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Linear-regularization methods provide a simple technique for deter-
mining stable approximate solutions of linear ill-posed problems such
as Fredholm equations of the first kind, Cauchy problems for elliptic
equations and backward solution of forward parabolic equations. In most
of these problems the solution must be positive to satisfy physical
plausibility. In this paper we consider ill-posed first-kind convolution
equations and related problems such as numerical differentiation, Radon
transform and Laplace-transform inversion. We investigate several
linear regularization algorithms which provide positive approximate
solutions for these problems at least in the absence of errors on the data.
For noisy data the solution is not necessarily positive. Because the
appearance of negative values can then only be an effect of the noise, the
negative part of the solution should be negligible with a suitable choice
of the regularization parameter. A price to pay for ensuring positivity is
always, however, a reduction in resolution.

1. INTRODUCTION

In a series of recent papers a systematic application of the theory of singular
systems has been made to a number of linear inverse problems in physics, for
example, the finite Laplace transform inversion for recovering a distribution of
diffusion constants in photon correlation spectroscopy (Bertero et al. 1985, c), the
Fraunhofer diffraction equation for recovering particle size distributions in light
scattering (Bertero et al. 1985a) and the diffraction-limited imaging problem in
scanning optical microscopy (Bertero et al. 1984 among others). The relation with
information theory is discussed by Pike ef al. (1984). Full account has been taken
of the sampled and truncated nature of real experimental data and a priori
knowledge of the location of the solution may be used to improve details in the
reconstruction. The method is linear, non-iterative, fast in implementation and
does not go beyond delivering the visible part of the object (solution). This is
essentially the part of the object which is transmitted by the instrument under
consideration (Pike ef al. 1984) and it can be defined in a precise way as the
orthogonal projection of the object onto the subspace spanned by the singular
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functions corresponding to singular values greater than the inverse of the signal-
to-noise ratio. The orthogonal complement of this subspace is the subspace of the
invisible components of the object (for example high spatial frequencies not passed
by a lens or attenuated by wave propagation). These are set to zero because they
have no effect on the data measured.

It is often known that the object is positive. In such a case a commonly used
argument is that to constrain the solution to be positive is thus adding a priori
knowledge which must improve the inversion. A little thought on the singular
function expansion of the solution will indicate the effect produced by an
algorithm that uses the positivity constraint. In fact, the visible component of a
positive function in general is not positive and the addition of invisible components
does not modify the situation. For example, a positive d-function has oscillating
components at all frequencies and if those above a finite cutoff are removed, the
visible projection is the well-known oscillating Airy function. Furthermore, the
addition of invisible components is not sufficient to obtain a positive result:
the addition of higher frequencies will have the effect of increasing the so-called side
lobes. Therefore an algorithm producing a positive solution can introduce invisible
components but it must necessarily perform some kind of windowing of both the
visible and invisible components of the object. Such a windowing will be data-
dependent. To our knowledge, no investigation of methods, such as maximum
entropy, regularization plus positivity or Gerchberg—Papoulis plus positivity, has
been done along the linés indicated above.

In this paper we investigate the possibility of obtaining positive solutions by
means of a data-independent windowing of the visible components. This method,
which is well known in signal processing where the objective is to reduce side-lobe
strengths, has the advantage of being linear: the values of the visible components
are weighted with a suitable window function to achieve the desired effects.
Following this line we will consider and discuss several window functions having
the property that, in the absence of noise, they give rise to a positive approximate
solution if the object was positive. Any negative part in the reconstruction can
therefore be attributed to the effect of noise and disregarded. A basic point is that,
in’'this way, a positive solution is obtained at the cost of a concomitant loss of
resolution when only visible components, in the sense specified above, are used. If
this is tolerable, then these windows permit us to achieve positivity with a linear
algorithm which thus retains the properties of speed and efficiency of inversion.
We will show however that the above definition of invisible components must be
modified to correspond with the a priori knowledge implied by the choice of
window function.

The windowing method, as considered in this paper, is just a special case of the
so-called regularization method for the solution of ill-posed first kind equations
(Tikhonov & Arsenine 1977). For the convenience of the reader we recall here the
definition of a regularizing algorithm. Assume that A is a linear continuous
operator from the Hilbert space X into the Hilbert space Y and that the inverse
of A, A7, exists but is not continuous (when A is not invertible one can consider
the generalized inverse A* (Nashed 1976)). Then the problem: given geY, find
feX such that

Af=yg (L.1)
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is ill-posed. A linear regularization algorithm for the approximate solution of (1.1)
(Tikhonov & Arsenine 1977 ; Groetsch 1984) is a one-parameter family {R,},. , of
linear, continuous operators R,: X - Y, such that

lim R, Af—f]lx = 0 (1.2)
a0

for any fe X. The parameter e is called the regularization parameter. For a given

value of «, R, g is a stable approximate solution of (1.1) whenever g belongs to the

range of the operator A. If we put

T,=R,A (1.3)

then, as follows from (1.2), T,: X - X is a linear continuous approximation of the
identity operator in X. In the case where T, is an integral operator, the kernel
of T, is an ‘impulse response function’ describing the total effect of both the
transmission by the instrument and the subsequent recovery procedure in terms
of the algorithm R,. If this function has the form of a central lobe flanked by
decreasing side lobes, then the half-width of the central lobe may be used as a
measure of the resolution achievable by means of R,.

We give now the following definition: we say that a regularization algorithm
{R,}.>o has the positivity property if, for any a > 0 and for any positive function
fin the space X, the function T, fis also positive. In other words the regularization
algorithm provides a positive approximation of positive solutions for exact (noise-
free) data.

If we apply such an algorithm to noisy data, we may get an approximate
solution taking negative values. In the presence of noise, indeed, the data function
g. can always be written in the following form

g. = Af+h, (1.4)

where f is the ‘true’ solution of the problem, assumed to exist and to be positive,
and A, is a function, representing the effect of the noise, such that: |4 |y < ¢. Then
the approximate solution provided by the regularization algorithm is

R.g. = Tof+ R, A, (1.5)

The first term of the rRHs is positive but the second term can have negative values.
These negative values, however, are an effect of the noise only and therefore one
can expect that, by means of a suitable choice of the regularization parameter,
they can be made negligible.

In §2 we investigate the problem of the inversion of convolution operators and
we introduce several regularization algorithms having the positivity property.
Among others we recall that defined by the triangular window, which is quite
natural in the theory of the Fourier integral because it is related to Fourier-
transform inversion in the sense of (C, 1)-summability (Titchmarch 1948). An
interesting variational property of this window is proved in §3 where we indicate
also an analogy between the windowing method and the Backus—Gilbert method
(Backus & Gilbert 1968). In §4 we discuss a rather general recipe for the choice of
the regularization parameter, which is usually called the discrepancy principle
(Groetsch 1984), and we show that this method may justify the use of ‘invisible’

Q-2
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components for an algorithm with the positivity property. In §5 two important
problems are considered, numerical differentiation and Radon transform inversion.
The use of the gaussian window is discussed and it is also shown that, for these
problems, the usual Tikhonov regularizer (Groetsch 1984) has the positivity
property. In §6 the windowing method introduced in §2 is extended to the
inversion of Abel, Laplace and similar transforms, because for these problems the
Mellin transform has a role similar to that of Fourier transform in the case of
convolution equations. In §7 the inversion of convolution operators on the circle
is considered and the relation between the triangular window and Fourier series
summation by Cesaro means is discussed. Finally, in §8 we indicate possible
applications of the results contained in this paper.

2. WINDOW FUNCTIONS FOR THE APPROXIMATE SOLUTION OF
. FIRST-KIND CONVOLUTION EQUATIONS

A very important example of a first-kind equation, such as (1.1), is provided by
a convolution operator, i.e. an integral operator of the following form

(Af) () = f " K(z—y) fy) dy, (2.1)

where K(z) is, for example, an integrable function. A problem of this type will be
called a deconvolution problem. We will denote by K(£) the Fourier transform of
K(x).

We assume that X is L*(— o0, + 00), or a subspace of L?(— 00, + c0) defined by
a suitable weighting function 7(§) depending on the Fourier variable £

1115 = 2m [ pee) e @2)

(o]

and Y willalwaysbe L*(— 0o, + c0). Under the previousassumptions Aisacontinuous
operator whenever the functlon IK( (é) [> $(£) is bounded. The inverse operator A~!
exists if and only if the support of K (£) is (— 00, + 00) and in such a case it is given
by +00

(A7) (2) = (2m)7 J [§(6)/ K ()] &€ dE. (2.3)
Because the Fourier transform of the kernel tends to zero when £ tends to infinity,
A™! is not continuous.

A broad class of linear regularizing algorithms for the approximate solution
of equation (1.1), (2.1) can be obtained by introducing ‘window’ (or ‘filter’)
functions depending on the variable £. We say that a one-parameter family of
piecewise continuous functions {W «(E)}as0 18 @ family of window functions if the
following conditions are satisfied (see, for instance, Tikhonov & Arsenine 1977,
ch. 4)

(i) 0< W(g) < 1, for any a > 0 and any £;

(i) lim W, (&) = 1, for any §&;

al0
(iii) for any a > 0 there exists a constant ¢, such that

|W, (& /K (é)l < c,, for any §&.
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Then, it is easy to show (Tikhonov & Arsenine 1977) that the family of linear
operators, defined by

+ 00
(B,.9) (x) = (2ﬂ)_1f - [Wa8)§(E)/K (&)l et dE (2.4)
—
provides a regularization algorithm for the approximate solution of problem (1.1),
(2.1). The basic property (1.2), indeed, follows from the Parseval equality and the
dominated convergence theorem.
We point out that the Tikhonov regularizer (Groetsch 1984) corresponds to the

window function " N N
W,(&) = |K(E)*/[IK (&) + o p(E)], (2.5)

where p(£) is the weight function defining the norm of X, (2.2), and the method of
truncated Fourier-transform inversion corresponds to the window function

W) =1, |E<1/a; W) =0, |&>1/a (2.6)

When the regularization algorithm is defined by (2.4), the operator T,, (1.3), is
given by

(Tof) (x) = f_ W.(x—y)f(y)dy, (2.7)

where W, (x) denotes the inverse Fourier transform of W, (£). Tt follows that the
regqularization algorithm (2.4) has the positivity property if and only if W, (x) =0
for any x. We notice that the Tikhonov window (2.5) in general does not satisfy
this condition. In §5, however, we discuss two important problems where the
Tikhonov window has the positivity property.

2.1. Band-limited windows

_Consider a family of window functions such that, for a given «, the support of
W (&) is interior to the interval [ — €2, 2] with

Q=1/a. (2.8)

Using a standard terminology in electrical engineering and communication
theory, we call the inverse Fourier transform of Wa(g), i.e. W(z), a band-limited
function with bandwidth 2. An example is the window function (2.6), in which
case W (z) is the well-known Dirichlet kernel

W.(x) = (/) [sin (Qx)]/ (L) (2.9)

and therefore the corresponding regularization algorithm does not have the
positivity property.

A first very simple example of a band-limited window with the positivity
property is provided by the triangular window

W8 =1—algl, E<Q; W6)=0, [§>Q. (2.10)
In which case W, (x) = (R/2m) [sin® (3Qx]/ (3Q2x)%. (2.11)

Notice that, for a given £ (2.11) has a central peak with a width that is twice the
width of the function (2.9) and smaller ‘side-lobes’. This implies, for a fixed
bandwidth, a loss in resolution by a factor of two. However, the ‘optimum’ choice
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of Q may not be the same in the two cases, as we will discuss in §4, and as a
consequence the loss in resolution may be smaller than a factor of two.

Starting from the window function (2.10) one can build up other regularization
algorithms with the positivity property as follows: take a set of n positive numbers
a, (k=1,...,n), such that a,+...+a, = 1, and put

Wa(g}é Yeop(l—clf])*, [l <25 W) =0, I|£>Q. (2.12)
Then the conditions (i)—(iii) are satisfied and the corresponding function W, (x) is
a linear combination of the function (2.11) and of its autoconvolutions.
2.2. Gaussian and exponential windows
Another important family of window functions leading to regularization
algorithms with the positivity property is
W.() = exp (—jf?). (2.13)
The corresponding functions W, (x) are given by
W, () = (2ra) Fexp (—a2/2a). (2.14)

Obviously this window function cannot be used for any arbitrary deconvolution
problem but only for those problems such that condition (iii) above is satisfied.
In other words, the Fourier transform of the kernel must decay at infinity less
rapidly than any gaussian. Applications of this window function will be discussed
in §5.

Similar remarks apply also to the case of the exponential window

W, (€) = exp (—alf)) (2.15)
in which case W (x) = (a/m) (x®+a®)7". (2.16)

It is interesting to notice that both the gaussian and the exponential windows do
not exhibit ‘side lobes’.

3. WINDOW FUNCTIONS AND BACKUS-GILBERT AVERAGING KERNELS

The method of Backus and Gilbert (Backus & Gilbert 1968) applies to inverse
problems with discrete data (Bertero et al. 1985c¢): find a square integrable
function f such that

[$n(@) flx)yde =g,; n=1,..,N, (3.1)

where the ¢, are given functions and the g, are given numbers, the data of the
problem. The method consists in looking for an ‘average’ of the unknown function

int 5
f(x) at any point x F@) = [ Wiz, 9)f(y) dy (3.2)

(the analogy between this equation and (2.7) is obvious) the ‘averaging’ kernel
W (x, y) being expressed in terms of the functions ¢, as follows

Y) = 2 @y (2) Bu(y)- (3.3)
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The functions a,(x) are determined from the normalization condition

W, y)dy =1 (3.4)

combined with an appropriate variational property of the following type
JJ(x,y) W3(z,y) dy = min. (3.5)
An example of a particular weighting function J(z, y) is, for instance (Backus &
Gilbert 1968) J(x,y) = (x—y)*. (3.6)

When the functions a,(x) have been determined by means of the equations (3.4)
and (3.5), the ‘average’ solution f(z) is given by
flw) = X gn an(@). (3.7)
The previous procedure can be extended to deconvolution problems, such as
those investigated in §2, in the following way. Assume that the Fourier transform
of f(x) is known on some band [—, Q]. This Fourier transform can be obtained
from the Fourier transform of the real data function g(z) as follows

f&)=3®)/K®). lg<e. (3.8)
Then it is quite natural to look for an ‘average’ solution of the following form

N '+ o0

flx) = f W(z—y)fly) dy (3.9)

with a band-limited ‘averaging’ kernel
+0
W(x) = (2n)‘lf W (&) e *tdg. (3.10)
-0

It is also natural to require that W (x) is real and even. Then the conditions (3.4),
(3.5) are replaced respectively by the following ones

J+°O W) de =1, (3.11)

J J(x) W¥(x) dx = min. (3.12)

In the case where J(x) is given by (3.6), both W(x) and xW(x) are square
integrable and therefore W(x) is also integrable. It follows that the Fourier
transform of W(x), i.e. W(£), is absolutely continuous. Furthermore, thanks to the
other assumptions on W(x), W(£) is also real and even. It follows that W (£) is the
solution of the following boundary value problem when £e [0, Q]

W =0 WoO)=1, W ) =0 (3.13)

and therefore W(E) = 1—£/Q. ‘ (3.14)

We conclude that the above extension of the Backus and Gilbert method is
equivalent to the use of the triangular window and therefore has the positivity
property.
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The weight function J(@) = o (3.15)
has also been used (Haario & Somersalo 1985). In such a case the function W (&)
can be obtained by solving the following boundary-value problem

W) =0; WO)=1, W(0)=0; W®) =0, WE@)=0 (3.16)

whose solution is

W(€) = 3(1—£/Q)*~2(1—£/Q)". (3.17)
The corresponding averaging kernel is given by
W(x) = (62/m){2[1 — cos (Qx)]/(Rx)* —sin (Qx)/ (2x)3}. (3.18)

The averaging kernels (2.11) and (3.18) are plotted in figure 1 for the same value
of Q. The two kernels take the same value at x = 0 and have approximately the
same width, i.e. they give the same resolution with the same value of the
bandwidth. The averaging kernel corresponding to the weight function (3.15) does
not have the positivity property, but the negative parts are quite small.
Furthermore the ‘side lobes’ of this kernel are smaller than the ‘side lobes’ of the
kernel (2.11). Therefore, even if the window (3.17) does not strictly satisfy the
positivity property, it can have same advantages with respect to the triangular
window. It is also interesting to notice that the kernel (3.18) is quite similar to the
kernel corresponding to the so-called Hanning window (Kunt 1980)

-

W (&) = §[1+ cos (n&/R2)). (3.19)
In such a case the averaging kernel is
W(x) = sin 3{Q(x —1/Q)] n(x— /1) + sin }(Qx) T+ sin [1Q(x + 1/Q) ] n(x + 2/ 7).
(3.20)

A plot of the kernels (3.18) and (3.20) shows that they can hardly be distinguished
in practice.

3

Freure 1. Comparison of the kernel (2.11) (full line) with the
kernel (3.18) (dotted line) in the case Q = 2x.
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4. THE DISCREPANCY PRINCIPLE

An important problem in regularization theory is the choice of the regularization
parameter o. A rather general method is provided by the so-called discrepancy
principle (see, for example, Groetsch 1984). For a given regularization algorithm
and a given data function g, (1.4), one introduces the discrepancy function

p(a) = ”ARage_ge”Y’ (41)

which is the norm of the difference between the real data and the computed data
corresponding to the approximate solution R, g,. Then the discrepancy principle
states that one must look for a value of a such that this norm is equal to the
estimate ¢ of the norm of the error, i.e. -

pla) = e. (4.2)

In the case of a regularizing algorithm for the problem (1.1), (2.1), such as that
of (2.4), the discrepancy function is given by

P =m0 lgerae “3)
where Ya(8) = IW,(&)— 112 (4.4)

An important property of p(«), which holds true for all the examples of window
functions given in §§2 and 3, is that it is a continuous, increasing function of «,
with p(0) = 0 and p(+ ) = ||g,|ly. Therefore, if the condition || 9.y > €is satisfied,
there exists a unique solution of (4.2). If & = d(e) is such a solution, then &->0
when €0 as follows from the property p(0) = 0. It is also interesting to notice
that, if we put

via) = [R,g.lx (4.5)
then »(«) is a decreasing function of a for all the window functions introduced
above. It follows that the approximate solution provided by the discrepancy
principle is the solution of minimal norm among the regularized solutions
compatible with the experimental data.

We prove now that the value of the bandwidth provided by the discrepancy
principle in the case of the square window (2.6) is smaller than the value provided
by the same criterion in the case of the triangular window (2.10). To this purpose
we just notice that for the square window the function (4.4) is

Vs.a6) =0, 181<Q; yYsub)=1 I§>Q, (4.6)
whereas for the triangular window it is
Vo) = (@)’ 1E1<Q; Y b) =1 JE>Q (4.7)

and therefore, for any &,y ,(£) > ¥s,(£). This implies the following inequality
between the corresponding discrepancy functions

pr(®) = ps(a) (4.8)

and as a consequence, dg > d, or also Q4 < Q. As already remarked in the
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Introduction, this result justifies the conclusion that the loss in resolution
associated with the triangular window may be less than a factor of two. In fact,
some Fourier components that are considered as invisible in the case of the square
window can be added to the solution in the case of the triangular window. We also
point out that similar conclusions can be obtained if the discrepancy principle is
used for comparing the square window with the window (3.17) or with the
Hanning window (3.19).

The previous result probably is not related to the particular criterion for the
choice of the regularization parameter we have used. If we require, for instance,
that the norm of the regularized solution takes a prescribed value, say E, and
therefore we look for the value of & solving the equation v(x) = E, v(«) being
defined in (4.5), then we find again that the value of the bandwidth provided by
this criterion in the case of the square window is smaller than the value provided
in the case of the triangular or Hanning window.

We conclude this section with a few remarks about an important theoretical
point: the convergence, when € — 0, of the regularized solution f; = R,g, (& = d(e)
denotes the value of the regularization parameter given by (4.2)) to the true
solution f of the problem as defined in (1.4). This result has been proved in the case
of the Tikhonov regularizer (Groetsch 1984), which is given by (2.5) for
deconvolution problems. A similar result has been proved in the case of truncated
eigenfunction or singular function expansions and of several other regularizing
algorithms (Vainikko 1982), provided that (3.2) is replaced by

pla) = pe, (4.9)

where x> 1 is an arbitrary fixed number. No general result of this type seems to
hold for the method of window functions described in §2. We give here a lemma
which is an extension of results contained in Defrise (1986). This lemma will be
used in the next section in connection with the problems of numerical derivation
and Radon transform inversion.

Lemma. Let {R,},., be a family of regularizing operators such that, for any o,
AR, —1| < 1 and let & = d(e) be the unique solution of (4.9). Then the following
inequality holds true.

Ife=flx < (e =17 Ryl (AR — 1) Aflly + | (Ts— 1) fl1x, (4.10)

where f; = Ryg, and f is the true solution of the problem as defined by (1.4).
Proof. From the triangle inequality we get

Ife=flx = IRs(g.— Af) + Re Af —f lIx < e Rell + (Ty—1)f k. (4.11)

Then, from (4.9), whose solution is &, using again the triangle inequality and the
condition |AR,—1| <1, we obtain

e = [|(AR;— 1) gy = [(AR;—1) (9.— Af) + (AR; — 1)Af|ly < e+ (AR, — 1) Af |y
(4.12)

It follows that e< (u—1)""(AR;—1) Aflly (4.13)
and by inserting this inequality in (4.11) we get (4.10). |
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A few remarks about this lemma may be made. First we notice that, for all
the regularizing algorithms introduced in the previous sections, the condition
AR, —1| <1 is satisfied. Furthermore we know that for these algorithms the
value d of the regularization parameter provided by the discrepancy principle
tends to zero when ¢ >0. We conclude that we can apply the previous lemma and
that if the following property holds true

IR, I(AR, —1) Af |y >0, &0, (4.14)

then | f;—f|x tends to zero when €0, i.e. the regularized solution converges to
the true solution.

5. NUMERICAL DIFFERENTIATION AND
RADON TRANSFORM INVERSION

The computation of the derivative of a function, defined everywhere on
(=0, +0), can be formulated as the solution of a first-kind equation similar to
those considered in the previous sections. Let X be a space of square integrable
functions, the norm being defined as in (2.2) with

pE) =1+£72 (5.1)

X is a space of square integrable functions having a square integrable primitive.
Then consider the integral ‘operator

W@ =" sy, 6.2

which is a continuous operator from X into Y = L2(— o0, + o0 ). The operator (5.2),
indeed, can be viewed as a special case of operator (2.1) with

K(§) = 1/(i§). (5.3)
Then the computation of the derivative of a function geY is equivalent to the
solution of the equation Af = g. This equation is obviously ill-posed and therefore
regularization methods must be used for the approximate solution of this problem
(Cullum 1971). We cannot summarize here the wide literature existing on the
subject.
Our first remark consists in showing that, for the problem of numerical
derivation as formulated above, the Tikhonov regularizer has the positivity
property. From (2.5), (5.1) and (5.3) we get

V(&) = [1+ (1 +£9)7 (5.4)
and therefore the inverse Fourier transform of the Tikhonov window is positive
because it is given by

We(@) = (2a8)7" exp (— flal), (5.5)

where = (1+1/a)i. As concerns the choice of the regularization parameter, one
can obviously apply the general results that have been proved for the Tikhonov
regularizer. In particular, the discrepancy principle (4.2) provides an approximate
solution which converges to the exact solution when the error on the data tends
to zero.
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Another window which is often used in practical applications of this problem,
such as the problem of edge detection (Torre 1986), is the gaussian window (2.13).
As we have already remarked, this window has the positivity property. We will
prove now that the discrepancy principle (4.9) with u strictly greater than one,
provides an approximate solution which also converges to the exact solution in the
limit of zero error. For this purpose we will use the result derived from the lemma
of §4. First of all notice that, in the present case

IR, = sup {PENW,(E)/K (&)

= Slzp{(l +£7) exp (—2a£%)} < 1/(2a) (5.6)

and also
"+ 00

I(AR,— 1) Af| = <2n>-lj W8 1R @) fig) P d

—o0

—en [ lew(-ap-reifiores 6)

It follows that "
IR IAR, -0 A1 < 2m [ o610 g 5:5)
where 0,(6) = | exp (—o€t) 11/ (@), 69)

Because this function is bounded by 1, for any « and any £, and tends to zero for
any £, when « tends to zero, from the dominated convergence theorem it follows
that (4.14) is satisfied and the result stated above is proved.

The next problem we consider in this section is the inversion of the Radon
transform, whose applications to several practical problems are well known
(Herman 1979). Using standard notation, we define the Radon transform of a
function f(x, y) as follows

+o0
(Rf) (s,0) = J f(s cos@—u sin @, s sin @+ u cos 0) du. (6.10)

Then the back-projection operator 8 = R*, acting on a function h(s,0), is

(Bh) (x,y) = fh(x cos+ysin 6, 0)do. (5.11)
0

By using the back-projection operator the problem of the inversion of the Radon
transform, i.e. of the solution of the first-kind equation Zf = A, can be reduced to
the solution of the equation Af = g, where the operator A is defined by A = B
= R*R and g = ABh are the back-projected data. The new equation is a
convolution equation of the kind considered in §2, except for the fact that it is an
equation for a function of two variables instead of one. As is well known the
operator A is given by

(Af) (2,y) = ”_ [(@—a)+(y—y)* T f(', y') da’ dy’ (5.12)
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and by taking the Fourier transform one gets

(ANFE ) = 2m(E +72) HAE ). (5.13)

To simplify the notation we will put r = {z,y} and { = {§, n}. Then we introduce a
space of square integrable functions defined over R?, with a norm given by

115 = @m)® J W for L. (5.14)

It is easy to verify that the operator A is a bounded operator from X into Y =
L?(R?). We also notice that we can use all the formulae given in §2 if we replace
p(&), K(§) respectively by

PE) = 1+[L72, K@) =2rn|¢™ (5.15)

As in the problem of numerical derivation, the Tikhonov regularizer has the
positivity property when applied to the inversion of the convolution operator
(5.12). From (2.5) and (5.15) we get

Py

W.(6) = (2m)* [(2m)* + o1+ |E]*)] (5.16)

and the computation of the inverse Fourier transform, with a well-known integral
representation of the modified Hankel functions, provides the following result

WIr)) = (2/mo) Ko(Br]). (5.17)

Here 8 = [1+ (2m)2/a]? and K, denotes the modified Hankel function of order zero.
Because K(x) > 0 for any «, the Tikhonov regularizer has the positivity property.
Notice, however, that the function K|, is not bounded in the neighbourhood of
x=0.

Finally, if we use a gaussian window to regularize the inversion of the operator
(5.12), we can easily extend to this problem the computations performed in the
case of the problem of numerical derivation in order to show that the choice of
regularization parameter provided by the discrepancy principle (4.9), with
strictly greater than one, provides an approximate solution which converges to the
true solution of the problem when the error on the data tends to zero.

6. ABEL, LAPLACE AND SIMILAR TRANSFORMS INVERSION

In this section we investigate two important classes of first-kind integral
equations which can be treated by using methods very similar to those developed
in the previous sections for first-kind convolution equations. The corresponding
integral operators indeed are, at least in one case, convolution operators
commuting with the dilation group while the integral operators (2.1) commute
with the translation group.

The first class of integral operators is defined as follows

= j+wK(t/s)f(s) s 1ds, (6.1)
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and the second class is the following one

= f +wK(ts) f(s) ds. (6.2)

An important example of an equation of the first class is provided by the Abel
equation which is obtained by taking

LK) =(@—1"%t>1; K@#) =0, 0<t<l (6.3)

and by identifying the unknown function with the function f(s) s"%. As concerns the
second class of integral operators, the most famous example is provided by the
Laplace transform which is obtained by taking

K(t) = exp (—1). (6.4)

A common feature of the first kind equations associated with an operator of
type (6.1) or (6.2) is that they can be treated by means of the Mellin transform.
If we work in spaces of square integrable functions, then the appropriate definition
of the Mellin transform of a function fe L%*(0, + o) is (we use here the same
notation used in the previous sections for the Fourier transform)

= J +°° Sty HEds, (6.5)

As is well known (Titchmarch 1948), if fe L?(0, + o) then f € L*(— o0, + o0) and
the following relation, which is just an extens10n of the Parseval equality, holds
true

[ Copac = en [ 1o ae (6.6

0

Analogously, the inversion formula of the Mellin transform of square integrable
functions is given by

= (21t)‘1j f(g) TG+ qg, (6.7)

If we consider now the first-kind equation (1.1) with the operator A defined as in
(6.1) and if we take the Mellin transform of both sides of this equation we get

g€ = K& fle), (6.8)

where K(£) is the Mellin transform of K(f), as defined by (6.5). We see that the
operator A is invertible if the support of K (£) is (— 00, + 00). Furthermore, if the
function t% K(t) is integrable, then K (£) is continuous and tends to zero at infinity.
As a consequence the operator A™! is not continuous and the problem is ill-posed
because the following equation holds true

+ 00

(A7) () = (2ﬂ)‘1f [§(8)/ K (E)]¢ 60 dE. (6.9)

Analogous considerations apply to the case of the integral operator (6.2). In such
a case (6.8) is replaced by L
= K(£)f(—§) (6.10)
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and, if the kernel K(¢) satisfies the conditions stated above, the inversion formula
(6.9) is replaced by

+ 00

(A7) (1) = (27t)_1f [(—&)/K(—§)]- 61 dE, (6.11)
It is obvious now that (6.9) and (6.11) are completely analogous to (2.3).

Therefore, as in §2, we can introduce regularizing algorithms defined in terms of
families of window functions {W (£)},. , which depend now on the Mellin variable
§. These functions of course must satisfy conditions (i)-(iii) of §2. Then the
corresponding regularizing operators R, are obtained by inserting the function
Wa(g) in (6.9) or (6.11). In both cases the operator T, is given by

- f W) )57 ds (6.12)

where W,(¢) is the inverse Mellin transform of W,(£). It follows that the regularizing
algorithm has the positivity property if W (¢) > 0 for any value of ¢.

We give now expressions for the functions W,(t) corresponding to the window
functions considered in §2. For the square window we have

W,(t) = (Q/m)t* sin [Q In ()]/[x In (¢)], (6.13)
and in the case of the triangular window we have
W,(t)'= (2/2m) ¢ % sin® [(32) In (£)]/[(32) In (¢)]2. (6.14)

Notice that (6.13) and (6 14) are obtained respectlvely from (2.9) and (2.11) just
by putting z = In (¢) and multlplylng by ¢°% In the same way the functions W,(¢)
corresponding to the gaussian and exponential windows are obtained.

As follows from (6.12), the impulse response associated with a given window
function, i.e. the response to the unit impulse f(¢) = 8(¢—a), is given by a ' W,(t/a).
The typical behaviour of this function for the square and triangular window, as
well as for all the other windows, is that the principal peak becomes broader and

a=1

0 ' 2 ' 4 ' 6 ' 8
FicurE 2. Plot of the function a™'W,(t/a), corresponding to the
kernel (6.14) with Q = 4rn, for various values of a.
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lower as a increases. Furthermore, the ratio between the peak values corresponding
to two different positions of the d-function, say a, and a,, is approximately a,/a,
and it is independent of 2 which is related to the regularization parameter by (2.8).
The function a™'W,(t/a), in the case of the kernel (6.14), is plotted in figure 2 for
various values of a.

7. CONVOLUTION OPERATORS ON THE CIRCLE

Another important case where it is easy to introduce regularization algorithms
with the positivity property is that of convolution operators on the circle, namely
the case of integral operators having the following form

&)@ = em [ K-y ay 1)

where K(x) is a periodic function with period 2m. Several classical ill-posed
problems such as analytic or harmonic continuation on a disc and the
determination of periodic solutions of the backward heat equation or of the
Cauchy problem for the Laplace equation (Miller 1964) can be reduced to the
inversion of an operator of the type (7.1). ’

The problem (1.1), in the case where the integral operator is defined by (7.1), can
obviously be solved by means of Fourier series expansions. If we denote by f.
the Fourier coefficients of f(x), by ¢, the Fourier coefficients of g(x) and by k, the
Fourier coefficients of K(x), then the following relation holds true

In =k fy (7.2)

and therefore the operator A is invertible if and only if all the Fourier coefficients
k, are different from zero. In such a case the inverse operator is given by

+00

(A7) (@) = X (gn/ky)e™® (7.3)

n=—c0
Because the Fourier coefficients %, tends to zero when n tends to infinity, the
operator A™! is not continuous in L*(—m, ).

Regularization algorithms can be defined in terms of families of window
coefficients {w, ,},., satisfying conditions similar to conditions (i)—(iii) of §2 and
precisely

(i) 0<w,, <1, for any « > 0 and any n;

(ii") limw, , = 1, for any n;

a0

(iii") for any o > 0 there exists a constant ¢, such that
[w,, /K, < c, for any n.

Then it is easy to show that the family of linear operators defined by

+00

(Reg) (@) = 2 (w, ,9,/k,)e™ (7.4)

n=—00
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provides a regularization algorithm for the problem (1.1), (7.1). Furthermore the
operator T,, (1.3), is given by

(T, f) (x) = (2m)~! J _" W (x—y) f(y) dy, (7.5)
where W (x) = +ZO]O W,y , "7, (7.6)

Also in this case the regularizing algorithm (7.4) has the positivity property if and
only if the function W,(x) is positive.

The most simple regularizing algorithm is provided by the truncation of the
Fourier series expansion of the solution. This corresponds to the use of the
following square window

W, ,=1, In|<N; w,,=0, |n|>N, (7.7)

o

the relation between N and the regularization parameter being given by
N = [a™]. (7.8)

The function W,(x) corresponding to the square window is the well-known
Dirichlet kernel of the theory of Fourier series expansions

W, (x) = sin [(N +3) x]/sin (3x) (7.9)

and therefore this algorithm does not have the positivity property. On the other
hand, if we consider the triangular window

W =1—[nl/(N+1), I<N; w,,=0, />N (7.10)

then the corresponding function W, (x) is the Fejer kernel of the theory of Fourier

series expansions

W,(x) = sin? [}V + 1) «]/[(N + 1) sin? (&2)], (7.11)
which has the positivity property. As is known this kernel is obtained when one
considers Fourier series summation by Cesaro means.

Other window functions with the positivity property can be obtained by a
procedure analogous to that defined by (2.12). It is interesting to point out that
the gaussian window w, , = exp (—an?) (7.12)
has again the positivity property because the corresponding function W, () is just
a periodic fundamental solution of the heat equation, the time variable being
identified with the regularization parameter a. As is known the positivity of this
solution follows from the maximum principle for the heat equation.

A very interesting problem is to investigate the possibility of introducing
regularization algorithms with the positivity property for Toeplitz integral
operators, i.e. integral operators having a structure similar to that of the operators
(7.1) +a
(Af) (x) = f K(x—y)f(y) dy, (7.13)

—a

where now K(x) is not a periodic function (a is a fixed given number). A well-known
example of such an operator is that investigated by Slepian and co-workers
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(Slepian & Pollak 1961) which is obtained by taking K (x) = sin (Wzx)/nx) with W
fixed.

Under very general conditions on the function K(x), the operator (7.13) is
compact in L*(—a, +a) and, when the function K(x) is real and even, it is also self-
adjoint. Then one can use eigenfunction expansions to solve the problem (1.1),
(7.13) and introduce regularizing algorithms by means of a windowing of these
eigenfunction expansions. We are not able to build up for this problem windowing
methods with the positivity property. We have, however, strong numerical
evidence, based on numerical computations performed for several kernels, that the
use of the triangular or of the Hanning window produces a considerable reduction
of the negative lobes which are present in the case of the square window. We give
an example in figure 3. This corresponds to the integral operator (7.13) in the case
a =1 and K(x)=1/cosh (bx) with b = 11n (2). This integral operator is related to
the problem of finite Laplace transform inversion (Bertero et al. 1982) and its
eigenfunctions are also eigenfunctions of a second-order self-adjoint differential
operator (Bertero & Griinbaum 198s). In the figure we plot the kernel of the
integral operator T, obtained by taking 20 terms in the eigenfunction expansion
and using a triangular window. In practice, we plot the response to several unit
impulses f(x) = d(x—c). Except for values of ¢ very near to +1 the response
function % essentially positive.

HL1)

v

(00)

vy (10

Ficure 3. Plot of the impulse response obtained by means of a triangular windowing of the
eigenfunction expansion corresponding to an operator of the type (7.13). The kernel is
specified in the text.
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8. CONCLUDING REMARKS

In this paper we have introduced several regularization methods, for de-
convolution and similar problems, having the interesting property of producing
positive approximate solutions in the absence of noise. As we have shown,
however, positivity is always obtained at the cost of a loss in resolution. This
feature implies that these methods are not convenient for those problems, such as
finite Laplace transform inversion (Bertero et al. 198 5a, 1982), where the number
of degrees of freedom is quite small. In other words these methods are not
convenient for severely ill-posed or ill-conditioned problems. On the other hand
they can have interesting applications to those problems, such as the inversion of
Fraunhofer diffraction data (Bertero et al. 1985a), where the number of degrees of
freedom can be rather large and therefore a loss in resolution is not dramatic.
Further work is in progress along these lines.
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