
Constraint-based Model Checking



Towards Infinite-state Model Checking

Given an infinite structure M a state s and a CTL property ϕ, does
M, s |= ϕ hold?
Let’s try to reformulate the CTL framework here:

• Symbolic Representation
State = assignment to variables of heterogenous type (bool,
int, . . . )
Transition relation = ?
Predecessor relation Pre = ?

• Model Checking Algorithms (?)
Fixpoint computation using ? as symbolic representation of
infinite sets of states



Constraint Systems

Fixed an interpretation domain D, a Constraint System is a tuple
〈C,⊑〉 such that

• C is a denumerable set of constrains

• the denotation [[ϕ]] of ϕ ∈ C is a subset of D

• The entailment relation ⊑ is an ordering between constraints
in C such that ϕ ⊑ ψ implies [[ψ]] ⊆ [[ϕ]]



Constraints as Assertional Language

We use constraints to represent infinite sets of states.

• Minimal requirements for Reachability Properties
The property and the initial states are expressible in C
Entailment of constraints is decidable
There is algorithm for computing Pre∃

• Symbolic Representation
Transition relation = Disjunction of constraints
Predecessor relation = Disjunction of existentially quantified

constraints



Orderings on Sets of Constraints

The entailment relation ⊑S is defined as the following ordering
between finite sets of constraints:

• S ⊑ S ′ iff for each ψ ∈ S ′ there exists ϕ ∈ S s.t. ϕ ⊑ ψ

• S ⊑ S ′ implies [[S ′]] ⊆ [[S ]] where [[S ]] is the natural extension
of [[·]] to sets of constraints



Examples of Assertional Languages

• Boolean Constraints
OBDDs [Bryant]

• Presburger Arithmetics (Integer Linear Constraints)
Omega Library

• Linear Arithmetic Constraints over Reals
Polyhedra Libraries)

• Composite Constraints = BDD + Presburger Arithmetics
Action Language Verifier (ALV)

• Automata
Word and Tree Automata [Regular model checking]



Constraint-based Backward Reachability

Goal is to prove AG(¬B) = ¬EF(B), i.e., from states in [[ϕ0]] we
cannot reach states in [[B]], where B is a set of constraints that
represents ”bad states”

• We compute Pre∗(B), using ⊑s to discard redundant
constraints

• If the computation terminates, we check [[ϕ0]]∩ [[Pre∗(B)]] = ∅

• Termination is not guaranteed in general!

• Tools like HyTech and ALV may not terminate



A General Framework for Termination

• The use of the theory of well-quasi orderings combined with
constraints as symbolic representation of infinite set of states
leads to many interesting classes of decidable verification
problems

• Some examples are
• Lossy FIFO Channel Systems
• Parameterized Systems
• Timed Automata
• Petri Nets
• Timed Petri Nets
• Data Nets



Well-quasi Ordering (wqo)

• A quasi (reflexive and transitive) ordering 〈A,�〉 is a
well-quasi ordering (wqo) if for any infinite sequence of
elements a0a1a2 . . . there exist i < j s.t. ai � aj

• A wqo is
• well-founded (it does not contain infinite strictly decreasing

sequences)
• it has no infinite antichains (sequences of pairwise

incomparable elements)



Examples of wqo

• For a finite set A, 〈A,=〉 is a wqo

• 〈Nat,≤〉 is a wqo



Examples of NON wqo

• 〈Int,≤〉 is NOT a wqo
(it is not well founded)

• 〈Nat, |〉 where n|m iff if n divides m without remainder is
NOT a wqo
(prime numbers form an antichain)

• The lexicographic order is NOT a wqo



Dickson’s Lemma

• Nat: natural numbers

• Natk : tuples of k natural numbers

• 〈a1, . . . , ak〉 � 〈b1, . . . , bk〉 iff ai ≤ bi for i : 1, . . . , k is a wqo



Higman’s Lemma: Finite Sets

• Let 〈A,�〉 be a WQO

• FSet(A) be the set of finite sets of elements in A

• B = {a1, . . . , an} ⊑s B
′ = {a′1, . . . , a

′
m} iff there exists

injective and monotonic h : [1, . . . , n] → [1, . . . ,m] s.t.
ai � ah(i)

′ for i : 1, . . . , n

• 〈FSet(A),⊑s〉 is a wqo



Higman’s Lemma: Bags

• Let 〈A,�〉 be a wqo

• Bag(A) be the set of multisets with elements in A.

• B = [a1, . . . , an] ⊑b B ′ = [a′1, . . . , a
′
m] iff there exists injective

h : [1, . . . , n] → [1, . . . ,m] s.t. ai � ah(i)
′ for i : 1, . . . , n

• 〈Bag(A),⊑b〉 is a wqo



Higman’s Lemma: Words

• Let 〈A,�〉 be a wqo

• Word(A) be the set of words with elements in A.

• B = a1 · . . . · an ⊑w B ′ = a′1 · . . . · a
′
m iff there exists injective

and monotonic h : [1, . . . , n] → [1, . . . ,m] s.t. ai � ah(i)
′ for

i : 1, . . . , n

• 〈Word(A),⊑w 〉 is a wqo



Applications of Higman’s Lemma

• Let Σ be a finite alphabet

• Σ∗: finite words over Σ

• v � w defined as v is a subword of w is a wqo

• ΣB : finite bags over Σ

• B � B ′ defined as B is a submultiset of B ′ is a wqo



More on Finite Sets

• Let 〈A,�〉 be a wqo

• FSet(A) be the set of finite sets of elements in A.

• B = {a1, . . . , an} ⊑s B
′ = {a′1, . . . , a

′
m} iff there exists

h : [1, . . . ,m] → [1, . . . , n] s.t. ah(j) � a′j for j : 1, . . . ,m

• 〈FSet(A),⊑s〉 is not always a wqo



Other Examples

• Kruskal’s Theorem: Embedding between finite trees with
nodes labeled by elements of a wqo

• Robertson-Seymour’s Theorem: Finite graphs ordered by the
graph minor relation is a wqo

• Ding’s Theorem: Finite graphs with bounded paths ordered by
the (induced) subgraph relation



Back to Constraint-based MC: Property

Let 〈C,⊑〉 be a constraint system in which ⊑ is a wqo

• Let Si ⊆ C for i ≥ 0

• for each infinite chain S0 ⊆ S1 ⊆ S2 ⊆ . . . Si . . ., there exists
i < j s.t. Si ⊑s Sj

It only works for increasing chains (not generic sequences)



Constraint-based Backward Reachability

Assumptions:

• 〈C,⊑〉 is a wqo

• C is closed under application of Pre∃,

• there is an algorithm to compute Pre∃ for any S ⊆ C
• It is often the case that

Pre({ϕ1, . . . , ϕn}) =
⋃

t∈T ,i∈[1,...,n] Pret(ϕi )

• there is an algorithm to check [[ϕ]] ∩ [[S ]] = ∅ for any ϕ ∈ C
and S ⊆ C

Then, symbolic backward reachability is guaranteed to terminate



Perfect Channel Systems



Perfect Channel Systems

• A finite number of processes communicating via FIFO
channels

• Each process is finite state

• FIFO Channels are unbounded



Definition

• C is a finite set of channel names

• M is a finite set of message names

• Act = {τ} ∪ {c .send(m), c .rec(m), c .empty | c ∈ C ,m ∈ M}

• A process is defined as an automata P = {Q,Q0, δ}, where
• Q is a set of control states
• Q0 ⊆ Q is a set of initial control states
• δ ⊆ (Q × Act × Q) is the transition relation



Configurations with n-processes

A system configuration with n processes is a tuple

γ = {q1, . . . , qn, h}

where

• qi ∈ Q for i : 1, . . . , n (control state of i-th process)

• h : C → M∗

• h(c) is the word that encodes the current content of channel c



Operational Semantics

A transition

γ = {q1, . . . , qi , . . . , qn, h} → {q1, . . . , q
′

i , . . . , qn, h
′}

occurs when

• 〈qi , τ, q
′

i 〉 ∈ δ;

• 〈qi , c .empty , q′i 〉 ∈ δ and h′(c) = h(c) = ∅ (c is empty);

• 〈qi , c .send(m), q′i 〉 ∈ δ and h′(c) = h(c) ·m (m is enqueued
in c);

• 〈qi , c .rec(m), q′i 〉 ∈ δ and h(c) = m · h′(c) (m is dequeued
from c).

where · = concatenation of words



Control state reachability problem

• Let {q0, . . . , q0, h} with h(c) = ∅ for each c ∈ C .

• Can we reach a configuration in which a process is in control
state q?



State-space exploration?

• FIFO channels can grow unboundedly!

• E.g. a process can repeatedly send the same set of messages
like in the loop 〈q, c!m, q〉

• The state-space to explore to solve the control state
reachability problem is potentially infinite



Can we solve control state reachability?

• It is possible to reduce the reachability problem for counters
machines to control state reachability of communicating
automata

• A counter machine is defined over K counters (integer
variables) X1, . . . ,XK and has instructions to increment,
decrement, test a variable (= 0), and goto jumps.



Counter system →֒ channel systems

We associate channel cX to variable X :

X = m iff cX = a · . . .m-times . . . · a

• Instruction ℓ : if X = 0 goto ℓ′ becomes 〈ℓ, cX .empty , ell ′〉

• Instruction ℓ : X ++ becomes 〈ℓ, cX .send(a), ell
′〉

• Instruction ℓ : X −− becomes 〈ℓ, cX .rec(a), ell
′〉



Back to control state reachability

• A counter machine with K counters stops in location ℓ iff the
corresponding system of communicating automata with one
process and K channels reaches the same location

• The halting problem of counter systems is undecidable

⇒

Control state reachability of channel systems is undecidable



Lossy Channel Systems



Perfect vs Lossy Communication

• We have considered perfect communication systems
• the order of messages is preserved
• messages cannot get lost

• However communication channels are often ”unreliable”



Unreliable Channel Systems: Unordered Channels

• Assume that the ordering is not preserved, i.e., messages can
be inserted in any position in the channel



Unreliable Channel Systems: Unordered Channels

• Assume that the ordering is not preserved, i.e., messages can
be inserted in any position in the channel

• Channels can be represented as bags of symbols in M



Unreliable Channel Systems: Unordered Channels

• Assume that the ordering is not preserved, i.e., messages can
be inserted in any position in the channel

• Channels can be represented as bags of symbols in M

• We can still use unordered channels to encode counters!
Control state reachability is still undecidable



Unreliable Channel Systems: Lossy FIFO Channels

• Messages can get lost, the order is preserved



Operational Semantics with Message Loss

We compose → (semantics with perfect channels) with a lossy
step  :

{s, h} ⇒ {t, h′}
iff

{s, h} {s, h1} → {t, h2} {t, h′}

s.t. h1(c) is a subword of h and h′(c) is a subword of h2(c) for
each c ∈ C



Control State Reachability

• Can we still encode counter machines using lossy channels?



Control State Reachability

• Can we still encode counter machines using lossy channels?

• No, the encoding of counters with channels is inaccurate (we
can model lossy counters)



Control State Reachability

• Can we still encode counter machines using lossy channels?

• No, the encoding of counters with channels is inaccurate (we
can model lossy counters)

• Some hope to obtain an algorithm for checking control state
reachability!



Observation I

• Assume 〈s, h1〉 ⇒ 〈s, h2〉 and let h′1 s.t. h1(c) is a subword of
h′1(c) for every c ∈ C

• There exists 〈s, h′2〉 s.t. 〈s, h
′

1〉 ⇒ 〈s, h′2〉

• In other words ⇒ is monotonic w.r.t. the following ordering
〈s, h〉 � 〈t, h′〉 iff

• s = t
• h(c) is a subword of h′(c) for every c ∈ C



Observation II

• Target set T : any configuration of the form 〈s, h〉 where q

occurs in s for an arbitrary function h (i.e. arbitrary content
of channels in C )

• T is upward closed w.r.t. �, i.e., if 〈s, h〉 ∈ T and
〈s, h〉 � 〈s, h′〉, then 〈s, h′〉 ∈ T

• If 〈s, h1〉 ⇒ 〈s ′, h2〉 ∈ T , and 〈s, h1〉 � 〈s, h′1〉, then
〈s, h′1〉 ⇒ 〈s ′, h′2〉 and 〈s ′, h2〉 � 〈s ′, h′2〉

• In other words from the monotonicity property we have that if
I is an upward closed set of configurations, then Pre(I ) is still
upward closed



Property of subword relation

The subword relation �s is a well-quasi ordering [Higman’s
Lemma]

• No bad sequences:
For any infinite sequence w1, . . . ,wi , . . . of words, there exist
i < j s.t. wi � wj

• Finite basis property:
Any upward closed set (w.r.t. �s) of words has a finite set of
minimal elements, i.e., upward closed sets can be represented
in a finite way



Target states

• Targetq = upward closed set represented by the set of
minimal elements of the form 〈s, h〉 where s any contains q
and h(c) = ǫ for each c ∈ C (ǫ=empty string)

• For instance, 〈q, q′, ǫ, ǫ〉 generates all configurations of the
form 〈q, q′,w ,w ′〉 for any w ,w ′ ∈ M∗



Predecessor Computation

• Let S be a finite set of configurations that represent the
upward closed set of configurations

S ↑= {〈p, h〉 | 〈p, h′〉 ∈ S , h(c) � h′(c) for each c ∈ C}

• We can compute a finite set S ′ that represents the set of
one-step predecessors:

pre(S) = {γ | γ ⇒ γ′ ∈ S}



Predecessor Computation: Example

• Consider the configuration 〈q, ab〉 (1 process, 1 FIFO channel)

• With the transition 〈p, !a, q〉 we compute minimal elements
like: 〈p, c = ab〉 (a is enqueued but then it got lost)

〈p,w1aw2bw3〉 → 〈q,w1aw2bw3a〉 〈q,w1aw2bw3〉

• With the transition 〈p, ?c , q〉 we compute minimal elements
like 〈p, cab〉 (c must be in the head)

〈p,w1cw2aw3bw4〉 〈q, cw2aw3bw4a〉 〈q,w2aw3bw4〉



Backward Reachability

• We can use a symbolic backward reachability algorithm:
• Minimal configurations to represent upward closed (infinite)

sets of configurations
• We symbolically compute predecessors (stored in Reach)
• We test entailment by comparing minimal configurations

• Correctness
γ0 = 〈q0, . . . , q0, ǫ, . . . , ǫ〉 ∈ Reach iff γ0 ⇒

∗ γ ∈ Targetq

• Termination ensured by the wqo of �



Complexity and Other Properties

• Terrible!

• Complexity of reachability in Lossy FIFO Channel Systems is
non-primitive recursive

• The approach does not work for all temporal properties, e.g.,
repeated reachability of a control state (i.e. visiting a state
infinitely often) is undecidable



Backward vs Forward

• It is possible to use a special class of regular expressions called
S.R.E. to effectively compute one-step successors
Post(S) = {γ′ | γ ⇒ γ′, γ ∈ S}

• However, the are no guarantees of termination

• Forward analsis is implemented in the tool TREX developed at
Liafa


