
Design-Based Pointcuts Robustness
Against Software Evolution

Walter Cazzola1, Sonia Pini2, and Ancona Massimo2

1 Department of Informatics and Communication,
Università degli Studi di Milano, Italy

cazzola@dico.unimi.it

2 Department of Informatics and Computer Science
Università degli Studi di Genova, Italy
{pini|ancona}@disi.unige.it

Abstract

Aspect-Oriented Programming (AOP) is a powerful technique to better modularize object-oriented programs
by introducing crosscutting concerns in a safe and noninvasive way. Unfortunately, most of the current join point
models are too coupled with the application code. This fact harms the evolvability of the program, hinders the
concerns selection and reduces the aspect reusability. To overcome this problem is an hot topic.

This work propose a possible solution to the limits of the current aspect-oriented techniques based on model-
ing the join point selection mechanism at a higher level of abstraction to decoupling base program and aspects.

In this paper, we will present by examples a novel join point model based on design information (e.g., ex-
pressed through UML diagrams). Design information provides an high-level view on the application structure
and behavior decoupled by base program. A design oriented join point model will render aspect definition more
robust against base program evolution, reusable and independent of the base program.

1 Introduction
Aspect-oriented programming (AOP) is a powerful technique to better modularize object-oriented programs by
introducing crosscutting concerns in a safe and noninvasive way. Each AOP approach is characterized by a join
point model (JPM) consisting of the join points, a means of identifying the join points (pointcuts) and a means of
raising effects at the join points (advice). Crosscutting concerns may not be well modularized as aspects without
an appropriate join point definition that covers all the interested elements, and a pointcut definition language that
allows the programmer of selecting them.

Traditionally, the pointcuts allow the programmer of selecting the join points on the basis of the program lexical
structure, such as explicit program elements names. The dependency on the program syntax renders fragile the
pointcuts definition [2, 11] and strictly couples an aspect to a specific program harming the evolvability [15] and
hindering the aspect reusability [7].

At the moment, aspects are not robust against evolutions in the base program. This is because pointcut defi-
nitions typically rely heavily on the structure of the base program. This tight coupling of the pointcut definitions
to the base program’s structure can seriously hinder the software evolution. Thus, this implies that all pointcuts of
each aspect need to be checked and possibly revised whenever the base program evolves.

To get the obliviousness [3] the aspect programmer should be unaware of the structure and syntax of the base-
level program to apply its aspects as well as the base-level programmer must be unaware of the additional aspects.
To get a total obliviousness1 means also to decouple the aspect definitions from the dependency on the structure
and syntax of the program they advice, solving the abovementioned problems.

Therefore, the required enhancement should consist of developing a pointcut definition language that supports
join points selection on a more semantic way. To provide a more expressive and semantic-oriented selection
mechanism means to use a language that captures the base-level program behavior and properties abstracting from
the syntactic details. Several attempts in this direction have been done but none of these really approaches the
problem in its entireness and in general they raise also new issues, such as efficiency and flexibility. We think
that the design information provides a more suitable representation to abstract join points identification from the
base-code structure and syntax.

In this paper, we propose a design oriented join point model that should offer the right level of abstraction
from the base-code. In particular, in our proposal, join points are described by means of UML-like descriptions

1As total obliviousness, we mean the unawareness of the base-level program of the existence of the aspects and vice versa.

1

(basically, activity and sequence diagrams) representing computational patterns, these elements are called join
point patterns. In other word, we propose of using an enriched UML diagrams (or portion of) to describe the
control flows or the computational contexts and the join points inside these contexts to detect possible woven
points. Pointcuts consist of logic composition of join point patterns. In this way, pointcuts are not tailored on the
program syntax and structure but they are more general.

The rest of the paper is organized as follows: in section 2 we overview the limitations against the software
evolution of the AspectJ-like join point models, in section 3 we introduce our join point model and in particular
the concept of join point pattern, finally, in section 4 and in section 5 we face some related works and draw out
our conclusions.

2 Limits of the AspectJ-Like JPM against Software Evolution
The join point model has a critical role in the applicability of the aspect-oriented methodology. As stated by
Kiczales in his keynote at AOSD 2003 [9] the pointcut definition language has the most relevant role in the success
of the aspect-oriented technology.

Most of the AOP approaches use a join point model similar to that of AspectJ [10]. It exploits a dynamic
call graph [6] to select the correct join points. The AspectJ pointcut language offers a set of primitive pointcut
designators, such as call, get and set specifying a method call and the access to an attribute. These primitive
pointcut designators can be combined using logical operations (||, &&, !) forming more complex pointcuts. All the
pointcut designators expect, as an argument, a string specifying a pattern for matching method or field signature.
These string patterns introduce a real dependency of the syntax of the base code.

Therefore, most AOP approaches have a tight coupling between aspects and base program, even if the aspect
definition is syntactically separated from the base program, changes to the base program can immediately require
changes to the aspect definition. Intuitively, since pointcuts capture a set of join points based on some structural or
syntactical property, any change to the structure or syntax of the base program could also change the applicability
of the pointcuts and the set of captured join points. This is in direct contrast with the general aim of AOP, that is,
to make programs easy to read, manage and evolve, by providing new modularization mechanism.

Pointcut heavily relies on how the software is structured at a given moment in time. In fact, the aspect developer
subsumes the structure of the base program when he/she defines the pointcuts; the name conventions are an example
of this subsumption. The aspect developer implicitly imposes some design rules that the base program developer
has to follow when evolves his program to be compliant with the existing aspects and avoid of selecting more or
less join points than expected. In this case, problems with evolution and obliviousness depend also of the need of
guessing these, often silent, conventions.

These rules derive from the fact that pointcuts often express semantic properties about the base program in
terms of its structural properties. For example, the following setterAccess() pointcut should capture all the
methods that modify the state of the object.

pointcut setterMethod() : call(* set*(..));

To define this semantic property, the pointcut relies on the coding convention that the name of this kind of
methods always starts with the prefix set. Since the rule subsumed by this pointcut is not imposed by any mecha-
nism, not all developers need to be aware of its existence and, consequently, of having to respect it; in practice this
rule gets broken very often. During the base program evolution new methods can be added and existing ones can
be removed such that they are captured by the pointcut definition only if they follow the naming convention.

Since, the problem of the evolution in aspect-oriented programs is mainly that the set of join points captured
by a pointcut may change when changes are made to the base program,m even though the pointcut definition itself
remains unaltered. Then, to avoid this problem we need a low coupling of the pointcut definition with the source
code.

3 Design-Based Pointcut Language
Design information (UML diagrams, formal techniques and so on) provides the right level of abstraction necessary
to have a global and static view of the system and to select the join points thanks to their properties and where
they are located (i.e., the context) [2], and then to obtain a more robust pointcut mechanism against the software
evolution. We propose to tackle the join point model problems by selecting the join points in terms of the base
program design information.

2

Model-based pointcut definitions are less subject to the fragile pointcut problem [11], and then they are more
robust against evolution problems, because they are not defined in terms of how the program is structured at a
certain point in time. Since, model-based pointcut definitions are decoupled from the structure and syntax of the
base program, the fragile pointcut problem is transferred to a more conceptual level. By defining pointcuts in
terms of a design model, the fragile pointcut problem has now been translated into the problem of keeping the right
localization of the design context and the join points into the base program.

The pointcut definition mechanism we are proposing, called join point pattern specification language selects
the join points in terms of the base program design information. The application design information provides an
abstraction over the application structure. Thanks to this abstraction, the join point patterns can describe the join
point position in terms of the application behavior rather than its structure. In other words, we achieve a low
coupling of the pointcut definitions with the source code since the join point pattern definition is defined in terms
of design model rather than directly referring to the implementation structure of the base program itself.

The join point patterns are graphically specified through a UML-like description — sequence and activity
diagrams. A visual approach is more clear and intuitive and makes more evident the separation from the program
source code. Finally, UML-like approach is not limited to a specific programming language but can be used in
combination with many. At the moment, we are using the Poseidon4UML program for depicting the join point
patterns but we are developing an ad hoc interface for that.

In general, software evolution involves both structural (e.g., add classes, methods, fields and so on) and behav-
ioral changes, then the pointcuts can affect both the structure and the behavior. In this paper, we only focus on the
behavioral join point pattern definition; since affecting the application structure simply consists on introducing and
removing elements and can be faced as explained in [1].

3.1 The Join Point Pattern Specification Language
In this paper, we borrowed the terms join point and pointcut from the AspectJ terminology but we use them
with a slightly different meaning. The join points are hooks where code may be added rather than well defined
points in the execution of a program. Whereas, the poitcuts refer to a set of join points. To complete the picture of
the situation, we have introduced a new concept: the join point pattern as a template on the application behavior
identifying the join points in their context. These patterns provide an incomplete and parametric representation of
the application behavior.

In addition to decoupling the pointcut definitions from the base code, design-based join point patterns are less
fragile to evolution of the base program because the pointcut definitions are based on composition of join points,
that are no-linked to the application structure and syntax but linked to the behavior of the application.

A join point pattern is a sample of the computational flow described by using a behavioral/execution flow
template. The sample does not completely define the computational flow but only the portions relevant for the
selection of the join points. The set of all defined join point patterns is called join point pattern space. Each join
point pattern can describe and capture many join points; these join points are captured together but separately
advised. Pointcuts are expressed as a logic combination of one or more join point patterns.

Now, we will explain the join point pattern definition language “syntax” by examples. Let us consider the
implementation of the observer pattern [4] as an aspect to observe the state of a buffer. The Buffer instances
originally support only two kinds of operations: to retrieve (get) and to insert (put) elements in the buffer. The
observer will monitor the work of these tow family of methods.

In the left side of Fig. 1, we show an abstract aspect (written in AspectJ) that implements the observer pattern
behavior with two possible concrete implementation of its pointcuts. The use of an abstract aspect is a way to
decouple the crosscut definition from the aspect. The first concrete aspect is based on enumerating the method
calls of the base-program, whereas the second one is based on the use of name conventions and wildcards. Both
these concrete aspects capture all the interested join points in the case of a buffer implementation which respects
the implicit programming conventions proposed from the problem statement, but what happens when the buffer
class evolves in a way that violates the self-imposed programming conventions?

To answer to this question, we consider few possible evolutions of the Buffer class. First case, we add a
method "void putAll(int [])" to the Buffer class. This event breaks the first concrete aspect because the
new method is not listed in the p() pointcut. To maintain the expected behavior of the aspect, the pointcut must
be modified to include also the new method. The second concrete aspect is more robust and the new method is
automatically captured by it because it respects the naming conventions and start by put.

Now, let us consider a new change: a method returnElements is added. This new method returns a collection
with a specified number of elements from the buffer. In this case, both first and second concrete aspect do not
capture the join points introduced by calling the new method. The first for the same reason raised in the previous

3

abstract aspect Observer {

void notify() { ... }

abstract pointcut p();

abstract pointcut c();

after(): p() {notify();}

after(): c() {notify();}

}

aspect Observing1 extends Observer {

pointcut p(): call(void Buffer.put(int));

pointcut c(): call(void Buffer.get());

}

aspect Observing2 extends Observer {

pointcut p():within(Buffer) && call(* put*(*);

pointcut c():within(Buffer) && call(* get*(*));

}
produce, consume

ObserverPattern

context

meta−variable

Buffer

Field

method−variable

any foo(..)

«exactmatch»

*.foo(..)

use *.Field in left
use (*.Field in right) or

(*.Field in return)

«joinpoint produce» «joinpoint consume»«or»

«method» «method»

Figure 1: The Observer Aspect.

example and the second since the name of the new method does not respect the self-imposed conventions.
On the right side of Fig. 1, we show a join point pattern that captures all the method calls which change the

state of the Buffer class, i.e., our join point pattern can capture both the calls to methods that retrieve data from
the buffer and that introduce data in the buffer.

The behavior we are looking for is characterized by: i) the call to a method with any signature, ii) whose
body either assign anything to a field of the target object (to select the put method family) or, either assign a
field of the target object to anything or return a field of the target object (to select the get method family). This
join point pattern explicitly refers to the concept of a method that change the Buffer state rather than trying to
capture that concept by relying on implicit rules about the program implementation structure. Consequently, the
pointcut defined using this pattern does not need to be verified or changed to be compliant with the evolution of the
base program: if the context of the pattern correctly classifies all methods which change Buffer state, the point-
cut remains correct. By using our ObserverPattern the new putAll(int []), and returnElements(int)
methods will be automatically captured.

The activity diagram describes the context where the join points could be found, more details are used to
describe the context and more the join point pattern is coupled to the application code. The use of meta variables
grants the join point pattern independence from a specific case. In the example, foo and Field are meta-variables,
respectively a method meta-variable, i.e., a variable representing a method name and a variable meta-variable, i.e.,
a variable representing a variable name. In this example the method signature is not specified, therefore any method
call could be captured if it has the right behavior independently of its signature. If necessary, type meta-variable,
i.e., a variable whose values range on types, can be used to define the method signature. Meta-variables got a value
during the pointcut evaluation and their values can also be used by the advice.

In the caller swimlane2, we look for the invocation of the foo(..)3 method whereas in the callee swimlane
we look at the method body for either the assignment to a generic class field or, either the use of generic class
field into the right of an assignment or the use of the field in a return statement. The former should be an exact
statement match, — i.e., we are looking for exactly that call — whereas in the latter we are looking for a specific
use of a field in the whole method body. This difference can be expressed by using the join point pattern syntax
and a couple of stereotypes:

• a yellow rounded rectangle, called template action, indicates that we are looking for the use of a meta-
variable in the next statements, a stereotype set a constraint for the searching scope; �method� limits to the
method body whereas �block� limits to the current block;

• we can look for the use of a meta-variable in a left (left) or right (right) part of an assignment, in a
boolean expression (booleanCondition), in a generic statement (statement), and in a return statement
or in their logic combination;

2A swimlane is a way to group activities performed by the same actor/object.
3Please note that foo(..) is meta-variable and method signature is not specified.

4

• a red rounded rectangle, called (according to UML) action, indicates one or more instructions, expressed
following the Java syntax; the names used inside this block can be either meta-variables, constant variable
names or if not useful to the pattern definition indicated as (i) with i ∈ N.

The join point possible location is indicated by the �joinpoint� stereotype attached to a green arrow. Each
join point pattern can describe the context for many join points that can be located by using a �joinpoint� stereo-
type with a different name. All the captured join points are listed in the window in the low-right corner of the join
point pattern specification. In Fig. ?? we have two different join points called respectively produce and consume.

We have adopted a loose approach to the description of the computational flow. In the join point pattern based
on activity diagrams, according with their color, the arrows connecting two elements express that one follows
immediately the other (red arrow), or (black arrow) one follows the other but not immediately, i.e., several other
(not relevant) actions could happen before the second action, the number of actions that could happen is limited by
the scope.

Our join point model is strictly based on the structure of the computational flow, so we don’t need to differenti-
ate between before and after advice but we can simply attach the �joinpoint� stereotype in the right position,
i.e., before or after the point we would like to advice. A special case is represented by the around join point pat-
terns which match portions of the behavior instead of a single point; the whole matched portion represents the join
point and will be substituted by the advice code.

3.2 Aspects that Use Join Point Patterns
The showed join point pattern simply describes where the join points can be found, to complete the process we
must declare an aspect where the join point pattern is used to associate the advice code at the interested join points.

The aspect definition, like in most AOP languages, includes pointcuts definition and advices linked to these
pointcuts. Moreover, the aspect must declare all the join point patterns it uses and which join points it imports
from them. Both pointcuts and advices will use these information in their definition.

The following Observer aspect imports the produce and the consume join points from the ObserverPattern
join point pattern.

public aspect Observer {

void notify() { ... }

public joinpointpattern ObserverPattern(produce, consume);

public pointcut p(): produce();

public pointcut c(): consume();

advice() : p() {notify();}

advice() : c() {notify();}

}

4 Related Works
This paper propose to decoupling base programs and aspects using an UML-based join point model by approaching
the join points selection on a less syntactical and structural basis. To get a semantic join point model to avoid the
fragile pointcut problem is a quite hot topic and several approaches are currently under investigations.

In [13], Noguera et al. present a mechanism to express type-safe source code templates in pure Java that
improves the expressiveness of pointcut languages. To have a more semantic pointcut language, they propose to
match, not only on the signature, but also on the structure of the method. They propose a way to extend AspectJ
pointcut language with structural constructs in the form of typesafe native Java source code templates, where
templates, define a source code model in which some elements are variable. The basic idea is similar, i.e., identify
join points not only on the base of method signature but also on method behavior.

In [7] Kellens et al. propose a novel technique of model-based pointcuts, which translates the fragile pointcut
problem to a more conceptual level where it is easier to solve. This is done by decoupling the pointcut definitions
from the actual structure of the base program, and defining them in terms of a conceptual model of the software
instead.

In [5] Gybels et al. present a logic-based crosscut language, called CARMA. The use of a crosscut language
based on logic programming it gets the use of unification as a more advanced wildcard mechanism, the use of logic
rules for writing reusable pointcut.

5

In [8] Kellens et al. present a method for keeping the conceptual model documentation consistent with the
source code when the program evolves. In particular they implement a particular solution to the fragile point-
cut problem through an extension of the CARMA aspect language combined whit the formalism of intensional
views [12].

Pointcut delta analysis [14] tackles the fragile pointcut problem by analyzing the difference in captured join
points, for each pointcut definition, before and after an evolution. Their approach to deal with the fragile pointcut
problem for current languages.

Although such expressive pointcut languages permit to render pointcut definitions much less fragile, but none
of these languages approaches the problem in its entireness. A pointcut definition still needs to refer to specific
base program structure or behavior to specify its join points. This dependency on the base program remains an
important source of fragility.

5 Conclusions
Current AOP approaches suffer from well known problems that rely on the syntactic coupling established between
the application and the aspects. This is a serious inhibitor to evolution of aspect-oriented programs. A common
attempt to give a solution consists of freeing the pointcut definition language from these limitations by describing
the join points in a more semantic way.

This paper shows the robustness against evolution of a design-based approach to join points identification. This
approach allows of decoupling aspects definition and base-code syntax and structure, and of rendering the pointcut
definitions less fragile against the base program evolution. Pointcuts are specified using UML-based join point
pattern. More precisely, a join point pattern is a template on the application behavior identifying the join points in
their context. In particular join points are captured when the pattern matches portion of the application behavior.

Compared with current approaches, we can observe some advantages; first of all, we have a pointcuts definition
more behavioral. In the join point pattern definition we identify the context of the computational flow we want to
match, and precise point we want to capture, weaken the coupling of the aspect to the base program and hence,
providing crosscuts that are more robust towards evolution. The graphical definition of join point patterns is more
intuitively and comprehensible for programmers. Moreover, a visual view of the context in which locate the join
points would be preferred since it better demonstrates where and how an aspect can influence a program.

References
[1] Walter Cazzola, Antonio Cicchetti, and Alfonso Pierantonio. Towards a Model-Driven Join Point Model.

In Proceedings of the 11th Annual ACM Symposium on Applied Computing (SAC’06), Dijon, France, on
23rd-27th of April 2006. ACM Press.

[2] Walter Cazzola, Jean-Marc Jézéquel, and Awais Rashid. Semantic Join Point Models: Motivations, No-
tions and Requirements. In Proceedings of the Software Engineering Properties of Languages and Aspect
Technologies Workshop (SPLAT’06), Bonn, Germany, on 21st March 2006.

[3] Robert E. Filman and Daniel P. Friedman. Aspect-Oriented Programming is Quantification and Oblivious-
ness. In Proceedings of OOPSLA 2000 Workshop on Advanced Separation of Concerns, Minneapolis, USA,
October 2000.

[4] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Professional Computing Series. Addison-Wesley, Reading, Ma, USA, 1995.

[5] Kris Gybels and Johan Brichau. Arranging Language Features for More Robust Pattern-Based Crosscuts.
In Proceedings of the 2nd Int’l Conf. on Aspect-Oriented Software Development (AOSD’03), pages 60–69,
Boston, Massachusetts, April 2003.

[6] Erik Hilsdale and Jim Hugunin. Advice Weaving in AspectJ. In Proceedings of the 3rd Int’l Conf. on
Aspect-Oriented Software Development (AOSD’04), pages 26–35, Lancaster, UK, March 2004.

[7] Andy Kellens, Kris Gybels, Johan Brichau, and Kim Mens. A Model-driven Pointcut Language for More
Robust Pointcuts. In Proceedings of Software engineering Properties of Languages for Aspect Technologies
(SPLAT’06), Bonn, Germany, March 2006.

6

[8] Andy Kellens, Kim Mens, Johan Brichau, and Kris Gybels. Managing the Evolution of Aspect-Oriented
Software with Model-based Pointcuts. In Proceedings of the 20th European Conference on Object-Oriented
Programming (ECOOP’06), Nantes, France, July 2006. Springer.

[9] Gregor Kiczales. The Fun Has Just Begun. Keynote AOSD 2003, Boston, March 2003.

[10] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeff Palm, and Bill Griswold. An Overview of
AspectJ. In Proceedings of the 15th European Conference on Object-Oriented Programming (ECOOP’01),
pages 327–353, Budapest, Hungary, June 2001. ACM Press.

[11] Christian Koppen and Maximilian Störzer. PCDiff: Attacking the Fragile Pointcut Problem. In Proceedings
of the European Interactive Workshop on Aspects in Software (EIWAS’04), Berlin, Germany, September 2004.

[12] Kim Mens, Andy Kellens, Frédéric Pluquet, and Roel Wuyts. Co-evolving Code and Design Using Inten-
sional Views - A Case Study. Journal of Computer Languages, Systems and Structures, 32(2):140–156,
July/October 2006.

[13] Carlos Noguera and Renaud Pauwlak. Open Static Pointcuts Through Source Code Templates. In Proceed-
ings of Open and Dynamic Aspect Languages Workshop (ODAL’06), Bonn, Germany, March 2006.

[14] Maximilian Störzer and Jürgen Graf. Using Pointcut Delta Analysis to Support Evolution of Aspect-Oriented
Software. In Proceedings of the 21st IEEE International Conference on Software Maintenance (ICSM’05),
pages 653–656, Budapest, Hungary, September 2005.

[15] Kevin Sullivan, William G. Griswold, Yuanyuan Song, Yuanfang Chai, Macneil Shonle, Nishit Tewari, and
Hridesh Rajan. On the Criteria to be Used in Decomposing Systems into Aspects. In Proceedings of the
European Software Engineering Conference and ACM SIGSOFT Symposium on the Foundations of Software
Engineering (ESEC/FSE 2005), Lisbon, Portugal, September 2005.

7

	1 Introduction
	2 Limits of the AspectJ-Like JPM against Software Evolution
	3 Design-Based Pointcut Language
	3.1 The Join Point Pattern Specification Language
	3.2 Aspects that Use Join Point Patterns

	4 Related Works
	5 Conclusions

