 |x2 |x3|xa | x5 El

Yi|y2|y3|ya|ys

oo
x1 [x2|x3[xa]| x5 El

Y1|Y2|Y3|yalYs

®= Pre Pre PP

5|Q)

yi]y2

o0
=)
yi]y2]

x1 |x2|x3|xa|xs El

Yi|y2|y3|ya|ys

Backward Reachability Analysis

........... x1 |x2 |x3|xa | x5 El

Yi|y2|y3|ya|ys

oo
x1 [x2|x3[xa]| x5 El

Y1|Y2|Y3|yalYs

........... E' Pre Pre gg

5|Q)

yi]y2

o0
=)
yi]y2]

........... x1 |x2|x3|xa|xs El

Yi|y2|y3|ya|ys

Backward Reachability Analysis

=@
10
5@

RARKYE

o0
=]

x1 |x2|x3|xa|xs

Yi|y2|y3|ya|ys

Pre

oo
x1 [x2|x3[xa]| x5 El

Y1|Y2|Y3|yalYs

Pre

Q[
AL =]

yi]y2]

5|Q)

Y1|y2

Y3

Non-Atomic Global Conditions

e Replace global condition with protocol:

e Send request
o Acks sent successively
e Perform transition when all acks received

VRO

) O ¢ & & O O

Non-Atomic Global Conditions

e Replace global condition with protocol:

e Send request
o Acks sent successively
e Perform transition when all acks received

) O @ O O 0 O

Non-Atomic Global Conditions

e Replace global condition with protocol:

e Send request
o Acks sent successively
e Perform transition when all acks received

) O @ O O O O

Non-Atomic Global Conditions

e Replace global condition with protocol:

e Send request
o Acks sent successively
e Perform transition when all acks received

) O @ O O O O

Non-Atomic Global Conditions

e Replace global condition with protocol:

e Send request
o Acks sent successively
e Perform transition when all acks received

VRO

) O @ O O O O

Non-Atomic Global Conditions

e Replace global condition with protocol:

e Send request
o Acks sent successively
e Perform transition when all acks received

) O @ O 0 O O

Non-Atomic Global Conditions

e Replace global condition with protocol:

e Send request
o Acks sent successively
e Perform transition when all acks received

) O @ O O O 9O

Non-Atomic Global Conditions

e Replace global condition with protocol:

e Send request
o Acks sent successively
e Perform transition when all acks received

) O 0 ¢ & O O

Lamport’s Distributed Mut-Ex

Qp:
Qc :
Xp :
: {s-id, r.id, v € N'}

Xc

Part I:

ty -

ty :

t3

ty :

Gidle s Qwait s use
dempty > Qreqy » Gackq » ok » Areqn s dacky » Goky
{id, num, aux € N'}

Distributed Computation of Number
aux” = num A
V other # self-
Gidle = Gchoose > other-state = empty A other-s.id = self-id
)
other-state’ = req; N\ other-v/ = self-num

3 other # self-
other-state = ack; A other-s.id = self-id
Gchoose — Gchoose B A other-v > self-aux
)
other - state’ = oky A self-aux’ = other-v

3 other # self-
other-state = ack; A other-s_id = self-id
Gehoose —* Gchoose > A other-v < self-aux
o]
other - state’ = ok;

num’ > aux

— it > A
Gchoose Gwait V other # self-

other-s_id = self-id D other-state = okj

Lamport’s Distributed Mut-Ex, Part Il: Reply

3 other # self-
other-state = req; A other-r_id = self-id
t5 : gs — qs D> S
other-state’ = ack; A other-v/ = self-num
for any s € {idle, choose, wait, use}
3 other # self-
other-state = reqp A other-r.id = self-id
t : gs — qs > o)
= self-num

other-state’ = acky A other-v’

for any s € {idle, wait, use}

Lamport’s Distributed Mut-Ex, Part Il1l: Entry and Exit
[V other # self-

other-state = ok; A other-s_id = self-id
t7 1| Qwait = Quait >)

other - state’ = reqo

r 3 other # self-
other-state = ackp N
other-s_id = self-id A other-v > 0A
tg : Quait — Quait > self-num > other-v V
(other-v = self-num A self-id > r.id)
D
L other - state’ = reqo

r 3 other # self-
other-state = acky A
other-s_id = self-id A
other-v =0V
self-num < other-v V
(other-v = self-num A self-id < r.id)

tg Qwait — Qwait >

)
L other-state’ = ok

o N > V other # self-:
10 - | Gwait — quse s.id = self-id O other-state = okp
num’ =0
A
V other # self-
t1: Guse = Jidle > 7

other-state = okp A other-s_id = self-id
)
other - state’ = empty

Ordering on Configurations

A0

1 ® o 90 9
M
C 2 0 0 0 0

7

Approximation

e We apply monotonic abstraction when testing that all
acknowledgments have been received (universal quantification)

e We delete all nodes and corresponding edges that have not
acknowledged the request (i.e. they do not satisfy the
condition we are checking)

Predecessor Computation

030000
08300
Pre Pre
03300
000

Termination

e Finite representation of upward closed sets of configurations
(graphs)

e We use subgraph relation as entailment that is not a wqo for
generic graphs

e Termination of the backward analysis is not guaranteed in
general

Transitions

o
\RO\O
Qo /G\O
s

9

Transitions

Transitions

@
©
¢
«
<
@

N,
e
e

@
[
[Y

ER"_

e Tree Arbiter Protocols \O/O\

e Leader Election
Protocols N

4
.
®

@
@
¢

e Distributed Protocols

Ordering on Configurations

‘os .
.........

Monotonic Abstraction (Over-approximation)

—Q
o e
~an &
o Fatye

9 l

@

g o
o e

o

O/

9/‘

Monotonicity

Q B
O/o/) 5 oo
]
/o\
/ /‘\
o & o

o

O/

9/‘

Monotonicity

) 4 %o /o/‘)
9
N N
/N /N
9 o e
< o/ \Q\ /‘(°/ \O\
9 9 o o)

Monotonic Abstraction with Deletion

.
AN
o e
g ~@ 2 &-9
',qo Jgoo
" |
o9 o
—>Q/ \Q<—

o

O/

9/‘

Monotonicity

A

o

O/

9/‘

Monotonicity

Backward Reachability on Trees

o/°\ 3
......... °/ O/Q\Q\ o /‘\o
Q< \O) \‘
*)
P re P re 3
___________________ Ko o
°>{
[+ 9
o B o »

Termination

e Finite representation of upward closed sets of trees (with
labels over a finite alphabet)

e Tree embedding as entailment: it is a wqo
e Termination of the backward analysis is guaranteed

