Specifications in Temporal Logic

Temporal Logic: A Class of Modal Logics

- Modal Logic: alternative notions of truth like is it possible/necessary that φ is true?

Temporal Logic: A Class of Modal Logics

- Modal Logic: alternative notions of truth like is it possible/necessary that φ is true?
- In modal logic interpretations are defined as Kripke structures, i.e., a set of worlds W and an accessibility relation R in $W \times W$

Temporal Logic: A Class of Modal Logics

- Modal Logic: alternative notions of truth like is it possible/necessary that φ is true?
- In modal logic interpretations are defined as Kripke structures, i.e., a set of worlds W and an accessibility relation R in $W \times W$
- Propositions are interpreted in each world

Temporal Logic: A Class of Modal Logics

- Modal Logic: alternative notions of truth like is it possible/necessary that φ is true?
- In modal logic interpretations are defined as Kripke structures, i.e., a set of worlds W and an accessibility relation R in $W \times W$
- Propositions are interpreted in each world
- Modalities quantify over the set of words accessible from the current one via R

Temporal Logic: A Class of Modal Logics

- Modal Logic: alternative notions of truth like is it possible/necessary that φ is true?
- In modal logic interpretations are defined as Kripke structures, i.e., a set of worlds W and an accessibility relation R in $W \times W$
- Propositions are interpreted in each world
- Modalities quantify over the set of words accessible from the current one via R
- A specific modal logic is characterized by the properties of R (reflexivity, transitivity, etc)

Temporal Logic

- Temporal logic is a special type of modal logic in which the truth of a formula depends on the time in which it is evaluated
- Typical temporal operators are
- Eventually Φ : in some future instant Φ is true
- Always Φ : in all future instants Φ is true

Several Types of Temporal Logics

- Linear Temporal Logic (LTL) is linear in the future; properties are defined on a path

Several Types of Temporal Logics

- Linear Temporal Logic (LTL) is linear in the future; properties are defined on a path
- Computational Tree Logic (CTL) is branching in the future; properties are defined on a tree

Several Types of Temporal Logics

- Linear Temporal Logic (LTL) is linear in the future; properties are defined on a path
- Computational Tree Logic (CTL) is branching in the future; properties are defined on a tree
- LTL and CTL are incomparable logics: There exist formulas in one logic that are not expressible in the other

Several Types of Temporal Logics

- Linear Temporal Logic (LTL) is linear in the future; properties are defined on a path
- Computational Tree Logic (CTL) is branching in the future; properties are defined on a tree
- LTL and CTL are incomparable logics: There exist formulas in one logic that are not expressible in the other

Several Types of Temporal Logics

- Linear Temporal Logic (LTL) is linear in the future; properties are defined on a path
- Computational Tree Logic (CTL) is branching in the future; properties are defined on a tree
- LTL and CTL are incomparable logics: There exist formulas in one logic that are not expressible in the other
- LTL and CTL are submsumed by CTL*, which in turn, is subsumed by the μ-calculus (a fixpoint logic)

Model Checking Problem

- Fixed a (Kripke) model M (a transition system), an initial state s_{0}, and a temporal property φ

$$
M, s_{0} \models \varphi ?
$$

where $\models=$ satisfiability relation

Computation Tree Logic

Kripke Models and Branching Time

- In CTL (Computation Tree Logic) time is branching in the future, i.e., in a Kripke Model a world has a set of possible successors
- If we unfold the model we obtain an infinite tree; for each node (world/state) of the tree we specify which propositions are true and which are false
- CTL temporal operators quantify over paths and states of the computation tree

(Propositional) Computation Tree Logic: (P)CTL

- Atomic propositions: p, q, r, \ldots

(Propositional) Computation Tree Logic: (P)CTL

- Atomic propositions: p, q, r, \ldots
- Classical connectives: $\neg \psi \quad \varphi \wedge \psi \quad \varphi \vee \psi \quad \varphi \supset \psi$

(Propositional) Computation Tree Logic: (P)CTL

- Atomic propositions: p, q, r, \ldots
- Classical connectives: $\neg \psi \quad \varphi \wedge \psi \quad \varphi \vee \psi \quad \varphi \supset \psi$
- Two types of modalities:

(Propositional) Computation Tree Logic: (P)CTL

- Atomic propositions: p, q, r, \ldots
- Classical connectives: $\neg \psi \quad \varphi \wedge \psi \quad \varphi \vee \psi \quad \varphi \supset \psi$
- Two types of modalities:
- Path quantifiers $\mathbb{P}::=\mathbf{E}, \mathbf{A}$

(Propositional) Computation Tree Logic: (P)CTL

- Atomic propositions: p, q, r, \ldots
- Classical connectives: $\neg \psi \quad \varphi \wedge \psi \quad \varphi \vee \psi \quad \varphi \supset \psi$
- Two types of modalities:
- Path quantifiers $\mathbb{P}::=\mathbf{E}, \mathbf{A}$
- Temporal modalities $\mathbb{T}::=\mathbf{X}, \mathbf{F}, \mathbf{G}, \mathbf{U}$

(Propositional) Computation Tree Logic: (P)CTL

- Atomic propositions: p, q, r, \ldots
- Classical connectives: $\neg \psi \quad \varphi \wedge \psi \quad \varphi \vee \psi \quad \varphi \supset \psi$
- Two types of modalities:
- Path quantifiers $\mathbb{P}::=\mathbf{E}, \mathbf{A}$
- Temporal modalities $\mathbb{T}::=\mathbf{X}, \mathbf{F}, \mathbf{G}, \mathbf{U}$
- CTL formulas have the form $\mathbb{P T} \varphi$

CTL Modalities

- A formula with no top-level modality refers to the current state

CTL Modalities

- A formula with no top-level modality refers to the current state
- A (for all paths) and \mathbf{E} (there exists a path) are always combined with \mathbf{X} (next) and \mathbf{U} (until)

CTL Modalities

- A formula with no top-level modality refers to the current state
- A (for all paths) and \mathbf{E} (there exists a path) are always combined with \mathbf{X} (next) and \mathbf{U} (until)
- $\operatorname{EX} \varphi=$ exists a path s.t. next φ

CTL Modalities

- A formula with no top-level modality refers to the current state
- A (for all paths) and \mathbf{E} (there exists a path) are always combined with \mathbf{X} (next) and \mathbf{U} (until)
- $\operatorname{EX} \varphi=$ exists a path s.t. next φ
- $\operatorname{EF} \varphi=$ exists a path s.t. eventually φ

CTL Modalities

- A formula with no top-level modality refers to the current state
- A (for all paths) and \mathbf{E} (there exists a path) are always combined with \mathbf{X} (next) and \mathbf{U} (until)
- $\operatorname{EX} \varphi=$ exists a path s.t. next φ
- $\operatorname{EF} \varphi=$ exists a path s.t. eventually φ
- $\mathbf{E G} \varphi=$ exists a path s.t. always φ

CTL Modalities

- A formula with no top-level modality refers to the current state
- A (for all paths) and \mathbf{E} (there exists a path) are always combined with \mathbf{X} (next) and \mathbf{U} (until)
- $\operatorname{EX} \varphi=$ exists a path s.t. next φ
- $\operatorname{EF} \varphi=$ exists a path s.t. eventually φ
- $\mathbf{E G} \varphi=$ exists a path s.t. always φ
- $\mathbf{E}(\varphi \mathbf{U} \psi)=$ exists a path s.t. φ until ψ

CTL Modalities

- A formula with no top-level modality refers to the current state
- A (for all paths) and \mathbf{E} (there exists a path) are always combined with \mathbf{X} (next) and \mathbf{U} (until)
- $\operatorname{EX} \varphi=$ exists a path s.t. next φ
- $\operatorname{EF} \varphi=$ exists a path s.t. eventually φ
- $\mathbf{E G} \varphi=$ exists a path s.t. always φ
- $\mathbf{E}(\varphi \mathbf{U} \psi)=$ exists a path s.t. φ until ψ
- $\mathbf{A}(\varphi \mathbf{U} \psi)=$ for all paths φ until ψ

Other Connectives

- $\mathbf{E F} \varphi \equiv \mathbf{E}($ true $\mathbf{U} \varphi)$ potentially

Other Connectives

- $\mathbf{E F} \varphi \equiv \mathbf{E}($ true $\mathbf{U} \varphi)$ potentially
- $\mathbf{A F} \varphi=\mathbf{A}($ true $\mathbf{U} \varphi)$ inevitable

Other Connectives

- $\mathbf{E F} \varphi \equiv \mathbf{E}($ true $\mathbf{U} \varphi)$ potentially
- $\mathbf{A F} \varphi=\mathbf{A}($ true $\mathbf{U} \varphi)$ inevitable
- $\mathbf{A G} \varphi \equiv \neg \mathbf{E F} \neg \varphi$ invariantly

Other Connectives

- $\mathbf{E F} \varphi \equiv \mathbf{E}($ true $\mathbf{U} \varphi)$ potentially
- $\mathbf{A F} \varphi=\mathbf{A}($ true $\mathbf{U} \varphi)$ inevitable
- $\mathbf{A G} \varphi \equiv \neg \mathbf{E F} \neg \varphi$ invariantly
- $\mathbf{A X}_{\varphi}=\mathbf{E X}_{\neg \varphi}$ for all paths next

Example of formulas

- Started $\wedge \mathbf{E X R e a d y}$: Started holds in the current state, there exists a successor state in which Ready holds

Example of formulas

- Started $\wedge \mathbf{E X R e a d y}$: Started holds in the current state, there exists a successor state in which Ready holds
- $\mathbf{E F}($ Started $\wedge \neg$ Ready $)$: it is possible to get to a state where Started holds but Ready does not hold.

Example of formulas

- Started $\wedge \mathbf{E X R e a d y}$: Started holds in the current state, there exists a successor state in which Ready holds
- $\mathbf{E F}($ Started $\wedge \neg$ Ready $)$: it is possible to get to a state where Started holds but Ready does not hold.
- AG(Req $\supset \mathbf{A F A c k})$: if a Request occurs, then it will be eventually acknowledged.

Example of formulas

- Started $\wedge \mathbf{E X R e a d y}$: Started holds in the current state, there exists a successor state in which Ready holds
- $\mathbf{E F}($ Started $\wedge \neg$ Ready $)$: it is possible to get to a state where Started holds but Ready does not hold.
- $\mathbf{A G}($ Req $\supset \mathbf{A F A c k})$: if a Request occurs, then it will be eventually acknowledged.
- AG(AFDeviceEnabled): DeviceEnabled holds infitely often on every computation path.

Example of formulas

- Started $\wedge \mathbf{E X R e a d y}$: Started holds in the current state, there exists a successor state in which Ready holds
- $\mathbf{E F}($ Started $\wedge \neg$ Ready $)$: it is possible to get to a state where Started holds but Ready does not hold.
- $\mathbf{A G}($ Req $\supset \mathbf{A F A c k})$: if a Request occurs, then it will be eventually acknowledged.
- AG(AFDeviceEnabled): DeviceEnabled holds infitely often on every computation path.
- $\mathbf{A G}(\mathbf{E F}$ Restart): from any state it is possible to get to the Restart state.

Semantics

A CTL model is a triple $M=\langle S, R, L\rangle$ (Kripke model) where - S is a non empty set of states

Semantics

A CTL model is a triple $M=\langle S, R, L\rangle$ (Kripke model) where

- S is a non empty set of states
- $R \subseteq S \rightarrow S$ is a total relation (branching in the future) R total means that for each $s \in S$ there exists at least one s^{\prime} s.t. $\left\langle s, s^{\prime}\right\rangle \in R$

Semantics

A CTL model is a triple $M=\langle S, R, L\rangle$ (Kripke model) where

- S is a non empty set of states
- $R \subseteq S \rightarrow S$ is a total relation (branching in the future) R total means that for each $s \in S$ there exists at least one s^{\prime} s.t. $\left\langle s, s^{\prime}\right\rangle \in R$
- $L: S \rightarrow 2^{A P}$ assigns to each state $s \in S$ the atomic formulas that are true in s

Paths

- A path σ is an infinite sequence of states $s_{0} s_{1} \ldots$ s.t. $\left\langle s_{i}, s_{i+1}\right\rangle \in R$

Paths

- A path σ is an infinite sequence of states $s_{0} s_{1} \ldots$ s.t. $\left\langle s_{i}, s_{i+1}\right\rangle \in R$
- $\sigma[i]$ identifies the i-th state in the sequence σ

Paths

- A path σ is an infinite sequence of states $s_{0} s_{1} \ldots$ s.t. $\left\langle s_{i}, s_{i+1}\right\rangle \in R$
- $\sigma[i]$ identifies the i-th state in the sequence σ
- The set of paths that start in s in M is

$$
P_{M}(s)=\{\sigma \mid \sigma \text { is a path s.t. } \sigma[0]=s\}
$$

Paths

- A path σ is an infinite sequence of states $s_{0} s_{1} \ldots$ s.t. $\left\langle s_{i}, s_{i+1}\right\rangle \in R$
- $\sigma[i]$ identifies the i-th state in the sequence σ
- The set of paths that start in s in M is

$$
P_{M}(s)=\{\sigma \mid \sigma \text { is a path s.t. } \sigma[0]=s\}
$$

- For each M there exists an infinite computation tree where each node is a state $s \in S$ and s.t. $\left\langle s^{\prime}, s^{\prime \prime}\right\rangle$ is an edge iff $\left\langle s^{\prime}, s^{\prime \prime}\right\rangle \in R$

Satisfiability

Fixed $M=\langle S, R, L\rangle$, the relation $M, s \models \varphi(M$ satisfies φ in $s)$ is defined as

- $s \models p$ if $p \in L(s)$
$P_{M}(s)$ is the set of infinite paths from s in M

Satisfiability

Fixed $M=\langle S, R, L\rangle$, the relation $M, s \models \varphi(M$ satisfies φ in $s)$ is defined as

- $s \models p$ if $p \in L(s)$
- $s \models \neg \phi$ if $s \not \models \phi$
$P_{M}(s)$ is the set of infinite paths from s in M

Satisfiability

Fixed $M=\langle S, R, L\rangle$, the relation $M, s \models \varphi(M$ satisfies φ in $s)$ is defined as

- $s \models p$ if $p \in L(s)$
- $s \models \neg \phi$ if $s \not \models \phi$
- $s \models \phi \vee \psi$ if $s \models \phi$ or $s \models \psi$
$P_{M}(s)$ is the set of infinite paths from s in M

Satisfiability

Fixed $M=\langle S, R, L\rangle$, the relation $M, s \models \varphi(M$ satisfies φ in $s)$ is defined as

- $s \models p$ if $p \in L(s)$
- $s \models \neg \phi$ if $s \not \models \phi$
- $s \models \phi \vee \psi$ if $s \models \phi$ or $s \models \psi$
- $s \models \mathbf{E X} \phi$ if $\exists \sigma \in P_{M}(s)$ t.c. $s[1] \models \phi$
$P_{M}(s)$ is the set of infinite paths from s in M

Satisfiability

Fixed $M=\langle S, R, L\rangle$, the relation $M, s \models \varphi(M$ satisfies φ in $s)$ is defined as

- $s \models p$ if $p \in L(s)$
- $s \models \neg \phi$ if $s \not \vDash \phi$
- $s \models \phi \vee \psi$ if $s \models \phi$ or $s \models \psi$
- $s \models \mathbf{E X} \phi$ if $\exists \sigma \in P_{M}(s)$ t.c. $s[1] \models \phi$
- $s \models \mathbf{E}(\phi \mathbf{U} \psi)$ if $\exists \sigma \in P_{M}(s)$ s.t. $\exists j \geq 0 . \sigma[j] \models \psi \wedge(\forall 0 \leq k<j . \sigma[k] \models \phi)$
$P_{M}(s)$ is the set of infinite paths from s in M

Satisfiability

Fixed $M=\langle S, R, L\rangle$, the relation $M, s \models \varphi(M$ satisfies φ in $s)$ is defined as

- $s \models p$ if $p \in L(s)$
- $s \models \neg \phi$ if $s \not \vDash \phi$
- $s \models \phi \vee \psi$ if $s \models \phi$ or $s \models \psi$
- $s \models \mathbf{E X} \phi$ if $\exists \sigma \in P_{M}(s)$ t.c. $s[1] \models \phi$
- $s \models \mathbf{E}(\phi \mathbf{U} \psi)$ if $\exists \sigma \in P_{M}(s)$ s.t. $\exists j \geq 0 . \sigma[j] \models \psi \wedge(\forall 0 \leq k<j . \sigma[k] \models \phi)$
- $s \models \mathbf{A}(\phi \mathbf{U} \psi)$ if $\forall \sigma \in P_{M}(s)$ $\exists j \geq 0 . \sigma[j] \models \psi \wedge(\forall 0 \leq k<j . \sigma[k] \models \phi)$
$P_{M}(s)$ is the set of infinite paths from s in M

Other formulas

- $s \models \mathbf{E F} \varphi$ if $\exists \sigma \in P_{M}(s)(\exists j \geq 0 . \sigma[j] \models \varphi)$

Other formulas

- $s \models \operatorname{EF} \varphi$ if $\exists \sigma \in P_{M}(s)(\exists j \geq 0 . \sigma[j] \models \varphi)$
- $s \models \mathbf{E G} \varphi$ if $\exists \sigma \in P_{M}(s)(\forall j \geq 0 . \sigma[j] \models \varphi)$

Other formulas

- $s \models \operatorname{EF} \varphi$ if $\exists \sigma \in P_{M}(s)(\exists j \geq 0 . \sigma[j] \models \varphi)$
- $s \models \mathbf{E G} \varphi$ if $\exists \sigma \in P_{M}(s)(\forall j \geq 0 . \sigma[j] \models \varphi)$
- $s \models \mathbf{A F} \varphi$ if $\forall \sigma \in P_{M}(s)(\exists j \geq 0 . \sigma[j] \models \varphi)$

Other formulas

- $s \models \operatorname{EF} \varphi$ if $\exists \sigma \in P_{M}(s)(\exists j \geq 0 . \sigma[j] \models \varphi)$
- $s \models \mathbf{E G} \varphi$ if $\exists \sigma \in P_{M}(s)(\forall j \geq 0 . \sigma[j] \models \varphi)$
- $s \models \mathbf{A F} \varphi$ if $\forall \sigma \in P_{M}(s)(\exists j \geq 0 . \sigma[j] \models \varphi)$
- $s \models \mathbf{A G} \varphi$ if $\forall \sigma \in P_{M}(s)(\forall j \geq 0 . \sigma[j] \models \varphi)$

CTL Model Checking Algorithms

CTL Model Checking

- The CTL model checking algorithm computes all states of the model that satisfy the property
- The problem can be reduced to that of solving fixpoint equations over monotone functions

Denotation of CTL formulas

Fixed $M=\langle S, R, L\rangle$ and a CTL formula φ,

- We define

$$
\llbracket \varphi \rrbracket=\{s \mid M, s \models \varphi\}
$$

Denotation of CTL formulas

Fixed $M=\langle S, R, L\rangle$ and a CTL formula φ,

- We define

$$
\llbracket \varphi \rrbracket=\{s \mid M, s \models \varphi\}
$$

- Furthermore,

$$
\varphi \sqsubseteq \psi \text { iff } \llbracket \varphi \rrbracket \subseteq \llbracket \psi \rrbracket
$$

Denotation of CTL formulas

Fixed $M=\langle S, R, L\rangle$ and a CTL formula φ,

- We define

$$
\llbracket \varphi \rrbracket=\{s \mid M, s \models \varphi\}
$$

- Furthermore,

$$
\varphi \sqsubseteq \psi \quad \text { iff } \llbracket \varphi \rrbracket \subseteq \llbracket \psi \rrbracket
$$

- The set of CTL formulas equipped with \sqsubseteq form a complete lattice
- Least upper bound $=\vee$, indeed $\llbracket \varphi \vee \psi \rrbracket=\llbracket \varphi \rrbracket \cup \llbracket \psi \rrbracket$
- Greatest lower bound $=\wedge$, indeed, $\llbracket \varphi \wedge \psi \rrbracket=\llbracket \varphi \rrbracket \cap \llbracket \psi \rrbracket$
- Bottom $\llbracket f a l s \rrbracket \rrbracket=\emptyset$
- Top $\llbracket t r u e \rrbracket=S$

Denotations as Fixpoints

- E $(\varphi \mathbf{U} \psi) \equiv \psi \vee(\varphi \wedge(\mathbf{E X}(\mathbf{E}[\varphi \mathbf{U} \psi])))$

Denotations as Fixpoints

- $\mathbf{E}(\varphi \mathbf{U} \psi) \equiv \psi \vee(\varphi \wedge(\mathbf{E X}(\mathbf{E}[\varphi \mathbf{U} \psi])))$
- $F(Z)=\llbracket \psi \rrbracket \cup\left(\llbracket \varphi \rrbracket \cap \operatorname{Pre}_{\exists}(Z)\right)$

Denotations as Fixpoints

- E $(\varphi \mathbf{U} \psi) \equiv \psi \vee(\varphi \wedge(\mathbf{E X}(\mathbf{E}[\varphi \mathbf{U} \psi])))$
- $F(Z)=\llbracket \psi \rrbracket \cup\left(\llbracket \varphi \rrbracket \cap \operatorname{Pre}_{\exists}(Z)\right)$
- $\operatorname{Pre}_{\exists}(Z)=\left\{s \in S \mid\left\langle s, s^{\prime}\right\rangle \in R, s^{\prime} \in Z\right\}$ (predecessors of Z)

Denotations as Fixpoints

- E $(\varphi \mathbf{U} \psi) \equiv \psi \vee(\varphi \wedge(\mathbf{E X}(\mathbf{E}[\varphi \mathbf{U} \psi])))$
- $F(Z)=\llbracket \psi \rrbracket \cup\left(\llbracket \varphi \rrbracket \cap \operatorname{Pre}_{\exists}(Z)\right)$
- $\operatorname{Pre}_{\exists}(Z)=\left\{s \in S \mid\left\langle s, s^{\prime}\right\rangle \in R, s^{\prime} \in Z\right\}$ (predecessors of Z)
- Solve the equation $Z=F(Z)$ where F is monotone

Denotations as Fixpoints

- $\mathbf{E}(\varphi \mathbf{U} \psi) \equiv \psi \vee(\varphi \wedge(\mathbf{E X}(\mathbf{E}[\varphi \mathbf{U} \psi])))$
- $F(Z)=\llbracket \psi \rrbracket \cup(\llbracket \varphi \rrbracket \cap \operatorname{Pre\exists }(Z))$
- $\operatorname{Pre}_{\exists}(Z)=\left\{s \in S \mid\left\langle s, s^{\prime}\right\rangle \in R, s^{\prime} \in Z\right\}$ (predecessors of Z)
- Solve the equation $Z=F(Z)$ where F is monotone
- $\llbracket \mathbf{E}(\varphi \mathbf{U} \psi) \rrbracket$ is the least fixpoint of F (i.e. the smallest set of states A such that $A=F(A)$

Other formulas: Reachability

- $\mathbf{E F}(\psi) \equiv \psi \vee \mathbf{E X}(\mathbf{E F} \psi)$

Other formulas: Reachability

- $\mathbf{E F}(\psi) \equiv \psi \vee \mathbf{E X}(\mathbf{E F} \psi)$
- $F_{1}(Z)=\llbracket \psi \rrbracket \cup \operatorname{Pre}_{\exists}(Z)$

Other formulas: Reachability

- $\mathbf{E F}(\psi) \equiv \psi \vee \mathbf{E X}(\mathbf{E F} \psi)$
- $F_{1}(Z)=\llbracket \psi \rrbracket \cup \operatorname{Pre}_{\exists}(Z)$
- Solve the equation $Z=F_{1}(Z)$ where F_{1} is monotone

Other formulas: Reachability

- $\mathbf{E F}(\psi) \equiv \psi \vee \mathbf{E X}(\mathbf{E F} \psi)$
- $F_{1}(Z)=\llbracket \psi \rrbracket \cup \operatorname{Pre}_{\exists}(Z)$
- Solve the equation $Z=F_{1}(Z)$ where F_{1} is monotone
- 【EF $\psi \rrbracket$ is the least fixpoint of F_{1} (i.e. the smallest set of states A such that $A=F_{1}(A)$

Other formulas

- $\llbracket \mathbf{E} \mathbf{G} \varphi \rrbracket$ is the greatest fixpoint of $F_{2}(Z)=\llbracket \varphi \rrbracket \cap \operatorname{Pre}_{\exists}(Z)$

Other formulas

- $\llbracket \mathbf{E G} \varphi \rrbracket$ is the greatest fixpoint of $F_{2}(Z)=\llbracket \varphi \rrbracket \cap \operatorname{Pre}_{\exists}(Z)$
- $\llbracket \mathbf{A G} \varphi \rrbracket$ is the greatest fixpoint of $F_{3}(Z)=\llbracket \varphi \rrbracket \cap \operatorname{Pre}_{\forall}(Z)$

Other formulas

- $\llbracket \mathbf{E G} \varphi \rrbracket$ is the greatest fixpoint of $F_{2}(Z)=\llbracket \varphi \rrbracket \cap \operatorname{Pre}_{\exists}(Z)$
- $\llbracket \mathbf{A} \mathbf{G} \varphi \rrbracket$ is the greatest fixpoint of $F_{3}(Z)=\llbracket \varphi \rrbracket \cap \operatorname{Pre}_{\forall}(Z)$
- $\operatorname{Pre}_{\forall}(Z)=\left\{s \in S \mid \forall s^{\prime} s . t . R\left(s, s^{\prime}\right), s^{\prime} \in Z\right\}$

How to compute fixpoints

- Functions F, F_{1}, F_{2}, \ldots are monotone w.r.t. inclusion of denotations

How to compute fixpoints

- Functions F, F_{1}, F_{2}, \ldots are monotone w.r.t. inclusion of denotations
- We can exploit results from Fixpoint Theory

How to compute fixpoints

- Functions F, F_{1}, F_{2}, \ldots are monotone w.r.t. inclusion of denotations
- We can exploit results from Fixpoint Theory
- The least fixpoint of (monotone) F on a finite lattice is the least upper bound (lub) (i.e. the union) of the sequence

$$
\emptyset \subseteq F(\emptyset) \subseteq F(F(\emptyset)) \ldots
$$

How to compute fixpoints

- Functions F, F_{1}, F_{2}, \ldots are monotone w.r.t. inclusion of denotations
- We can exploit results from Fixpoint Theory
- The least fixpoint of (monotone) F on a finite lattice is the least upper bound (lub) (i.e. the union) of the sequence

$$
\emptyset \subseteq F(\emptyset) \subseteq F(F(\emptyset)) \ldots
$$

- The greatest fixpoint is the greatest lower bound (glb) (intersection) of the sequence

$$
S \supseteq F(S) \supseteq F(F(S)) \ldots
$$

where S is the set of all states of the model

CTL Model Checking

- Fixed a model M, a state s, and a formula φ, decide if $M, s \models \varphi$

CTL Model Checking

- Fixed a model M, a state s, and a formula φ, decide if $M, s \models \varphi$
- Emerson-Clarke defined the following algorithm: every state s in M is labeled with the set of subformulas of φ that are true in s

CTL Model Checking

- Fixed a model M, a state s, and a formula φ, decide if $M, s \models \varphi$
- Emerson-Clarke defined the following algorithm: every state s in M is labeled with the set of subformulas of φ that are true in s
- The labeling is built inductively starting from the subformulas of minimal size (atomic formulas)

CTL Model Checking

- Fixed $M=\langle S, R, L\rangle$, let $A P$ be the set of atomic formulas
- The algorithm is based on the function Sat that computes the set of states that satisfies a formula φ

```
function Sat( }\varphi\mathrm{ : CTL formula) : set of states
begin
    if \varphi= true then return S
    if \varphi= false then return \emptyset
    if \varphi\in AP then return {s | \varphi\inL(s)}
    if \varphi}=\neg\psi\mathrm{ then return S \Sat( }\psi\mathrm{ )
    if \varphi= \varphi \vee\vee \varphi < then return Sat( }\mp@subsup{\varphi}{1}{})\cup\operatorname{Sat}(\mp@subsup{\varphi}{2}{}
    if \varphi=EXX}\mp@subsup{\varphi}{1}{}\mathrm{ then return }\mp@subsup{\operatorname{Pre}}{\vec{7}}{(}\operatorname{Sat}(\mp@subsup{\varphi}{1}{})
    if \varphi=\mathbf{E}(\mp@subsup{\varphi}{1}{}\mathbf{U}\mp@subsup{\varphi}{2}{})\mathrm{ then return Sat}\mp@subsup{\operatorname{SU}}{(}{}(\mp@subsup{\varphi}{1}{},\mp@subsup{\varphi}{2}{})
    if \varphi=\mathbf{A}(\mp@subsup{\varphi}{1}{}\mathbf{U}\mp@subsup{\varphi}{2}{})\mathrm{ then return SataU}\mp@subsup{\operatorname{Sat}}{(}{}(\mp@subsup{\varphi}{1}{},\mp@subsup{\varphi}{2}{})
end
```


Procedure for EU

```
function \(\operatorname{Sat}_{\mathrm{EU}}\left(\varphi_{1}, \varphi_{2}\right.\) : CTL formula) : set of states
\(\operatorname{var} \mathrm{Q}, \mathrm{Q}^{\prime}\) : set of states
begin
\(\mathrm{Q}:=\operatorname{Sat}\left(\varphi_{2}\right)\)
\(\mathrm{Q}^{\prime}:=\emptyset\)
while \(\mathrm{Q} \neq \mathrm{Q}^{\prime}\) do
\(\mathrm{Q}^{\prime}:=\mathrm{Q}\);
\(\mathrm{Q}:=\mathrm{Q} \cup\left(\operatorname{Sat}\left(\varphi_{1}\right) \cap \operatorname{Pre}_{\exists}(\mathrm{Q})\right) ;\)
endw;
return Q;
end
```


Procedure for AU

```
function \(\operatorname{Sat}_{\mathrm{AU}}\left(\varphi_{1}, \varphi_{2}\right.\) : CTL formula) : set of states
\(\operatorname{var} \mathrm{Q}, \mathrm{Q}^{\prime}\) : set of states
begin
\(\mathrm{Q}:=\operatorname{Sat}\left(\varphi_{2}\right)\)
\(\mathrm{Q}^{\prime}:=\emptyset\)
while \(\mathrm{Q} \neq \mathrm{Q}^{\prime}\) do
\(\mathrm{Q}^{\prime}:=\mathrm{Q}\);
\(\mathrm{Q}:=\mathrm{Q} \cup\left(\operatorname{Sat}\left(\varphi_{1}\right) \cap \operatorname{Pre}_{\forall}(\mathrm{Q})\right) ;\)
endw;
return Q;
end
```


Complexity

- Model checking a CTL formula φ against a model M has time complexity $O(|M| \times|\varphi|)$
- Termination

In principle it is not a problem for finite-state systems
In practice: state-explosion problem

Symbolic Model Checking

- Symbolic Representation

State $=$ assignment to Boolean variables
Transition relation $=$ Boolean formula
Predecessor relation $\mathrm{Pre}_{\exists}=$ Existentially quantified formula

$$
\operatorname{Pre}_{\exists}(F(x))=\exists y . T(x, y) \wedge F([y / x])
$$

where $T(x, y)$ is the transition relation

- Symbolic Model Checking Algorithm

Fixpoint computation using Boolean formulas as symbolic representation of finite sets of states

- CTL model checkers like SMV, nuSMV, Mucke are based on OBDDs

