17

Triggers

This chapter discusses triggers, which are procedures written in PL/SQL, Java, or C
that run (fire) implicitly whenever a table or view is modified or when some user
actions or database system actions occur. You can write triggers that fire whenever
one of the following operations occurs: DML statements on a particular schema
object, DDL statements issued within a schema or database, user logon or logoff
events, server errors, database startup, or instance shutdown.

This chapter includes:
= Introduction to Triggers
= Parts of a Trigger
= Types of Triggers

= Trigger Execution

Triggers 17-1

Introduction to Triggers

Introduction to Triggers

Oracle lets you define procedures called triggers that run implicitly when an

| NSERT, UPDATE, or DELETE statement is issued against the associated table or, in
some cases, against a view, or when database system actions occur. These
procedures can be written in PL/SQL or Java and stored in the database, or they can
be written as C callouts.

Triggers are similar to stored procedures. A trigger stored in the database can
include SQL and PL/SQL or Java statements to run as a unit and can invoke stored
procedures. However, procedures and triggers differ in the way that they are
invoked. A procedure is explicitly run by a user, application, or trigger. Triggers are
implicitly fired by Oracle when a triggering event occurs, no matter which user is
connected or which application is being used.

Figure 17- 1 shows a database application with some SQL statements that implicitly
fire several triggers stored in the database. Notice that the database stores triggers
separately from their associated tables.

17-2 Oracle9i Database Concepts

Introduction to Triggers

Figure 17- 1 Triggers

Database

(Appllcanons \ Tablet Update Trigger

UPDATEtSET...; |==tp L | BEGN

S Insert Trigger
INSERTINTOt...; [=tp — BEGI N
Delete Trigger

DELETE FROMt. .. ; [=tp> > BEGI N

\ J

\ //

A trigger can also call out to a C procedure, which is useful for computationally
intensive operations.

The events that fire a trigger include the following:

= DML statements that modify data in a table (I NSERT, UPDATE, or DELETE)
= DDL statements

= System events such as startup, shutdown, and error messages

= User events such as logon and logoff

Note: Oracle Forms can define, store, and run triggers of a
different sort. However, do not confuse Oracle Forms triggers with
the triggers discussed in this chapter.

Triggers 17-3

Introduction to Triggers

See Also:

= Chapter 14, "SQL, PL/SQL, and Java" for information on the
similarities of triggers to stored procedures

= "The Triggering Event or Statement" on page 17-7

How Triggers Are Used

Triggers supplement the standard capabilities of Oracle to provide a highly
customized database management system. For example, a trigger can restrict DML
operations against a table to those issued during regular business hours. You can
also use triggers to:

= Automatically generate derived column values

= Prevent invalid transactions

» Enforce complex security authorizations

» Enforce referential integrity across nodes in a distributed database
» Enforce complex business rules

» Provide transparent event logging

= Provide auditing

= Maintain synchronous table replicates

= Gather statistics on table access

= Modify table data when DML statements are issued against views

= Publish information about database events, user events, and SQL statements to
subscribing applications

See Also: Oracle9i Application Developer’s Guide - Fundamentals for
examples of trigger uses

Some Cautionary Notes about Triggers

Although triggers are useful for customizing a database, use them only when
necessary. Excessive use of triggers can result in complex interdependencies, which
can be difficult to maintain in a large application. For example, when a trigger fires,
a SQL statement within its trigger action potentially can fire other triggers, resulting
in cascading triggers. This can produce unintended effects. Figure 17- 2 illustrates
cascading triggers.

17-4 Oracle9i Database Concepts

Introduction to Triggers

Figure 17-2 Cascading Triggers

SQL Statement
UPDATE t1 SET ...;

AN

Fires the
UPDATE_T1

Trigger \ UPDATE_T1 Trigger

BEFCRE UPDATE ON t1
FOR EACH ROW
BEG N

I NSERT INTO t2 VALUES (...);

END;

N\

Fires the

INSERT_T2 .

Trigger \ INSERT_T2 Trigger
BEFORE | NSERT ON t2
FOR EACH ROW

BEG N
INSERT INTO ... VALUES (...);

END;

N
Triggers Compared with Declarative Integrity Constraints

You can use both triggers and integrity constraints to define and enforce any type of
integrity rule. However, Oracle Corporation strongly recommends that you use
triggers to constrain data input only in the following situations:

= To enforce referential integrity when child and parent tables are on different
nodes of a distributed database

Triggers 17-5

Parts of a Trigger

» To enforce complex business rules not definable using integrity constraints

= When a required referential integrity rule cannot be enforced using the
following integrity constraints:

- NOT NULL, UNI QUE
- PRI MARY KEY

- FORElI GNKEY

- CHECK

- DELETE CASCADE
- DELETE SET NULL

See Also: "How Oracle Enforces Data Integrity" on page 21-4 for
more information about integrity constraints

Parts of a Trigger
A trigger has three basic parts:
= A triggering event or statement
= A trigger restriction
= Atrigger action

Figure 17- 3 represents each of these parts of a trigger and is not meant to show
exact syntax. The sections that follow explain each part of a trigger in greater detail.

17-6 Oracle9i Database Concepts

Parts of a Trigger

Figure 17-3 The REORDER Trigger

AFTER UPDATE OF parts_on_hand ON inventory ——— Triggering Statement

WHEN (new. parts_on_hand < new.reorder_poi nt) -+——— Trigger Restriction Triggered Action

FOR EACH ROW

DECLARE /* a dummy variable for counting */
NUMBER X;
BEG N
SELECT COUNT(*) INTO X /* query to find out if part has already been */

i
FROM pendi ng_or ders /* reordered—if yes, x=1, if no, x=0 */

WHERE part _no=: new. part _no;

IFx =0

THEN /* part has not been reordered yet, so reorder */
I NSERT | NTO pendi ng_or ders
VALUES (new. part_no, new. reorder_quantity, sysdate);

END | F; /* part has already been reordered */

END;

The Triggering Event or Statement

A triggering event or statement is the SQL statement, database event, or user event
that causes a trigger to fire. A triggering event can be one or more of the following:

= An| NSERT, UPDATE, or DELETE statement on a specific table (or view, in
some cases)

= A CREATE, ALTER, or DROP statement on any schema object
= A database startup or instance shutdown

= A specific error message or any error message

= A user logon or logoff

For example, in Figure 17- 3, the triggering statement is:

UPDATE CF parts_on_hand QN inventory ...
This statement means that when the part s_on_hand column of a row in the
i nvent ory table is updated, fire the trigger. When the triggering event is an

Triggers

17-7

Parts of a Trigger

UPDATE statement, you can include a column list to identify which columns must
be updated to fire the trigger. You cannot specify a column list for | NSERT and
DELETE statements, because they affect entire rows of information.

A triggering event can specify multiple SQL statements:

. I NSERT (R UPDATE CR DELETE CF inventory ...
This part means that when an | NSERT, UPDATE, or DELETE statement is issued
against the i nvent or y table, fire the trigger. When multiple types of SQL
statements can fire a trigger, you can use conditional predicates to detect the type of

triggering statement. In this way, you can create a single trigger that runs different
code based on the type of statement that fires the trigger.

Trigger Restriction

A trigger restriction specifies a Boolean expression that must be t r ue for the trigger
to fire. The trigger action is not run if the trigger restriction evaluates to f al se or
unknown. In the example, the trigger restriction is:

new parts_on_hand < new reor der_poi nt

Consequently, the trigger does not fire unless the number of available parts is less
than a present reorder amount.

Trigger Action

A trigger action is the procedure (PL/SQL block, Java program, or C callout) that
contains the SQL statements and code to be run when the following events occur:

= A triggering statement is issued.

= The trigger restriction evaluates to t r ue.
Like stored procedures, a trigger action can:

s Contain SQL, PL/SQL, or Java statements

= Define PL/SQL language constructs such as variables, constants, cursors,
exceptions

= Define Java language constructs

= (Call stored procedures

17-8 Oracle9i Database Concepts

Types of Triggers

If the triggers are row triggers, the statements in a trigger action have access to
column values of the row being processed by the trigger. Correlation names provide
access to the old and new values for each column.

Types of Triggers
This section describes the different types of triggers:
= Row Triggers and Statement Triggers
» BEFORE and AFTER Triggers
= INSTEAD OF Triggers

= Triggers on System Events and User Events

Row Triggers and Statement Triggers

When you define a trigger, you can specify the number of times the trigger action is
to be run:

= Once for every row affected by the triggering statement, such as a trigger fired
by an UPDATE statement that updates many rows

= Once for the triggering statement, no matter how many rows it affects

Row Triggers

A row trigger is fired each time the table is affected by the triggering statement. For
example, if an UPDATE statement updates multiple rows of a table, a row trigger is
fired once for each row affected by the UPDATE statement. If a triggering statement
affects no rows, a row trigger is not run.

Row triggers are useful if the code in the trigger action depends on data provided
by the triggering statement or rows that are affected. For example, Figure 17- 3
illustrates a row trigger that uses the values of each row affected by the triggering
statement.

Statement Triggers

A statement trigger is fired once on behalf of the triggering statement, regardless of
the number of rows in the table that the triggering statement affects, even if no rows
are affected. For example, if a DELETE statement deletes several rows from a table, a
statement-level DELETE trigger is fired only once.

Triggers 17-9

Types of Triggers

Statement triggers are useful if the code in the trigger action does not depend on the
data provided by the triggering statement or the rows affected. For example, use a
statement trigger to:

= Make a complex security check on the current time or user

= Generate a single audit record

BEFORE and AFTER Triggers

When defining a trigger, you can specify the trigger timing- whether the trigger
action is to be run before or after the triggering statement. BEFORE and AFTER
apply to both statement and row triggers.

BEFORE and AFTER triggers fired by DML statements can be defined only on tables,
not on views. However, triggers on the base tables of a view are fired if an | NSERT,
UPDATE, or DELETE statement is issued against the view. BEFORE and AFTER
triggers fired by DDL statements can be defined only on the database or a schema,
not on particular tables.

See Also:

= "INSTEAD OF Triggers" on page 17-12

= "Triggers on System Events and User Events" on page 17-14 for
information about how BEFORE and AFTER triggers can be
used to publish information about DML and DDL statements

BEFORE Triggers

BEFORE triggers run the trigger action before the triggering statement is run. This
type of trigger is commonly used in the following situations:

= When the trigger action determines whether the triggering statement should be
allowed to complete. Using a BEFORE trigger for this purpose, you can
eliminate unnecessary processing of the triggering statement and its eventual
rollback in cases where an exception is raised in the trigger action.

= To derive specific column values before completing a triggering | NSERT or
UPDATE statement.

AFTER Triggers

AFTER triggers run the trigger action after the triggering statement is run.

17-10 Oracle9iDatabase Concepts

Types of Triggers

Trigger Type Combinations

Using the options listed previously, you can create four types of row and statement
triggers:

» BEFORE statement trigger
Before executing the triggering statement, the trigger action is run.
= BEFORE row trigger

Before modifying each row affected by the triggering statement and before
checking appropriate integrity constraints, the trigger action is run, if the trigger
restriction was not violated.

= AFTER row trigger

After modifying each row affected by the triggering statement and possibly
applying appropriate integrity constraints, the trigger action is run for the
current row provided the trigger restriction was not violated. Unlike BEFORE
r owtriggers, AFTER T owtriggers lock rows.

= AFTER statement trigger

After executing the triggering statement and applying any deferred integrity
constraints, the trigger action is run.

You can have multiple triggers of the same type for the same statement for any
given table. For example, you can have two BEFCRE st at ement triggers for
UPDATE statements on the enpl oyees table. Multiple triggers of the same type
permit modular installation of applications that have triggers on the same tables.
Also, Oracle materialized view logs use AFTERT ow triggers, so you can design
your own AFTERT owtrigger in addition to the Oracle-defined AFTERT owtrigger.

You can create as many triggers of the preceding different types as you need for
each type of DML statement, (I NSERT, UPDATE, or DELETE).

For example, suppose you have a table, SAL, and you want to know when the table
is being accessed and the types of queries being issued. The following example
contains a sample package and trigger that tracks this information by hour and type
of action (for example, UPDATE, DELETE, or | NSERT) on table SAL. The global
session variable STAT.ROWCNT is initialized to zero by a BEFCRE st at enent
trigger. Then it is increased each time the row trigger is run. Finally the statistical
information is saved in the table STAT_TAB by the AFTER st at enent trigger.

See Also: Oracle9i Application Developer’s Guide - Fundamentals for
examples of trigger applications

Triggers 17-11

Types of Triggers

INSTEAD OF Triggers

| NSTEAD OF triggers provide a transparent way of modifying views that cannot be
modified directly through DML statements (I NSERT, UPDATE, and DELETE). These
triggers are called | NSTEAD OF triggers because, unlike other types of triggers,
Oracle fires the trigger instead of executing the triggering statement.

You can write normal | NSERT, UPDATE, and DELETE statements against the view
and the | NSTEAD OF trigger is fired to update the underlying tables appropriately.
| NSTEAD OF triggers are activated for each row of the view that gets modified.

Modify Views

Modifying views can have ambiguous results:

= Deleting a row in a view could either mean deleting it from the base table or
updating some values so that it is no longer selected by the view.

= Inserting a row in a view could either mean inserting a new row into the base
table or updating an existing row so that it is projected by the view.

= Updating a column in a view that involves joins might change the semantics of
other columns that are not projected by the view.

Object views present additional problems. For example, a key use of object views is
to represent master/detail relationships. This operation inevitably involves joins,
but modifying joins is inherently ambiguous.

As aresult of these ambiguities, there are many restrictions on which views are
modifiable. An | NSTEAD OF trigger can be used on object views as well as relational
views that are not otherwise modifiable.

Even if the view is inherently modifiable, you might want to perform validations on
the values being inserted, updated or deleted. | NSTEAD OF triggers can also be
used in this case. Here the trigger code performs the validation on the rows being
modified and if valid, propagate the changes to the underlying tables.

| NSTEAD OF triggers also enable you to modify object view instances on the
client-side through OCI. To modify an object materialized by an object view in the
client-side object cache and flush it back to the persistent store, you must specify

| NSTEAD OF triggers, unless the object view is inherently modifiable. However, it is
not necessary to define these triggers for just pinning and reading the view object in
the object cache.

17-12 Oracle9i Database Concepts

Types of Triggers

See Also:
= Chapter 13, "Object Datatypes and Object Views"
» Oracle Call Interface Programmer’s Guide

» Oracle9i Application Developer’s Guide - Fundamentals for an
example of an | NSTEAD OF trigger

Views That Are Not Modifiable

A view is inherently modifiable if data can be inserted, updated, or deleted
without using | NSTEAD CF triggers and if it conforms to the restrictions listed as
follows. If the view query contains any of the following constructs, the view is not
inherently modifiable and you therefore cannot perform inserts, updates, or deletes
on the view:

= Set operators

= Aggregate functions

= GROUP BY, CONNECT BY, or START W TH clauses
= The DI STI NCT operator

= Joins (however, some join views are updatable)

If a view contains pseudocolumns or expressions, you can only update the view
with an UPDATE statement that does not refer to any of the pseudocolumns or
expressions.

See Also: "Updatable Join Views" on page 10-20

INSTEAD OF Triggers on Nested Tables

You cannot modify the elements of a nested table column in a view directly with the
TABLE clause. However, you can do so by defining an | NSTEAD OF trigger on the
nested table column of the view. The triggers on the nested tables fire if a nested
table element is updated, inserted, or deleted and handle the actual modifications to
the underlying tables.

See Also:
= Oracle9i Application Developer’s Guide - Fundamentals

s Oracle9i SQL Reference for information on the CREATE TRl GGER
statement

Triggers 17-13

Types of Triggers

Triggers on System Events and User Events

You can use triggers to publish information about database events to subscribers.
Applications can subscribe to database events just as they subscribe to messages
from other applications. These database events can include:

= System events
- Database startup and shutdown
- Server error message events
s User events
- User logon and logoff
- DDL statements (CREATE, ALTER, and DROP)
- DML statements (I NSERT, DELETE, and UPDATE)

Triggers on system events can be defined at the database level or schema level. For
example, a database shutdown trigger is defined at the database level:

CREATE TR GER regi st er _shut down
ON DATABASE
SHUTDOMN
BEA N

DBVE AQ ENQELE..)
o

Triggers on DDL statements or logon/logoff events can also be defined at the
database level or schema level. Triggers on DML statements can be defined on a
table or view. A trigger defined at the database level fires for all users, and a trigger
defined at the schema or table level fires only when the triggering event involves
that schema or table.

Event Publication

Event publication uses the publish-subscribe mechanism of Oracle Advanced
Queuing. A queue serves as a message repository for subjects of interest to various
subscribers. Triggers use the DBMS_AQpackage to enqueue a message when specific
system or user events occur.

17-14 Oracle9i Database Concepts

Types of Triggers

See Also:
= Oracle9i Application Developer’s Guide - Advanced Queuing
» Oracle9i Supplied PL/SQL Packages and Types Reference

Event Attributes

Each event allows the use of attributes within the trigger text. For example, the
database startup and shutdown triggers have attributes for the instance number
and the database name, and the logon and logoff triggers have attributes for the
username. You can specify a function with the same name as an attribute when you
create a trigger if you want to publish that attribute when the event occurs. The
attribute’s value is then passed to the function or payload when the trigger fires. For
triggers on DML statements, the : OLD column values pass the attribute’s value to
the : NEWcolumn value.

System Events

System events that can fire triggers are related to instance startup and shutdown
and error messages. Triggers created on startup and shutdown events have to be
associated with the database. Triggers created on error events can be associated
with the database or with a schema.

= STARTUP triggers fire when the database is opened by an instance. Their
attributes include the system event, instance number, and database name.

= SHUTDOWN triggers fire just before the server starts shutting down an instance.
You can use these triggers to make subscribing applications shut down
completely when the database shuts down. For abnormal instance shutdown,
these triggers cannot be fired. The attributes of SHUTDOM triggers include the
system event, instance number, and database name.

= SERVERERRORtriggers fire when a specified error occurs, or when any error
occurs if no error number is specified. Their attributes include the system event
and error number.

User Events

User events that can fire triggers are related to user logon and logoff, DDL
statements, and DML statements.

Triggers on LOGON and LOGOFF Events LOGON and LOGOFF triggers can be associated

with the database or with a schema. Their attributes include the system event and
username, and they can specify simple conditions on USERI D and USERNAME.

Triggers 17-15

Types of Triggers

= LOGONtriggers fire after a successful logon of a user.

» LOGOFF triggers fire at the start of a user logoff.

Triggers on DDL Statements DDL triggers can be associated with the database or with
a schema. Their attributes include the system event, the type of schema object, and
its name. They can specify simple conditions on the type and name of the schema
object, as well as functions like USERI D and USERNAME. DDL triggers include the
following types of triggers:

= BEFORE CREATE and AFTER CREATE triggers fire when a schema object is
created in the database or schema.

= BEFORE ALTERand AFTERALTER triggers fire when a schema object is altered
in the database or schema.

= BEFORE DROP and AFTER DROP triggers fire when a schema object is dropped
from the database or schema.

Triggers on DML Statements DML triggers for event publication are associated with a
table. They can be either BEFORE or AFTER triggers that fire for each row on which
the specified DML operation occurs. You cannot use | NSTEAD OF triggers on views
to publish events related to DML statements- instead, you can publish events using
BEFORE or AFTER triggers for the DML operations on a view's underlying tables
that are caused by | NSTEAD OF triggers.

The attributes of DML triggers for event publication include the system event and
the columns defined by the user in the SELECT list. They can specify simple
conditions on the type and name of the schema object, as well as functions (such as
Ul D, USER, USERENV, and SYSDATE), pseudocolumns, and columns. The columns
can be prefixed by : OLDand : NEWfor old and new values. Triggers on DML
statements include the following triggers:

= BEFORE| NSERT and AFTER| NSERT triggers fire for each row inserted into the
table.

= BEFORE UPDATE and AFTER UPDATE triggers fire for each row updated in the
table.

= BEFORE DELETE and AFTERDELETE triggers fire for each row deleted from the
table.

17-16 Oracle9i Database Concepts

Trigger Execution

See Also:
= "Row Triggers" on page 17-9
= "BEFORE and AFTER Triggers" on page 17-10

» Oracle9i Application Developer’s Guide - Fundamentals for more
information about event publication using triggers on system
events and user events

Trigger Execution

A trigger is in either of two distinct modes:

Trigger Mode Definition

Enabled An enabled trigger runs its trigger action if a triggering statement

is issued and the trigger restriction (if any) evaluates to TRUE.

Disabled A disabled trigger does not run its trigger action, even if a

triggering statement is issued and the trigger restriction (if any)
would evaluate to TRUE.

For enabled triggers, Oracle automatically performs the following actions:

Runs triggers of each type in a planned firing sequence when more than one
trigger is fired by a single SQL statement

Performs integrity constraint checking at a set point in time with respect to the
different types of triggers and guarantees that triggers cannot compromise
integrity constraints

Provides read-consistent views for queries and constraints

Manages the dependencies among triggers and schema objects referenced in the
code of the trigger action

Uses two-phase commit if a trigger updates remote tables in a distributed
database

Fires multiple triggers in an unspecified order, if more than one trigger of the
same type exists for a given statement

Triggers 17-17

Trigger Execution

The Execution Model for Triggers and Integrity Constraint Checking
A single SQL statement can potentially fire up to four types of triggers:
= BEFORE r owtriggers
= BEFORESst at enent triggers
s AFTERT owtriggers
= AFTERst at ement triggers

A triggering statement or a statement within a trigger can cause one or more
integrity constraints to be checked. Also, triggers can contain statements that cause
other triggers to fire (cascading triggers).

Oracle uses the following execution model to maintain the proper firing sequence of
multiple triggers and constraint checking:

1. Runall BEFORE st at enent triggers that apply to the statement.
2. Loop for each row affected by the SQL statement.
a. Run all BEFORE r owtriggers that apply to the statement.

b. Lock and change row, and perform integrity constraint checking. (The lock
is not released until the transaction is committed.)

c. Runall AFTERT owtriggers that apply to the statement.
3. Complete deferred integrity constraint checking.
4. Runall AFTERSt at enment triggers that apply to the statement.

The definition of the execution model is recursive. For example, a given SQL
statement can cause a BEFORE r owtrigger to be fired and an integrity constraint to
be checked. That BEFORE r owtrigger, in turn, might perform an update that causes
an integrity constraint to be checked and an AFTER st at enment trigger to be fired.
The AFTERSst at ement trigger causes an integrity constraint to be checked. In this
case, the execution model runs the steps recursively, as follows:

Original SQL statement issued.
1. BEFORETrow triggers fired.
a. AFTERst at erent triggers fired by UPDATE in BEFORE r ow trigger.
i. Statements of AFTER st at errent triggers run.

ii. Integrity constraint checked on tables changed by AFTER st at enent
triggers.

17-18 Oracle9i Database Concepts

Trigger Execution

b. Statements of BEFORE row triggers run.

c. Integrity constraint checked on tables changed by BEFCRE r ow triggers.
2. SQL statement run.
3. Integrity constraint from SQL statement checked.
There are two exceptions to this recursion:

» When a triggering statement modifies one table in a referential constraint
(either the primary key or foreign key table), and a triggered statement modifies
the other, only the triggering statement will check the integrity constraint. This
allows row triggers to enhance referential integrity.

= Statement triggers fired due to DELETE CASCADE and DELETE SET NULL are
fired before and after the user DELETE statement, not before and after the
individual enforcement statements. This prevents those statement triggers from
encountering mutating errors.

An important property of the execution model is that all actions and checks done as
a result of a SQL statement must succeed. If an exception is raised within a trigger,
and the exception is not explicitly handled, all actions performed as a result of the
original SQL statement, including the actions performed by fired triggers, are rolled
back. Thus, integrity constraints cannot be compromised by triggers. The execution
model takes into account integrity constraints and disallows triggers that violate
declarative integrity constraints.

For example, in the previously outlined scenario, suppose that Steps 1 through 8
succeed; however, in Step 9 the integrity constraint is violated. As a result of this
violation, all changes made by the SQL statement (in Step 8), the fired BEFORE r ow
trigger (in Step 6), and the fired AFTER st at enent trigger (in Step 4) are rolled
back.

Note: Although triggers of different types are fired in a specific
order, triggers of the same type for the same statement are not
guaranteed to fire in any specific order. For example, all BEFORE

r owtriggers for a single UPDATE statement may not always fire in
the same order. Design your applications so they do not rely on the
firing order of multiple triggers of the same type.

Triggers 17-19

Trigger Execution

Data Access for Triggers

When a trigger is fired, the tables referenced in the trigger action might be currently
undergoing changes by SQL statements in other users’ transactions. In all cases, the
SQL statements run within triggers follow the common rules used for standalone
SQL statements. In particular, if an uncommitted transaction has modified values
that a trigger being fired either needs to read (query) or write (update), then the
SQL statements in the body of the trigger being fired use the following guidelines:

= Queries see the current read-consistent materialized view of referenced tables
and any data changed within the same transaction.

= Updates wait for existing data locks to be released before proceeding.

The following examples illustrate these points.

Data Access for Triggers Example 1 Assume that the sal ary_check trigger (body)
includes the following SELECT statement:

SELECT nin_sal ary, nax_sal ary INTOnin_sal ary, nax_sal ary
FROM j obs
WHERE job title = :newjob_ title;

For this example, assume that transaction T1 includes an update to the max_

sal ary column of the j obs table. At this point, the sal ary_check trigger is fired
by a statement in transaction T2. The SELECT statement within the fired trigger
(originating from T2) does not see the update by the uncommitted transaction T1,
and the query in the trigger returns the old max_sal ary value as of the
read-consistent point for transaction T2.

Data Access for Triggers Example 2 Assume that the t ot al _sal ar y trigger maintains
a derived column that stores the total salary of all members in a department:

CREATE TRGER total _sal ary
AFTER DELETE CR | NSERT CR UPDATE CF departnent _id, sal ary ON enpl oyees
FCR EACH ROVBEA N
/* assune that departnent_id and salary are non-null fields */
I'F DELETING CR (UPDATI NG AND : ol d. departnent _id ! = : new departnent _i d)
THEN UPDATE depart ment s
SET total _salary = total _salary - :old.sal ary
WHERE departnent _id = : ol d. departnent _id;
BE\D | F
I'F 1 NSERTI NG CR (UPDATI NG AND : ol d. departnent _id ! = : new depart nent _i d)
THEN UPDATE depart nment s
SET total _salary = total _salary + :newsal ary
WHERE departent _id = : new departnent _id;

17-20 Oracle9iDatabase Concepts

Trigger Execution

B\D | F,
I'F (UPDATI NG AND : ol d. departnent _id = : new department _i d AND
:old.salary !'=:newsalary)

THEN UPDATE depar t ment s
SET total _salary = total _salary - :old.salary + :new sal ary
WHERE departnent _id = : new depart nent _i d;

END I F;

END

For this example, suppose that one user’s uncommitted transaction includes an
update to the t ot al _sal ary column of a row in the depar t nent s table. At this
point, the t ot al _sal ary trigger is fired by a second user’s SQL statement.
Because the uncommitted transaction of the first user contains an update to a
pertinent value in the t ot al _sal ary column (that is, a row lock is being held), the
updates performed by the t ot al _sal ary trigger are not run until the transaction
holding the row lock is committed or rolled back. Therefore, the second user waits
until the commit or rollback point of the first user’s transaction.

Storage of PL/SQL Triggers

Oracle stores PL/SQL triggers in compiled form, just like stored procedures. When
a CREATE TRI GGER statement commits, the compiled PL/SQL code, called P code
(for pseudocode), is stored in the database and the source code of the trigger is
flushed from the shared pool.

See Also: PL/SQL User’s Guide and Reference for more information
about compiling and storing PL./SQL code

Execution of Triggers

Oracle runs a trigger internally using the same steps used for procedure execution.

The only subtle difference is that a user has the right to fire a trigger if he or she has
the privilege to run the triggering statement. Other than this, triggers are validated

and run the same way as stored procedures.

See Also: PL/SQL User’s Guide and Reference for more information
about stored procedures

Dependency Maintenance for Triggers

Like procedures, triggers depend on referenced objects. Oracle automatically
manages the dependencies of a trigger on the schema objects referenced in its
trigger action. The dependency issues for triggers are the same as those for stored

Triggers 17-21

Trigger Execution

procedures. Triggers are treated like stored procedures. They are inserted into the
data dictionary.

See Also: Chapter 15, "Dependencies Among Schema Objects"

17-22 Oracle9i Database Concepts

