Constraint-based Model Checking



Towards Infinite-state Model Checking

Given an infinite structure M a state s and a CTL property ¢, does
M,s = ¢ hold?
Let's try to reformulate the CTL framework here:
e Symbolic Representation

State = assignment to variables of heterogenous type (bool,

int, ...)

Transition relation = 7

Predecessor relation Pre = 7

¢ Model Checking Algorithms (?)

Fixpoint computation using ? as symbolic representation of
infinite sets of states



Constraint Systems

Fixed an interpretation domain D, a Constraint System is a tuple
(C,C) such that

e (C is a denumerable set of constrains
e the denotation [[¢] of ¢ € C is a subset of D

e The entailment relation C is an ordering between constraints
in C such that ¢ C ¢ implies [¢] C [#]



Constraints as Assertional Language

We use constraints to represent infinite sets of states.

e Minimal requirements for Reachability Properties
The property and the initial states are expressible in C
Entailment of constraints is decidable
There is algorithm for computing Pres

e Symbolic Representation
Transition relation = Disjunction of constraints
Predecessor relation = Disjunction of existentially quantified
constraints



Orderings on Sets of Constraints

The entailment relation Cg is defined as the following ordering
between finite sets of constraints:

e ST S iff for each ¢p € S’ there exists p € S s.t. ¢ C 9

e SLC S implies [S’] C [S] where [S] is the natural extension
of [-] to sets of constraints



Examples of Assertional Languages

Boolean Constraints

OBDDs [Bryant]

Presburger Arithmetics (Integer Linear Constraints)
Omega Library

Linear Arithmetic Constraints over Reals

Polyhedra Libraries)

Composite Constraints = BDD + Presburger Arithmetics
Action Language Verifier (ALV)

Automata
Word and Tree Automata [Regular model checking]



Constraint-based Backward Reachability

Goal is to prove AG(—B) = —=EF(B), i.e., from states in [¢o] we
cannot reach states in [B], where B is a set of constraints that
represents " bad states”

e We compute Pre*(B), using Cs to discard redundant
constraints

e If the computation terminates, we check [¢o] N [Pre*(B)] = 0

e Termination is not guaranteed in general!

e Tools like HyTech and ALV may not terminate



A General Framework for Termination

e The use of the theory of well-quasi orderings combined with
constraints as symbolic representation of infinite set of states
leads to many interesting classes of decidable verification
problems

e Some examples are

e Lossy FIFO Channel Systems
e Parameterized Systems
e Timed Automata

e Petri Nets

e Timed Petri Nets

e Data Nets



Well-quasi Ordering (wqo)

e A quasi (reflexive and transitive) ordering (A, <) is a
well-quasi ordering (wqo) if for any infinite sequence of
elements apaiaz ... there exist i < j s.t. a; <X a;

e A wqois

well-founded (it does not contain infinite strictly decreasing
sequences)

it has no infinite antichains (sequences of pairwise
incomparable elements)



Examples of wqo

e For a finite set A, (A, =) is a wqo

e (Nat,<) is a wqo



Examples of NON wqo

e (Int,<) is NOT a wqo
(it is not well founded)

e (Nat,|) where n|m iff if n divides m without remainder is
NOT a wqo
(prime numbers form an antichain)

e The lexicographic order is NOT a wqo



Dickson’s Lemma

e Nat: natural numbers
e Natk: tuples of k natural numbers
e (a1,...,ak) = (b1,...,bx) iff a; < bj fori:1,... kisawqo



Higman's Lemma: Finite Sets

Let (A, <) be a WQO
FSet(A) be the set of finite sets of elements in A

B={a1,...,an} Cs B' ={a},...,a),} iff there exists
injective and monotonic h: [1,...,n] — [1,...,m] s.t.
aj S ap(i) fori:1,...,n

(FSet(A),Cs) is a wqo



Higman's Lemma: Bags

Let (A, <) be a wqo

Bag(A) be the set of multisets with elements in A.

B =la1,...,an) Cp B’ =[4},. .., a,] iff there exists injective
h:[L,....n]—=[1,...,m]st. a; < ap(i) fori:1,...,n
(Bag(A),Cp) is a wqo



Higman's Lemma: Words

Let (A, <) be a wqo

Word(A) be the set of words with elements in A.

B=ay-...-anC, B'=a} -...-a], iff there exists injective

and monotonic h: [1,...,n] — [1,..., m] s.t. a; < ap(i) for
i:1,...,n
(Word(A),Cy) is a wqo



Applications of Higman's Lemma

Let X be a finite alphabet

> *: finite words over X

v =< w defined as v is a subword of w is a wqo

Y B: finite bags over ¥
B =< B’ defined as B is a submultiset of B’ is a wqo



More on Finite Sets

Let (A, <) be a wqo

FSet(A) be the set of finite sets of elements in A.

B ={ai1,...,an} Cs B' ={a},..., a},} iff there exists
hofl,...,m] = [1,...,n] st. ap;) =< aj- forj:1,....m
(FSet(A),Cs) is not always a wqo



Other Examples

e Kruskal's Theorem: Embedding between finite trees with
nodes labeled by elements of a wqo

e Robertson-Seymour's Theorem: Finite graphs ordered by the
graph minor relation is a wqo

e Ding's Theorem: Finite graphs with bounded paths ordered by
the (induced) subgraph relation



Back to Constraint-based MC: Property

Let (C,C) be a constraint system in which C is a wqo
e letS; CCfori>0
e for each infinite chain S C §1 C S, C ... 5;..., there exists
i<jst S5 CsS;

It only works for increasing chains (not generic sequences)



Constraint-based Backward Reachability

Assumptions:
e (C,C) is a wqo
e C is closed under application of Preg,
e there is an algorithm to compute Preg for any S C C
e |t is often the case that
Pre({¢1,...,¢n}) = UteT,iG[l ,,,, n Pre: (i)
e there is an algorithm to check [¢] N [S] = @ for any ¢ € C
and SCC

Then, symbolic backward reachability is guaranteed to terminate



Perfect Channel Systems



Perfect Channel Systems

e A finite number of processes communicating via FIFO
channels

e Each process is finite state
e FIFO Channels are unbounded



Definition

C is a finite set of channel names

M is a finite set of message names

Act = {7} U {c.send(m), c.rec(m),c.empty | c € C,m € M}
A process is defined as an automata P = {Q, Qo,d}, where

e (@ is a set of control states
e Q C Q@ is a set of initial control states
e 0 C(Q x Act x Q) is the transition relation



Configurations with n-processes

A system configuration with n processes is a tuple

’Y:{QIw--aCImh}

where
e g€ Qfori:1,...,n (control state of i-th process)
e h:C— M*

e h(c) is the word that encodes the current content of channel ¢



Operational Semantics

A transition

’7:{CIla‘--aq/'y---,CImh}ﬁ{QIv--‘acI;a-‘-aCImh/}

occurs when

e (qi,7,q) €9;

e (gi,c.empty,q;) € § and h'(c) = h(c) =0 (c is empty);

e (gi,c.send(m),q!) € 6 and W(c) = h(c)- m (m is enqueued
in ¢);
e (qi,c.rec(m),q}) € 6 and h(c) = m- K (c) (m is dequeued
from c).

where - = concatenation of words



Control state reachability problem

e Let {qo,--.,qo0, h} with h(c) = () for each c € C.

e Can we reach a configuration in which a process is in control
state g?



State-space exploration?

e FIFO channels can grow unboundedly!

e E.g. a process can repeatedly send the same set of messages
like in the loop (q, c!m, q)

e The state-space to explore to solve the control state
reachability problem is potentially infinite



Can we solve control state reachability?

e It is possible to reduce the reachability problem for counters
machines to control state reachability of communicating
automata

e A counter machine is defined over K counters (integer
variables) Xi, ..., Xk and has instructions to increment,
decrement, test a variable (= 0), and goto jumps.



Counter system < channel systems

We associate channel cx to variable X:

X=m iff cx=a-...m-times...-a

e Instruction ¢ : if X =0 goto ¢’ becomes (¢, cx.empty, ell’)
e Instruction ¢ : X 4+ 4 becomes (¢, cx.send(a), ell’)
e Instruction ¢ : X — — becomes (¢, cx.rec(a), ell’)



Back to control state reachability

e A counter machine with K counters stops in location £ iff the
corresponding system of communicating automata with one
process and K channels reaches the same location

e The halting problem of counter systems is undecidable
=

Control state reachability of channel systems is undecidable



Lossy Channel Systems



Perfect vs Lossy Communication

e We have considered perfect communication systems

e the order of messages is preserved
e messages cannot get lost

e However communication channels are often "unreliable”



Unreliable Channel Systems: Unordered Channels

e Assume that the ordering is not preserved, i.e., messages can
be inserted in any position in the channel



Unreliable Channel Systems: Unordered Channels

e Assume that the ordering is not preserved, i.e., messages can
be inserted in any position in the channel

e Channels can be represented as bags of symbols in M



Unreliable Channel Systems: Unordered Channels

e Assume that the ordering is not preserved, i.e., messages can
be inserted in any position in the channel

e Channels can be represented as bags of symbols in M

e We can still use unordered channels to encode counters!
Control state reachability is still undecidable



Unreliable Channel Systems: Lossy FIFO Channels

e Messages can get lost, the order is preserved



Operational Semantics with Message Loss

We compose — (semantics with perfect channels) with a lossy
step ~:
{s,h} = {t, h'}
iff
{s,h} ~ {s, 1} — {t, b} ~ {t, '}
s.t. hi(c) is a subword of h and K (c) is a subword of hy(c) for
eachce C



Control State Reachability

e Can we still encode counter machines using lossy channels?



Control State Reachability

e Can we still encode counter machines using lossy channels?

e No, the encoding of counters with channels is inaccurate (we
can model lossy counters)



Control State Reachability

e Can we still encode counter machines using lossy channels?

e No, the encoding of counters with channels is inaccurate (we
can model lossy counters)

e Some hope to obtain an algorithm for checking control state
reachability!



Observation |

e Assume (s, h1) = (s, hp) and let h} s.t. hi(c) is a subword of
hy(c) for every c € C
e There exists (s, hy) s.t. (s, h}) = (s, h})
e In other words = is monotonic w.r.t. the following ordering
(s, h) < (t, h') iff
e s—=1¢
e h(c) is a subword of h'(c) for every c € C



Observation |l

Target set T: any configuration of the form (s, h) where g
occurs in s for an arbitrary function h (i.e. arbitrary content
of channels in C)

T is upward closed w.r.t. <, i.e., if (s,h) € T and

(s,h) <X (s,H'), then (s,n) € T

If (s,h1) = (s’, o) € T, and (s, h1) < (s, h}), then

(s, hy) = (s',hy) and (', ho) < (s', h})

In other words from the monotonicity property we have that if

I is an upward closed set of configurations, then Pre(/) is still
upward closed



Property of subword relation

The subword relation < is a well-quasi ordering [Higman's
Lemma]

¢ No bad sequences:
For any infinite sequence wy, ..., w;,... of words, there exist
I<jst w 2w

¢ Finite basis property:
Any upward closed set (w.r.t. <) of words has a finite set of
minimal elements, i.e., upward closed sets can be represented
in a finite way



Target states

e Targety = upward closed set represented by the set of
minimal elements of the form (s, h) where s any contains ¢
and h(c) = e for each ¢ € C (e=empty string)

e For instance, (g, q’, €, €) generates all configurations of the
form (q,q’, w,w’) for any w,w' € M*



Predecessor Computation

e Let S be a finite set of configurations that represent the
upward closed set of configurations

St={{p,h) | {p,H) €S, h(c) = H(c) for each c € C}

e We can compute a finite set S’ that represents the set of
one-step predecessors:

pre(S) ={v|v=1" €S}



Predecessor Computation: Example

e Consider the configuration (g, ab) (1 process, 1 FIFO channel)

e With the transition (p,!a, g) we compute minimal elements
like: (p,c = ab) (a is enqueued but then it got lost)

(p, wiawpbws) — (q, wiawabwsa) ~~ (g, wyawp bws)

e With the transition (p, 7c, q) we compute minimal elements
like (p, cab) (¢ must be in the head)

(p, wicwaawsbwy) ~~ (q, cwprawzbwaa) ~~ (q, woaws bwa)



Backward Reachability

e We can use a symbolic backward reachability algorithm:
e Minimal configurations to represent upward closed (infinite)
sets of configurations
e We symbolically compute predecessors (stored in Reach)
e We test entailment by comparing minimal configurations
e Correctness
Y0 = (qo,---,qo,€,...,€) € Reach iff yg =* v € Target,

e Termination ensured by the wqo of <



Complexity and Other Properties

e Terriblel!

e Complexity of reachability in Lossy FIFO Channel Systems is
non-primitive recursive

e The approach does not work for all temporal properties, e.g.,
repeated reachability of a control state (i.e. visiting a state
infinitely often) is undecidable



Backward vs Forward

e |t is possible to use a special class of regular expressions called
S.R.E. to effectively compute one-step successors
Post(S) ={y' [ v=1,v€ S}

e However, the are no guarantees of termination

e Forward analsis is implemented in the tool TREX developed at
Liafa



