
Reflections on Programming with Grid Toolkits

Emiliano Tramontana1 and Ian Welch2

1 tramontana@dmi.unict.it,
WWW home page: http://www.dmi.unict.it/~tramonta,

Dipartimento di Matematica e Informatica, Università di Catania,
Viale A. Doria, 6 - 95125 - Catania, Italy

2 ian@mcs.vuw.ac,nz,
WWW home page: http://www.mcs.vuw.ac.nz/~ian,

School of Mathematical and Computing Sciences, Te Kura Pangarau, Rorohiko,
Victoria University of Wellington, Wellington, New Zealand

Abstract. Grid applications are fragile when changes to service imple-
mentations, non-functional properties or communication protocols take
place. Moreover, developing Grid applications with current toolkits re-
sult in a tangling of toolkit-specific and application-specific code that
makes maintenance and evolution difficult. This paper proposes solving
these problems by using reflection to open up Grid toolkits, and to allow
Grid applications to be developed as if they were centralised applica-
tions. This would allow changes to be handled dependably, and a clean
separation between toolkit-specific and application-specific code.

1 Introduction

Grid computing is concerned with “coordinated resource sharing and problem
solving in dynamic, multi-institutional virtual organisations” [Fos01]. Virtual
organisations (VOs) cover the spectrum from long-lived collaborations between
static sets of organisations to short-term collaborations between dynamic sets
of individuals. Grid applications are built out of heterogeneous resources offered
by VOs that use a range of communication technologies to interoperate.

Grid toolkits aim to simplify the task of developing Grid applications out of
Grid services. The toolkits automatically generate code for communication be-
tween clients and services but programmers must still add toolkit-specific code
to both client and service implementations, particularly if non-functional prop-
erties such as security are to be implemented. This tangling of toolkit-specific
code and application-specific code makes it difficult to maintain applications.
For example, porting existing applications to new toolkits may require manual
changes to client and service code.

As the resources comprising the VO may change while an application is run-
ning, Grid applications should be able to cope with dynamic changes such as
changes to communication protocols, service interfaces or the arrival or depar-
ture of services, Grid toolkits cannot do this transparently. There is no support
for switching communication protocols at runtime, and coping with the other
changes requires explicit programming by the application developer.



We argue that these shortcomings of existing toolkits could be addressed by
adopting work done on using reflection to treat distribution as a non-functional
concern and to open up the implementation of middleware.

2 Features of the Globus Toolkit

We use the Globus Toolkit version 3.0 (GT3) as an example of a state-of-the-art
Grid toolkit. GT3 is a next-generation implementation of the Globus Toolkit
based on Open Grid Service Architecture (OGSA) mechanisms [Fos01]. The
OGSA uses emerging web services to ease the task of building Grid programs.
The next two sections describe the limitations of GT3 with respect to distribu-
tion transparency, and transparent implement of non-functional concerns.

2.1 Distribution Transparency

The GT3 toolkit [Glo03] can automatically generate stub and skeleton imple-
mentations from a Web Services Description Language (WSDL) [CCMW01] de-
scription. This provides a degree of distribution transparency but additional
toolkit-specific code must be added to both the client and service implemen-
tation. At the client side, code must be written to explicitly bind an instance
of a stub class before using it to access the remote service. At the service side,
the service implementation must inherit from the skeleton class or provide some
additional methods to allow the skeleton to delegate operations to the service
implementation.

The current approach requires regeneration of the stub and skeleton code,
and manual changes to source code whenever the interface to services change or
what is a local resource is replaced by a service. Handling service arrival or de-
parture is supported by web service protocols but requires explicit programming
at the client side. Ideally these concerns should be transparently implemented.
This would ease maintenance and evolution as once concern could be changed
independently of the other.

2.2 Non-Functional Concerns

GT3 provides bindings that allow services to be hosted by a range of contain-
ers. These containers can transparently implement some non-functional concerns
such as security. Containers can usually either only implement a fixed set of non-
functional concerns or application-level concerns. Implementing non-functional
concerns at the infrastructure level, for example changing the underlying com-
munication protocol, cannot be done because new non-functional concerns are
implemented by intercepting application-level messages.

Ideally, the toolkit should allow new non-functional concerns to be imple-
mented at both the application and infrastructure-level. These should still be
able to be declaratively specified for a service thereby allowing a clean sepa-
ration between non-functional concerns and application code. This would aid



maintainability and evolution. Additionally, providing a facility to install or re-
move non-functional concerns at runtime would allow changes without stopping
a running application.

Although non-functional concerns can be enforced transparently at the ser-
vice side, implementing the complementary concerns at the client side requires
the programmer to add toolkit-specific code to their program. For example,
when using GT3, providing the security non-functional concern at the service
side simply requires adding security configuration information to a deployment
descriptor for the servce. However, implementing the other half of the security
concern at the client side requires some code setting the appropriate properties
for the service’s remote proxy.

Ideally, there should be the same separation of concerns on the client side
as the service side. As for the service side, these concerns should be able to
be installed and removed dynamically. Furthermore, to remove the possibility
that clients and services get out of synchronisation, there should be support for
synchronously installing and removing concerns at both the client and service
side.

3 Proposed Approach

The proposed approach aims at supporting developers building object-oriented
applications without making applications tangled with distribution related con-
cerns and without requiring programmers to change applications when an adap-
tation is required to consider new technologies.

There are two aspects to this approach. (1) Programs are developed in a
centralised manner and transparently distributed. (2) An open implementation
of GT3 is used that allows dynamic changes at runtime.

3.1 Centralised Development

The Addistant [TSCI01] system provides distributed execution of “legacy” Java
bytecode. The definition of legacy is programs that were originally developed to
be executed on a single Java virtual machine (JVM). The users of Addistant
specify the host where instances of classes are allocated, and how remote ref-
erences are implemented. Addistant automatically transforms the bytecode at
load time and uses a special configuration file to separate the specification of
class location etc. from the actual program implementation.

In order to further automate distributing a centralised Java application so
as to choose the most appropriate host for each object, a reflective software
architecture has been proposed [DSPT02]. In such an architecture, at load time
a component analyses each application class and transforms it so that allocation
of instances will be performed on the basis of the calculated class parameters and
the run time conditions of hosts and network. The architecture facilitates the
integration of additional allocation policies to be easily inserted to consider other
specific needs of classes. For example, an allocation policy could be proposed to



match the needs of a class, in terms of remote services used, with the known web
services, in order to find the most appropriate host for executing its instances.
Moreover, through interception we can potentially change method invocations
on the fly to enforce the syntax of the method allowing access to the web service.

Applying automatic bytecode transformation to the Grid environment would
allow programmers to develop centralised versions of their programs and then
transparently distribute them. This would avoid the need for inheritance or
the manual coding necessary to support the delegation approach. In addition,
should services change location then the change could be achieved by modify-
ing the specification rather than the code. Furthermore, to make an application
dynamically adaptable to changes of service location, an appropriate adaptation
component can be transparently inserted into the application when transforming
it into a distributed version. This component would dynamically check the loca-
tion of a requested service and find its new location when necessary (i.e. when
the service has migrated to a new host). Given that the Grid environment also
supports resource brokering as a first-class concept then it would make sense to
integrate this configuration with existing resource brokering technologies.

Because we are not primarily concerned with legacy code, i.e. where the
source code is unavailable, then source-based transformation could be used. This
could be useful, since the programmer could intervene to customise the code re-
sulting from the automatic transformation. However, operating transformations
on compiled code would support runtime dynamic adaptation. This would be
focus of further investigation.

Automatically transforming a centralised application into a distributed one
has two further benefits. Firstly, the selection of a primitive (i.e. socket, RMI,
GridRPC [NMS+02], etc.) that makes distributed objects communicate can be
chosen only when transforming the application, so as to fit the environment
where the application is going to be deployed. This approach makes the origi-
nal application free of remote communication primitives, thus an application is
easier to develop and evolve. Moreover, when a new mechanism is available for
a different distributed environment, only an adaptation of the transformation
tool has to be performed. Secondly, additional features can be added at trans-
formation time to consider the needs of the specific target environment. Thus,
components that make the communication reliable or that perform resource al-
location could be added both at the client and server side along with the support
for communication.

3.2 Reflective Middleware

Ideally, the declarative approach supported by existing toolkits should be re-
tained but it should be possible to easily extend toolkits to integrate new ca-
pabilities and support dynamic changes to non-functional properties. Here, we
intend to draw upon the exisiting literature on reflective middleware. Reflective
middleware can be defined as “a middleware system that provides inspection
and adaptation of its behaviour through an appropriate causally connected rep-
resentation” [Cou]. Proponents of this idea suggest that this middleware will



be able to be adapted to its environment and be able to cope with change.
For example, an application deployed on a mobile device could use middleware
that dynamically detected that the device was no longer plugged into an office
network and could switch to using GSM for communications. This would hap-
pen transparently with no requirement for changing the application itself, what
happens is that the implementation of the middleware itself is changed so the
appropriate type of communications is used. Examples of reflective middleware
are the DynamicTao [KRL+00], OpenORB [BCA+] or mCharm [Caz00].

The notion here is to open up the Grid toolkit in a principled way. The initial
target would be the communication infrastructure. A key problem, especially if
considering dynamic adaption, would be how to control the adaptation process.
One way of doing this is to use the notion of adaptation policies, as is used for
the K-Components framework [DC01]. In this framework an adaptation policy
is specified using an extended interface description language. The policy is es-
sentially a declarative language for writing reflective programs that can monitor
and reconfigure programs by modifying the metalevel. Having a policy allows
reasoning and validation of possible adaptations.

Another target would be the service container. Here the focus should be on
an infrastructure for the server side that holds information about the current ser-
vices that containers offer. This infrastructure would check at run time both the
conditions of the containers and whether some service unavailable on a container
is being requested. The aim of the infrastructure would be to dynamically and
transparently transfer the requests to other containers providing the requested
service, as appropriate.

The design of this infrastructure would be based upon the design lessons of
existing reflective middleware. Providing first-class support for dynamic evolu-
tion of Grid applications would enhance the dependability of services because
it allows clients requests to be redirected where they can be honoured, thus
avoiding failures on the client side.

4 Related Work

The most closely related work in the Grid community is Othman et. al. [ODDG]
who use OpenJava to simplify the implementation of an adaptive resource broker.
The adaptive resource broker allows running jobs to be suspended and migrated
to other hosts for execution in order to satisfy a required quality of service. Our
approach differs in that it considers the goals of making Grid toolkits easier to
use and supports dynamic adapation of non-functional concerns.

5 Conclusions

Existing Grid toolkits ease the job of the programmer but could be improved by
removing tangling between application code and toolkit code, and allow dynamic
installation and removal of non-functional concerns at both the application and
infrastructure level. In this paper we have identified related work that applies



reflection to distributed systems for similar purposes. We propose extending
this work to develop an open Grid toolkit that hides distribution and allows
a programmer to develop an application as if it was centralised rather than
distributed.

References

[BCA+] G. Blair, G. Coulson, A. Andersen, L. Blair, M. Clarke, F. Costa, H. Duran-
Limon, T. Fitzpatrick, L. Johnston, R. Moreira, N. Parlavantzas, and
K. Saikoski. The design and implementation of open orb 2. IEEE Dis-
trib. Syst. Online 2, 6 (Sept. 2001); see computer.org/dsonline.

[Caz00] Walter Cazzola. Communication-Oriented Reflection: A Way to Open Up
the RMI Mechanism. PhD thesis, Università degli Studi di Milano, Italy,
2000.

[CCMW01] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web ser-
vices description language (wsdl). Technical Report Note 15, 2001, W3C,
2001. http://www.w3.org/TR/wsdl.

[Cou] G. Coulson. What is reflective middleware? IEEE Distrib. Syst. Online 2,
8 (Dec. 2001); see computer.org/dsonline.

[DC01] Jim Dowling and Vinny Cahill. The k-component architecture meta-model
for self-adaptive software. In Proceedings of the Third International Confer-
ence on Metalevel Architectures and Separation of Crosscutting Concerns,
pages 81–88. Springer-Verlag, 2001.

[DSPT02] Antonella Di Stefano, Giuseppe Pappalardo, and Emiliano Tramontana.
Introducing Distribution into Applications: a Reflective Approach for
Transparency and Dynamic Fine-Grained Object Allocation. In Proceed-
ings of the Seventh IEEE Symposium on Computers and Communications
(ISCC’02), Taormina, Italy, 2002.

[Fos01] I. Foster. The anatomy of the grid: Enabling scalable virtual organizations.
In Proceedings of the 1st International Symposium on Cluster Computing
and the Grid, page 6. IEEE Computer Society, 2001.

[Glo03] Globus Project. Java Programmer’s Guide Core Framework. http://

www.globus.org, Mar 2003. http://www-unix.globus.org/toolkit/3.0/
ogsa/docs/java_programmers_guide%.html, last update 09/03/2003, last
access 31/03/2004.

[KRL+00] Fabio Kon, Manuel Romàn, Ping Liu, Jina Mao, Tomonori Yamane, Clau-
dio Magalhaes, and Roy H. Campbell. Monitoring, security, and dy-
namic configuration with the dynamictao reflective orb. In IFIP/ACM
International Conference on Distributed systems platforms, pages 121–143.
Springer-Verlag New York, Inc., 2000.

[NMS+02] H. Nakada, S. Matsuoka, K. Seymour, J. Dongarra, C. Lee, and
H. Casanova. Gridrpc: A remote procedure call api for grid computing.
http://www.eece.unm.edu/~apm/docs/APM_GridRPC_0702.pdf, 2002.

[ODDG] Abdulla Othman, Peter Dew, Karim Djemame, and Iain Gourlay. Adaptive
grid resource brokering. in preparation.

[TSCI01] Michiaki Tatsubori, Toshiyuki Sasaki, Shigeru Chiba, and Kozo Itano. A
bytecode translator for distributed execution of “legacy” java software. In
Proceedings of the 15th European Conference on Object-Oriented Program-
ming, pages 236–255. Springer-Verlag, 2001.


