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The method of singular function expansions, which in previous papers in
this series was used for the inversion of the Laplace transform for the
cases, respectively, of continuous data and continuous solution and
discrete data and discrete solution, is extended to cover the case of
discrete data and continuous solution.

Two diserete data points distributions are considered: uniform and
geometric. For both we prove that the singular values and the singular
functions (in the solution space) of the problem with discrete data and
continuous solution converge to the singular values and singular functions
of the problem with continuous data and continuous solution when the
number of points tends to infinity and the distance between adjacents
points tends to zero.

Furthermore, we show by means of numerical computations that for
geometrically sampled data it is possible to obtain even better approxi-
mations of the greatest singular values than in the discrete-to-discrete
case using a similar number of data points. Excellent approximations of
the continuous-to-continuous case singular functions are also obtained.
Implementation of the inversion procedure gives continuous solutions
with high computational efficiency.

1. INTRODUCTION

In a previous paper (Bertero et al. 1982), hereafter referred to as I, the concepts
of ‘resolution limit " and of ‘number of degrees of freedom ', which are fundamental
in the theory of band-limited imaging or communication systems, were extended
to the problem of the Laplace transform inversion, where one is concerned to
recover and resolve exponential relaxation rates. The main purpose of the paper
was to quantify the improvement in resolution obtained by using a priori
knowledge of the support of the unknown solution and to this purpose the singular
value decomposition of the Laplace transform inversion was investigated.

In I the data was assumed to be known everywhere, but since the number of
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experimental data points is necessarily finite, in a further contribution (Bertero
et al. 1984), hereafter referred to as 1I, the case of discrete data was considered.
This was done using also a model of discrete solution, namely the exponential
sampling model of Ostrowsky et al. (1g81). Optimum choice of experimental data
points was defined in IT as the choice giving the best conditioned inversion matrix,
and the case of a uniform distribution as well as the case of a geometric distribution
of data points was investigated from this point of view. One result was that
geometrical sampling of data requires a number of sample points much smaller than
uniform sampling, for a given ill-conditioning of the inversion matrix.

Modelling the solution by the set of é-functions of the exponential sampling
method provided a practical way for realizing inversions, which has been used in
practice, together with a ‘sampling theorem’ interpolation scheme (Ostrowsky
et al. 1981) to provide a continuous function for the output of the calculation.

In the present paper we show that the singular function method is sufficiently
flexible to accommodate directly transtormations between continuous functions
and discrete vectors by simple modifications of our previous continuous-to-
continuous case analysis and we calculate singular systems for this case. We make
some comparisons of our new results with those obtained previously and show that
they provide an excellent approach to the problem of Laplace inversion from
experimental data.

I fis a function with bounded strictly positive support, we can assume. without
loss of generality (see 1), that fis supported in [1,y]. Then we define the Laplace
transform of fe L*(1, y) by

g(p) = (Kf) (p), (1.1)
where (BEf) (p) = [ e P f(t) di. (1.2)
J1
The operator K: L%(1,y) = L(0. + 20) is compact and injective with domain L*(L, y)
and range dense in L*(0. +2c). We denote | +1ioy the singular system
of K, namely the set of the solutions of ths quations
Ku, =a.7v,. K¥rp=a,u,. (5

As is known. the singular functions u; are also the eigenfunctions. associated with
the eigenvalues «}. of the compact, self-adjoint. e definite operator
K = K*K, whose explicit expression is

(7 fis)

(Ef) (1) =

——ds, 1<i<y (1.4)
J; t+3

In I it is proved that all the eigenvalues of K have multiplicity 1. so that the
i ng sequence. From the

singular values o, can be ordered in a strictly decres
compactness of X, it follows that. . —0 when & -+ .
The problem of inverting (1.1) is ill-posed and therefore one needs regularization

techniques. Since the singular values drop to zero extremely fast, the various
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regularized solutions are practically equivalent and therefore one can use the most
simple one, namely a singular function truncated expansion

=3 Leq ), (1.5)
k=0 X
+eo
where % —f 9(p) vy(p) dp (1.6)

and .f is the number of singular values greater than some threshold value (see I).
In most cases J is rather small: for instance, when y = 5, we have only 5 singular
values greater than 1072,

In the absence of noise, f(t) is a ‘smoothed’ version of the unknown function
J. Indeed, if we put ¢ = Kf in (1.6) and we use the second equation (1.3) we obtain

fit) = fy M1, 8) f(s) ds, (1.7)
J—1

where Mt s) = 20 wylt) ug(s). (1.8)
k=0

Since it is possible to extract from continuous data only a small number of
components of f it is reasonable to argue that the same goal can be obtained by
using only a small number of conveniently placed data points. Results in this
direction were obtained in L1, using the exponential sampling model of Ostrowsky
et al. (1981). In that paper it was shown that if data points are geometrically
distributed and optimally placed, then, roughly speaking, the number of data
points required for inversion is not much greater than the ‘number of degrees of
freedom’ .

As in IT we will consider mainly two data point distributions: a set of N
equidistant points:

Pp=c¢+dn—1); n=1,2,...,N, (1.9)

characterized by two parameters, the position ¢ of the first point and the distance
d between adjacent points, and a set of N points forming a geometric progression

P =cd"; n=1,2,.., N, (1.10)

characterized again by two parameters, the position ¢ of the first point and the
dilation factor 4, giving the ratio between adjacent data points. We will call the
choice (1.9) uniform sampling and the choice (1.10) geometrical sampling of the
data. Remark that geometrical sampling is a uniform sampling in the variable In p
and, for this reason, geometrical sampling seems to be more natural than uniform
sampling, since using this variable the Laplace transformation can be written as
a convolution integral. Arguments founded on the sampling theorem are also given
in Pike et al. (1983).

The paper is organized as follows. In §2 we give a general outline of the singular
value decomposition of the Laplace transform inversion with discrete data.
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In §§3, 4 we investigate the behaviour of the singular values and singular
funetions when the number of points tend to infinity, both for uniform sampling
and for geometrical sampling. In §5 the analytical investigations of the singular
values and singular funetions developed in the previous sections are completed by
numerical computations. It is shown by an example that geometrical sampling
gives a much better reproduction of the relevant singular values and of the
corresponding singular functions, with a much smaller number of data points than
uniform sampling. Finally, in §6 the problem of resolution limits, which was the
main aim of I, is reinvestigated to show explicitly the intrinsic limitations of
Laplace transform inversion and the beneficial effect of the knowledge of the
support of the unknown funetion.

2. SINGULAR VALUE DECOMPOSITION OF THE LAPLACE TRANSFORM
INVERSION WITH DISCRETE DATA

Let us assume that the Laplace transform g of the function fe L3(1,y) is given
at the points p,, p,. ... p» without specifying, for the moment, the distribution of
these points. Then we call K ,; the operator that transforms the function finto the
vector whose components are the values of ¢ at the points p,,:

-

(Kx f) (2y) —f ePaiftydl; B =1, (2.1)

1

The operator £ is an operator from X = L*(1, y) into the N-dimensional euclidean
space ¥ = E¥_ in which we introduce the scalar product

N
(g.h)y = §1 W, 9(p,) k(D). (2.2)

The problem of the choice of the weights w,,, which must be introduced when the
distribution of the data points is not uniform, will be discussed in the next sections.

The adjoint operator K%, which transforms a vector of ¥ into a function of X,
has the expression

N
(KX 9) (1) = X wy,g(p,) e Pn', (2.3)

n=1
The operator K y is (trivially) compact and we will denote by {ay 11 #x 1 ¥x giieo
the singular system of K;, namely the set of the solutions of the coupled equations
Kyuy =%y 18 KRN k= %N Nk (24)

The singular functions u, , are also the eigenfunctions, associated with the
eigenvalues a3, .. of the finite rank integral operator Ky = K} Ky given by

(B f)(t) = J Ty (t+s) f(s) ds, (2.5)

1

N
where Tw(t) = X w, 6 Pal, (2.6)
s
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As in the problem with continuous data, we assume that the singular values
oy are ordered in a decreasing sequence. The normal solution (namely the
solution of smallest norm) of the problem: given g(p,,) find fe L*(1,) such that
g(p,) = (Ky f) (p,); n=1,..., N, can be expressed in terms of the singular system
of K. The solution is extremely ill-conditioned even when N iz moderately large
and therefore we must use regularization or filtering techniques as for the problem
(1.1). If we truncate the expansion and we take the same number of terms as in
(1.5), we obtain

- I1g )
[ty =2 _N’iuN,k(t)s (2.7)
=0 IN, &
N
where gN,k = Z wng(pn)’uN,k(pn)! (28)
n=1

vy 1(P,) being the nth component of the singular vector vy ;.

The problem of investigating the effect of sampling and truncation of data on
the Laplace transform inversion is just the problem of estimating the difference
between the truncated solutions fN and }F Furthermore, since the function
(?f = f _fN represents the error due to the discretization of the data, we can say
that a zet of data points is acceptable when Sf has the same magnitude (for instance
in the sense of the norm of X) as the noise contribution to f.

In the absence of noise, we can find for f; an expression similar to (1.9). Indeed,
if we put ¢ = K, fin (2.8) we obtain

- ¥
Jult) = J; My (t, ) f(s)ds, (2.9)
J-1
where My(t,s) = 2wy () uy (s). (2.10)
k=0 '

By comparing (2.9), (2.10) with (L.7), (1.8) we see that, in the absence of noise,
f can be an accurate estimate of fif the singular functionsuy , (k=0,1,....J—1)
provide accurate approximations of the corresponding singular funetions w,. In
the presence of noise there is an extra term in (2.9) as well as in (1.7). This term,
depending on the noise, contains explicitly the singular values. Therefore it is also
necessary to require that the singular values ay , (k=0,1,...,J—1) provide
accurate approximations of the corresponding singular values a,.

Now, if we remark that u, is the eigenfunction of the operator & (equation (1.4)),
associated with the eigenvalue o and that, analogously, uy , is the eigenfunction
of the operator K, (equation (2.5)) associated with the eigenvalue a3 ,, we see
that we can consider the problem with discrete data as a linear perturbation of
the problem with continuous data, the linear perturbation being described by the
integral operator B, = KE— K, whose expression is

i .4
Ly f) ) = f pa(t+s) fls)ds, (2.11)

1
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1 N
where Pty = = > w, e Put, (2.12)

n=1
Then, from the Weyl-Courant lemma (Riesz & Nagy 19553) it follows that
|og—ak | < | Byl (2.13)

(where || £y || denotes the usual operator norm of a bounded operator in L1, y))

and also that
¥ id 1
o —a 4| < (f dtJ. ds| pr(t+3) ]9) - (2.14)
1 1

since the operator norm is smaller than the L2-norm of the kernel. Therefore & x
is certainly a good approximation of 2 when the L2-norm of the function Palt+s),
defined by (2.12), is much smaller than 2.

By straightforward techniques of perturbation theory (Kato 1966) it is also
possible to show that || uy ,—uy || is bounded by the norm of & .

3. UNIFORM SAMPLING

The problem of Laplace transform inversion with equidistant data points, which
is related to the Hausdorff moment problem, is one of the most inv estigated since
the pioneering work of Papoulis (1956). A well known result is the fo suwing
(Doetsch 1943): the Laplace transform g(_p) is uniguely specified when its values

g(p,) at the points p,,, (1.9) with N = oo, are given. The case o f equidistant points
has also been of great interest in some applications of Th*: Laplace transform
inversion (Cummins & Pike 1974: Pike ef al. 1083).

To apply the method of §2. we must specify the weights w_. The simplest choice

for equidistant points is

w, =d, (3.1)
d being the distance between adjacent points. Then we will denote by & (¢, d) the
operator K and by ay (c.d) the singular values z,, . : analogously. forc = 0, we
will denote by K (d) the operator K, and by =, the singular values ay .

The kernel I’N((' d; t+s) of the np-e»'af- r K (c.d) is given by (see (2.6), (1.9) and
(3.1))

Tyle.d;t) =de ™ (3.2)

and therefore the following relation holds between the kernel of & +(c.d) and the
kernel of K (¢, d):
Tyle,d;t+8) = e CNT (" d: t+3) e 5 (3.3)

This relation can be used to investigate the dependence of the singular values
%y, z(c,d) on the position ¢ of the first data point and the follos ing result can be
eax:ﬂy proved by using the minimax characteristics of the = eigenvalues. For fixed
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N,k and d, ay ,(c.d) is a decreasing function of ¢ and the following inequalities
hold true:
e ay 4{d) Say ple,d) e Cay i (d); (3.4)

therefore ay, (¢, d) tends to oy ,(d) from below, when ¢—0.

From this result it follows that the best choice for ¢ is ¢ = 0. If in a practical
experiment it is not possible to have ¢ = 0, one has to take ¢ as small as possible,
since the singular values decrease rather rapidly when ¢ increases. But, if ¢ is small,
from the inequalities (3.4) it follows that the difference oy p(d)—ay (e, d) is, at
most, of the order of (ye)ay ,(d). In the following we will only consider the case
e ={.

To investigate the dependence of the singular values «y, ,(d) on the number ¥
of data points, for fixed k and d, let us firstly remark that the operator

Byndd) = By (d)— R y(d) (N> N) (3.5)
is positive definite, since
~ N'=1 gy 2
(Byndd) [, iy =d Z ( f e~ D fip) dtf) =0 (3.6)
n=N 1

and therefore, from the Weyl-Courant lemma (Riesz & Nagy 1955) it follows that
ay pld) S ak gd) (N <N); (3.7)

namely, for fixed £ and d, the singular value ay ,(d) is an inereasing function of
the number N of data points.

1t is also possible to investigate the limit of the singular values when N -»>co,
since the function 7' (d; t) = T'\(0,d; t) has as a limit the function

T(d; t) = df(1—e%) (3.8)

(the convergence is uniform over the bounded interval 2 < ¢ < 2y). Then 7(d; t+s)
is the kernel of an integral operator, which we denote by K(d) and which
corresponds to the problem of Laplace transform inversion for an infinite sev of
equidistant data points. We will denote by a,(d) the singular values of this
problem. From the unigqueness result stated at the beginning of this section, it
follows that the operator K(d) is injective. Remark that the difference o, — o, (d)
(where the «;, are the singular values of the original operator (1.2)) can be taken
ag a measure of the error due to the (uniform) sampling of data, while the difference
oy (d) — ey i(d) can be taken as a measure of the error due to the truncation of data.
We first estimate the latter.
The operator 23 25 2
Ry(d) = R(d)— K (d), (3.9)

whose kernel R (d; 1+ 5) is given by
Ry(d; t) =de NMt/(1—e 9, (3.10)

is positive definite. Furthermore, if we remark that, for any d < 1 and any ¢ = 2
we have d[1—exp(—df)]* <i we get Ry(d; i) < &) exp(—Ndt), so that, from
(2.14) we obtain

0 < aj(d)—ay p(d) < (Nd)™ e 2V (3.11)
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We conclude that the singular values ay ;. (d) tend to o (d) from below when N—co,
the convergence being exponentially fast with respect to N, for fixed k and d. As
a consequence in numerical computations, using necessarily a finite arithmetic, the
limit N = oo is already reached with a moderate number of data points, at least
for the greatest singular values, and when the distance d between adjacent points
is not too small.

As concerns the effect of the sampling of data, it can also be described as a linear
perturbation of the operator K (equation (1.4)) if we put B(d) = K(d)— K. Tt is
interesting to remark that R(d) is an analytic perturbation (Kato 1966). as follows
from the Taylor expansion of the kernel p(d; t+s) of R(d):

d 1 B

+oo
. — AR QPR i m m 2m—1
pldit)=7——z—7 = id dmzml( 1) @m)] (dt) (3.12)

(where the B, s are the Bernoulli numbers), which converges when dt < 2. Since
when { < 2y, d < In/y, the following inequality holds:

1,0(::1!'t)|<ld+d§D —Bﬁnzm_lz 1+l d<d; (3.13)
il ey (2m)! 2 ) '
from the inequality (2.14) we obtain
a2 (d)—ad| < dly—1). (3.14)

By combining the inequalities (3.11) and (3.14) we get
ok x(d)— o | < d(y—1)+(Nd) e V4, (3.15)

where the first term is the error due to sampling and the second term is the error
due to truncation. Furthermore, we may see that a similar estimate holds for the
norm of the difference uy ;—u;. Therefore we can summarize our results ag: if
d 0 and N—o0 in such a way that Nd —co, then, for any fixed k, oy (d) >, and
wy >, the last convergence being the strong convergence in Lz(i v).

As a final remark we point out that, for fixed N, the error given by the right
side of (3.15), has a minimum as a funetion of d. Therefore we expect that for fixed
N, there exists an optimum distance between adjacent points, in the sense that
it gives the best approximation of (some) singular values of the problem with
continuous data. We will investigate this point numerically in §5.

4, GEOMETRICAL SAMPLING

The data point distribution (1.10) has becn suggested by Pike et al. (1983) using
arguments founded on the sampling theorem. The aim was to find a distribution
giving the same results as a uniform distribution, but using a much smaller number
of data points. The same arguments suggest the choice of the weights

.= (Ind)p,. (4.1)

We will justify this choice.
As a preliminary remark we point out that the Laplace transform g(p) of a
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function fe L*(1, y) is uniquely specified when its values are given at points forming
a geometric progression. To prove this result it is sufficient to remark that if the
set of the data points is given by

P =% w=0,%1,42 ..., (4.2)

then these points accumulate to p = 0. Since g(p) is an entire function, the points
Py as well as the limiting point p = 0 belong to the analyticity domain of g(p). The
well known properties of the zeros of an analytic function imply that if g(p,,) =0
for any p,, then g(p) = 0 everywhere and the uniqueness is proved.

In the following we will assume that the set of data points is a subset of (4.2),
say corresponding to #=—N,, —N,+1,...,0,.... N,— 1, N,. Then the relation
between the parameter ¢ of (1.10) and the parameter g of (4.2)is g = ¢ exp (¥, In 4).
Furthermore we have N = N, + N, +1.

We introduce the function

N

Tn(g.4;t)= X w,e®nt (N=N+N,+1), (4.3)
n=—N,

w, and p,, being given by (4.1) and (4.2) respectively, and also the function

+oo
T(g.d4;t)= 2 w, e Pat, (4.4)

n=—cx

Accordingly we will denote by K (¢, 4) the operator whose kernel is 'y (¢, 4; t+5)
and by ay (g, 4) the corresponding singular values. We will also denote by K(g,4)
the operator with kernel T'(q, 4; t+s) and by a,(q, 4) the corresponding singular
values. From the uniqueness result, stated at the beginning of this section, it
follows that the operator K(g, 4) is injective.

As in §3, the difference o, — . (g, 4) can be taken as a measure of the error due
to the (geometrical) sampling of data, while the difference olg. dy—ay (g, 4) can
be taken as a measure of the error due to the truncation of data.

We investigate first the effect of the truncation of data. From (4.3) and (4.4)
we have the relation

T(g.4: 1) = Tn(q. 4; )+ B(q, 4; )+ B (g, 45 1) (4.5)
—(N3+1)
if we put BNg.4;0)= 2w, e Pat (4.6)
N=—o
+oo
and R g.4;)= 3 w, e Pal, (4.7)
n=N,y+1

As in §3 it is easy to prove that, for fixed k,q.4, the singular value a1 lq, 4) is
an increasing function of the number N of data points, if we increase the number
of data points on both sides of the ‘central point’ p, =g¢; furthermore
Ay k(g 4) < aylg, 4).
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To prove that ay (¢, 4)—>a,(g, 4) when both N, and N, tend to infinity, first
remark that

—(N1+1)
RE\TB(Q’A?t)é P q(In 4) Z A (mAN 1)
Th=—00 =0
A s InA
=1 PN (f\«1+1)md:A71p_(Nl+n. (4.8)

Concerning R{) (g, 4; t), if we introduce the functions

plx) = q4%, w(x) = p'(x) = (Ind) p(x) (4.9)
+aoo
we have RPg.4;)= X w,e Pl
n=No+1

+c0 +oo
< '[ p(x) e tP@ dy = J. e Ptdp

Na Py
<jexp(—tpy,) (22) (4.10)

From the inequalities (4.8), (4.10) and from the Weyl-Courant lemma (equation
(2.14)), it follows that

aj(q. 4) = oy 4 (q.4) = ajlq, 4)—€*(q. 4; N, V), (4.11)
Ind A
where €Xq.4; N,,N,) = qly—1) Angl AN+ 5 exp (—2gAN:). (4.12)

We conclude that, for fixed k,q,4, ay (g, 4) converges exponentially fast to
o, (g, 4) when N, and N, tend to infinity.

It is also interesting to remark that the ‘error’ €(g, 4; N,, N,) has a minimum
as a function of ¢, for fixed 4, N,. N,: therefore we can take it that, for given values
of the dilation factor 4 and of the number N of data points there are optimum
values of ¢ (or equivalently of the position ¢ of the first data point) in the sense
that we can minimize the truneation error on the singular values. This point will
be confirmed by our numerical computations (see §5).

Finally we will estimate the effect of the sampling of data. We write

plg, 4 t) 1 Z w,, 6 Pnt (4.13)

n=—w

and we observe that, using the change of variable defined by (4.9), by putting
a(r) = w(z) exp (—tp(x)), we have

+0o0 400
plg, A4;t) = f e Pldp— X w,e Pt

+o0 n+1 .r—
= _ZE (f a’(y)dy) dx
o0 n+1
= 2 (n+1—y)a(y)dy. (4.14)

n=—00 n
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Since the funection a(x) has only one maximum at the point 2, = —1In (gt)/In 4,
so that a'(y) = 0 for y < 2, and a'(y) < 0 for ¥ 2 xy, and using also the fact that
n+1—y < 1 on the interval [n,n+1], we obtain —a(x,) < p(q, 4;t) < a(z,) and,
computing a(z,):

lplg.4: )] < (Ind)/et. (4.15)

From (2.14) we obtain
1. [(y+1)2 .
|~ af(g. 4)| < - 1In [VT} Ind. (4.16)

It follows that the effect of the sampling of data tends to zero when 4 1.

Collecting the inequalities (4.11) and (4.16) we conclude that for fixed & and g,
if 4>1 and N,,N,»c0 in such a way that NiInAd—-oco and N, InAd->co, then
ayn, 1(q, 4)>ay. A similar result holds for the singular functions, i.e. Uy Uy, the
convergence being the strong convergence in L*(1,y).

5. NUMERICAL RESULTS

The singular system of the operator K ~ (equation (2.1)), or, more precisely, the
singular subsystem generated by the greatest singular values, can be easily
computed by solving the eigenvalue problem for the N x N matrix K ~ K3 As
follows from (2.1), (2.3) the matrix elements of Ky K% are given by

() = Ij%_ [~ PutPm) — o=y (Pt (5.1)
n m

This matrix is not symmetric (in the usual sense) when the weights w, are not
constant, but it has the same eigenvalues as the symmetric matrix

1

] w, }

30 = (22 4, 52)
wm

Furthermore, if v, . is the eigenvector of the matrix (5.2) associated with the

eigenvalue af; , and normalized to 1 with respect to the usual euclidean norm, then

the corresponding singular function « ~, ¢ 18 given by

N
2 whvy 4(p,) e et (5.3)

uN,fg(t)=a -
N,k n=1

We report now a few numerical examples that show how the method, developed
in the previous sections, can be put in practice.

5.1. Uniform sampling

We have mainly considered the case y =5 and, as in II, we have done
computations with N = 32, 64 and 128,

As illustrated in table 1, the convergence of the singular values when N grows
is rather fast, in agreement with the theoretical estimate (3.11). Furthermore, the
convergence is faster with greater values of d. It follows that, if we take N = 64,
the error due to the truncation of the data is rather small (a small percentage) and
therefore we will take this value in the following.

s Vol. 308. A
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-
=
=
n
-0
4
—14-
Freure 1. Singular vectors vy 4, £=0,1,....,4 (denoted by v, in the figure) in the case

vy=5, N=064 and d =0.07. The values of the components have been joined by a
continuous line.

TABLE 1. BEHAVIOUR OF THE GREATEST SINGULAR VALUES AS A FUNCTION OF N,
IN THE CASE ¥ =5 AND FOR TWO VALUES OF THE DISTANCE ¢ BETWEEN
ADJACENT POINTS

d=0.04 N=32 N =64 N =128
ay old) 0.9159098 0.9190460 0.9191318
Hes[d) 0.1900254 0.2024905 0.2035560

ay o(d) 0.2789200 x 101 0.3889461 x 10~ 0.4014776x 107
d = 0.06 N =32 N =64 N =128

sy old) 0.9411925 0.9416686 0.9416719

sy 1 (d) 0.2054506 0.2083106 0.2083400

2y o(d) 0.3670656 x 10~ 0.4089348 x 107! 0.4098645 x 107!

Now if, for fixed N and fixed k, we introduce the condition number corresponding
to the restoration of the first ¥ components

af(d) = Ay old)/ oy, g—1(d), (5.4)

then, by using the expression (5.1) of the matrix t¥) withw, = dand p,, = d(n—1),
it is easy to show that a{¥(d)>00 both when d—0 and when d—occ. Therefore
¥ (d) has certainly a minimum as a function of d (see also IT).

The behaviour of the condition number (5.4) is quite similar to the behaviour
of the condition numbers of the exponential sampling model computed in I1. For
instance, when v = 5, N = 64 and k = 3, 4, 5, the minimum occurs approximately
at d, = 0.07 both in the present case and in the case of the exponential sampling
model (see table 1 in 1I}. Furthermore the minimum is extremely flat.
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Uy i (t)

_1L Hy

FiGUrE 2. Singular functions Uy L 1St<y, k=0,1,..., 4 (denoted by u, in the figure)

in the case y = 5, N = 64 and d = 0.07.

TABLE 2. SINGULAR VALUES &, OF THE PROBLEM WITH CONTINUOUS DATA (SEE I)

AND SINGULAR VALUES .y 1(d) IN THE casE N = 64, d = 0.07 (y =5 1N BOTH
CASES)

(The relative percentage error of the singular value a, (d) with regpect to the singular
value oy is shown in brackets.)

k &y, %y pld)

0 0.8751 0.9531 (8.9)
1 0.1935 0.2106 (8.8)
2 0.3827 x 107! 04135 x 107 (8.0)
3 0.7434 x 1072 0.7942 x 1072 (6.0}
4 0.1435 x 1072 0.1482x 1072 (3.3)

The five greatest singular values, in the case vy=5 N=64,d=0.07, are given
in table 2, the corresponding singular vectors » ~, x are plotted in figure 1 while the
singular functions u ,(f) are plotted in figure 2. We notice that u . () has exactly
k zeros inside the interval [1,y].

In figure 3 we give the behaviour of the condition number (5.4) in the case kb = 3
(full line). The minimum is extremely flat: the value of the condition number does
not change significantly in the interval from d = 0.04 to d = 0.1. Furthermore the
value of the condition number is always greater than the condition number of

the problem with continuous data, 2® = ay/a, = 22.87. The dotted line represents
the function

@) = {1 = [iL—l“ 'f}_"‘]z}i (5.5)
j=0 7

which is the relative mean square error on the first k singular values. As we see,
efe1(d) also has a minimim, as a function of d, but at a value of d smaller than that

corresponding to the minimum of the condition number and precisely d, = 0.035.

2-2
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Fievre 3. Behaviour of the condition number a{(d) (full line) and of the average relative error
el®)(d) (broken line) as a function of d. in the casey = 5, N = 64and k = 3,6 = (; al® =22 87

is the condition number of the problem with continuous data.

TABLE 3. SINGULAR VALUES CORRESPONDING TO THE MINIMUM OF THE RELATIVE

MEAN SQUARE ERROR (d = d, = 0.035) AND TO THE MINIMUM OF THE CONDITION
NUMBER (d = d, = 0.07)

(The relative percentage error with respect to the singular values of the problem with
continuous data (first column of table 2) is shown in brackets.)

d k=0 1 2
0.035 0.9133 (4.4) 0.2010 (3.9) 0.3761 x 10~ (1.7)
0.070 0.9531 (8.9) 0.2106 (8.8) 0.4135 % 1071 (8.0)

The value of the condition number at d, is @$¥(d,) = 24.28 while its value at the

minimum point d, = 0.07 is a@(d,) = 23.05 (condition number-in the case of
continuous data, a® = 22.87).

In table 3 we compare the first three singular values corresponding respectively
to the minimum of the average relative error and to the minimum of the condition
number.

As we see, for uniform sampling, using a rather large number of points (N = 64),
it is impossible to reduce the average relative error on the first three singular values
below 3.5 9%,.

“oncerning the singular functions a comparison can be done by comparing the
zeros. If we consider the singular functions corresponding to the first three singular
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values, then we have only three zeros, since the first singular function has no zero,
the second has only one zero, ¢, , and the second has two zeros, ty o and £, , (we
will denote by #; , the position of the jth zero of the kth singular funection). For
the problem with continuous data and y = 5 these zeros are (see the numerical
method used in I)

h,,=2236 + ,=1427 f,,=3507. (5.6)

In table 4 we give the zeros for uniformly sampled data with N = 64, both
for the value of d corresponding to the minimum of the relative mean square error
and for the value of d corresponding to the minimum of the condition number.

We notice that, with regard to the zeros of the singular functions, the choices
d =d, or d = d, are almost equivalent.

TaBLE 4. ZEROS OF THE SINGULAR FUNOTIONS Uy g (Le. by 1) AND uy , (ie. by , AND
ly o) TN THE CASE N = 64, ¥ = 5 AND FOR THE VALUES OF d CORRESPONDING
TO THE MINIMUM OF THE RELATIVE MEAN-SQUARE BERROR AND OF THE
CONDITION NUMBER

(The relative percentage error with respect to the values for continuous data (equation (5.6))
is given in brackets.)

d ’:1,1 t:,z t2,2
0.035 2.285 (2.2) 1.454 (1.8) 3.568 (1.7)
0.070 2.313 (3.4) 1.442 (1) 3.563 (1.6)

5.2. Geometrical sampling

For the exponential sampling model, as shown in II, the geometrical sampling
of data allows one to obtain better results than the uniform sampling, using a much
smaller number of points. In the range 2 < y < 8 and for values of k up to k = 4,
we need only 5 optimally placed data points. Similar results hold for the singular
value method developed in this paper.

We have computed the eigenvalues of the matrix (5.1) in the case N = 5,y = 5,
the points p,, and the weights w,, being given by (1.10) and (4.1) respectively. Since
we still have two parameters, ¢ and 4, we have done a detailed investigation only
in the case k = 3, using the value of 4 suggested by the computations reported
in IT, namely 4 = 5.5.

Using the notations of §4 we introduce the condition number

ay olc, 4)

i) (e, 4) = ,
v %y pa(c. 4)

(8.7)
and the relative mean-square error with respect to the singular values of the
problem with continuous data

e®(e) = {1 5 [—L;M '(C‘A)_a'r}%. (5.8)
ks a;

In the case k = 3, N = 5 and 4 = 5.5, the function (5.7) is plotted in figure 4 (full
line), while the dotted line, in the same figure, represents the function (5.8). As
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Freurs 4. Behaviour of the condition number o (¢) (full line) and of the average relative error
e®)(c) (broken line) in the case of geometrical sampling with N = 5. The values of the other
parameters are y =5, k=3 and 4 = 5.5; ¥ = 22.87 is the condition number of the
problem with continuous data.

in the case of the exponential sampling model investigated in 1I, the condition
number «*)(¢) has two minima at the points

¢, =0.2x1072, ¢, =0.109x107, (5.9)

where it takes approximately the same value, i.e. 17.3, which is smaller than the
value 22.87 of the condition number of the problem with continuous data. As a
consequence there are four points where the condition number af(c) takes the
value of &, In a neighbourhood of each of these points there is a minimum of
the relative mean-square error (5.8) and precisely at the points
& =0.1363x1072, ¢, = 0.270% 1073,
(5.10)
g, =0755x10"2,  &=0.149x 107"

The smallest value of the relative mean-square error is 0.64 9, and is taken at ¢,
(recall that for uniform sampling, with 64 points, the minimum relative mean-square
error was approximately 3.5 % ). The values at &,, ¢, and ¢, are approximately 3.8%:
1.29,,and 4.7 %, respectively. The absolute minimum at ¢, is, however, rather sharp
<o that a small variation in ¢ can induce a rather large variation in the relative
mean-square error.
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In table 5 we give the first three singular values corresponding to the values of
cgivenin (5.9) and (5.10). As we see the greatest singular value is not very sensitive
to ¢ while the second singular value and especially the third singular value are much
more sensitive.

TABLE 5. SINGULAR VALUES CORRESPONDING TO THE MINIMA OF THE RELATIVE
MEAN-SQUARE ERROR (GIVEN IN (5.10)) AND TO THE MINIMA OF THE CONDITION
NUMBER (GIVEN IN (5.9))

(The relative percentage error with respect to the singular values of the problem with

continuous data (first column of table 2} are shown in brackets.)

k=0 1 2

7 0.8742 (0.1) 0.1915 (1.0) 0.3815 x 107 (0.3)
e 0.8761 (0.1) 0.1810 (6.5) 0.3767 x 107 (1.6)
oA 0.8692 (0.6) 0.1897 (2.0) 0.3802 x 107 (0.6)
) 0.8663 (1.0) 0.1782 (7.9) 0.3751 x 107 (2.0)
¢, 0.8790 (4.5) 0.1667 (13.8)  0.5088 x 107! (32.9)
ey 0.8717 (3.9) 0.1648 (14.8)  0.5058 x 107 (32.2)

Concerning the singular functions we have computed the zeros and give the
results in table 6. We notice that the zeros are rather stable with respect to
variations of ¢

TaBLE 6. ZEROS OF THE SINGULAR FUNCTIONS %, | AND %, , IN THE CASE N =
4 =5.5(y =5), FOR THE VALUES OF ¢ CORRESPONDING TO THE MINIMA OF THE
RELATIVE MEAN-SQUARE ERROR AND OF THE CONDITION NUMBER

(The relative percentage error with respect to the values given in (5.6) is given in hrackets.)

4,

tl_‘?. tz,z

P 5
& 2.122 (5.1) 1.434 (0.5) 3.533 (0.7)
é 2.348 (5.0) 1.397 (2.1) 3.425 (2.3)
A 2.116 (5.4) 1.431 (0.3) 3.526 (0.5)
éy 2.338 (4.6) 1.396 (2.2) 3.419 (2.5)
e 2.222 (0.8) 1.417 (0.7) 3.482 (0.7)
e 2.204 (1.4) 1.416 (0.8) 3.452 (1.6)

6. RESOLUTION LIMITS

The problem of resolution in the Laplace transform inversion was one of the main
points discussed in I, where a resolution ratio d, was defined by assuming a
geometric distribution of the zeros of the singular fun('tlons u,(t). This property
iz not exact but it is approximately satisfied, ag illustrated by the following
example where the zeros of the singular funections corresponding to y = 5 and to
64 uniformly sampled data points, at a distance d = .07, are given:

b1 = 2018
L = 1A% §. = 3563,

b, g =1221, ¢, =2.267, ¢, ,=4.152,

t1‘4 = 1135, t2,4 = 1741, t3,4 = 2944, [,4‘4 B 4453 (61)
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We have the following values for the ratios between adjacent zeros:

ly o/, » = 2471,
b o/ts o = 1857, 1y 4ft, = 1.831.
by ofty,, = 1.534, t, /t, , = 1.601, &, ,/t, , = 1513, . (6.2)

and therefore the zeros of the two last singular functions form approximately a
geometric progression. We also notice that the values of §, estimated in T for the
case y = b were: d;, = 1.736 for a signal-to-noise ratio £/e¢ = 102 and 8, = 1.445 for
a signal-to-noise ratio £/e = 10% These values are smaller than the ratios between
adjacent zeros given in (6.2) (the values to be compared are respectively those
contained in the second line and in the third line). But if we take an average of
the ratios between adjacent zeros, including also the ratio between the first zero
and the lower bound of the support and the ratio between the upper bound of the
support and the last zero, we find §,, = 1.772 for restorations using 3 singular
functions (which corresponds to /e = 10?) and §,, = 1.399 for restorations using
5 singular funections (which corresponds to &/¢ = 10%). This result suggests that
the resolution ratios computed in I can also be interpreted as average resolution
ratios in the sense specified above.

We can have more insight into the problem of resolution limits in Laplace (and
similar) transform inversion if we look at the relation between the restored and
the true solution. In the absence of noise and by using the singular value method
such a relation is given by (1.7) and (1.8) or by (2.9) and (2.10), and the smoothing
kernel M(¢, s) that appears in these equations hag the following interpretation: if
we assume that the unknown function is a d-function concentrated at the point
t = a, then the restoration provided by the truncated singular function expansion
in the absence of noise is

. J-1
fa8) = Mit,a) = E—j U (t) up(@). (6.3)

This equation can be used to illustrate the improvement in resolution due to
knowledge of the support of the solution. To do this we must derive the equation
corresponding to (6.3) in the case where we have no constraint on the support of
the unknown function. In such a case we can use a truncated inverse Mellin
transform or a truncated eigenfunction expansion (McWhirter & Pike 1978) given
by

et L o G—dl] ..y
(0) — s G+iwm) v
fown =5 an T de, (6.4)

where §(w) is the Mellin transform of g(p) and w, is given by the condition (see 1
and also McWhirter & Pike (1978))

| T} +iwo) | = ( L ) =L (6.5)

cosh w,
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E/e being the signal-to-noise ratio. Now, if we use the approximate solution (6.4)
in the case of noise-free data, namely jlw) = I ((+iw)f(—w), by elementary
computations we get s
forgy = J M, (t. ) f(s) ds, (6.6)

0
sin [w, In (£/s)]

1 . (6.7)
w(ts): In (t/s)

where Mt s) =
Again the kernel (6.7) has the following interpretation : for a d-function concentrated
at the point t = @ and in the absence of noise, the restoration provided by (6.4)

&) = Mot0) == )

(6.8)
The principal maximum of f® () is approximately at ¢ = a (in fact it is slightly to
the left of this point) and the first zero to the right of { = a is at L, = aexp (T/w,),
so that, using the Rayleigh criterion, we find the resolution ratio 3, = exp (T/w,).

1oF L

Fou

-04-

Fieure 5. Behaviour of the function f&“’(t) {equation (6.8)), for different values of a.
The value of w, taken in these computations is 4.98, corresponding to B/e = (P in (6.5).

The function (6.8), for various values of o, is plotted in figure 5. The typical
behaviour is that the principal peak becomes broader and lower as increases.
Furthermore the ratio between the peak values corresponding to two different
positions of the d-function, say a, and a,, 18 approximately a,/a, and it is
independent of w, (in other words it is independent of the signal-to-noise ratio).
We also notice that the position of the principal maximum is not exactly at { =
but at ¢ = @ < a. A comparison between a and @ is given in table 7. As we see, the
relative error decreases for increasing a.

By using the singular functions computed by means of the methods developed
in this paper it is easy to illustrate the effect of the knowledge of the support of
the unknown function on the resolution limit. In figure 6 we give the restoration
of a §-function concentrated at t = 2 using the unconstrained restoration (6.8) (full
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1.5

—05

t

reure 6. Restoration of a d-function concentrated at ¢ = 2, with use of a truncated Mellin
transform inversion (full line) and truncated singular function expansions with v =5

(chained line) and y = 2 (dotted line). In all cases we have used truncations corresponding
to Bfe = 10°.

TABLE 7. POSITION @ OF THE ABSOLUTE MAXIMUM OF THE FUNCTION FOt)
(EQUATION (6.8)), FOR VARIOUS VALUES OF @, TOGETHER WITH THE RELATIVE

ERROR
a 1.5 2.5 3.5 4.5
@ 1.4 2.35 33 4.25
(a—a)/a (%) 6.6 6 5.9 5.5

line) with w, =4.98 (corresponding to &, = 1.88 and E/e=10%) and also the
constrained restoration (6.3), in one case using the interval [1,5] as a support of
the unknown funetion (chained line) and in another case using the interval [1.5, 3],
i.e. y = 2 (dotted line). In the case y = 5 we have taken 5 terms in (6.3) and three
terms for y = 2, namely we have used the singular functions corresponding to
singular values greater than 107*. As we see, the maximum occurs approximately
at the same point in the three cases, but the position of the first zero to the right
of the principal maximum shifts to the left as ¥ decreases. Precisely in the three
cases we have: t, = 3.76 for y = co. t, = 3.20 fory = 5andt, = 2.73 for y = 2. The
corresponding resolution ratios are: 6 = 1.88 for y = o0, § = 1.6 for y =5 and
8 = 1.36 for y = 2. The undesirable non-zero values of the reconstructions at the
limits of support may be removed by reconstruction in a weighted IL? space
(Bertero et al. 1985).

For practical applications it is interesting to know not only the resolution limits
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Sy or (L)

Sty or f(2)

t

FiarrE 7. Restoration (broken lines) of two functions of the class (6.9) (solid lines) by using
five singular functions in the truncated expansion for y = 5. The values of the parameters
for the two functions are speeified in the text.

achievable in Laplace transform inversion, but also the class of the functions that
can be accurately restored. The answer to this question is trivially given by the
methods deseribed in our papers: once the ‘number of degrees of freedom’ J has
been determined for a given signal-to-noise ratio £/¢, then it is possible to restore
accurately only those functions whose projection on the orthogonal complement
of the subspace spanned by the singular functions w,, u,, ..., %, is small; namely
the funections that are well approximated by a linear combination of these singular
functions. It is interesting to note that, if we consider a function of the type

o v (BN sin[21n(6/4)] X
= k§1 E (_) Qn(t/t,) )
where f,=10%1 & =exp(n/Q). (6.10)

then, from considerations founded on the sampling theorem (Ostrowsky ef al. 1981 :
Pike et al. 1983) it is expected that such a function is well reproduced by a truncated
singular function expansion with K terms when § is approximately equal to the

resolution ratio 4.
In figure 7 we give restorations of two functions of this type in the case v = 5.
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In both cases we have K =4, 5 = 1.495and ¢, = 4, 2 = 7.812 and §* = 4.995. The
restoration uses 5 singular functions, corresponding to a resolution ratio §; = 1.4
to 1.5. The values of the coefficients ¢, are: ¢, =05, ¢, =2, ¢, =0.5,¢,=0.1 In
the case (a); ¢, = 2, ¢, = 0.3, ¢, = 2, ¢, = 0.2 in the case (b). If the singular values,
the singular vectors and the singular functions are precomputed and stored, then
the computation of the truncated solution (2.13) is extremely fast.

It is a pleasure to thank Professor G. Talenti for helpful discussions.

REFERENCES

Bertero, M., Boccacci, P. & Pike, E. R. 1982 Proc. R. Soc. Lond. A 383, 15.

Bertero, M., Boccacai, P. & Pike, . R. 1984 Proc. R. Soc. Lond. A 393, 51.

Bertero, M., Brianzi, P. & Pike, . R. 1985 [nverse Problems 1. (In the Press.)

Cummins, H. Z. & Pike, E. R. (eds) 1974 Photon correlation and light beating spectroscopy. New
York: Plenum Press.

Doetsch, G. 1943 Laplace transformation. New York: Dover.

Kato. T. 1966 Perturbation theory for linear operators. Berlin: Springer Verlag.

McWhirter, J. G. & Pike, E. R. 1978 J. Phys. A 11, 1729,

Ostrowsky, N., Sornette, D., Parker, P. & Pike, E. R. 1981 Optica Acta 28, 1059.

Papoulis, A. 1956 Q. appl. Math. 14, 405.

Pike, E. R., Watson, D. & McNeil Watson, F. 1983 Measurement of suspended particles by
quasi-elastic light scattering (ed. B. Dahneke), p. 107. New York: Wiley.

Riesz, F. & Sz. Nagy, B. 1955 Functional analysis. New York: Ungar.



