
REGULARIZED LEAST SQUARES

AND

SUPPORT VECTOR MACHINES

Francesca Odone and Lorenzo Rosasco
odone@disi.unige.it - lrosasco@mit.edu

BISS 2012

March 14, 2012

Regularization Methods for High Dimensional Learning RLS and SVM



ABOUT THIS CLASS

GOAL To introduce two main examples of Tikhonov
regularization, deriving and comparing their
computational properties.
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BASICS: DATA

Training set: S = {(x1, y1), . . . , (xn, yn)}.
Inputs: X = {x1, . . . , xn}.
Labels: Y = {y1, . . . , yn}.
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BASICS: RKHS, KERNEL

RKHS H with a positive semidefinite kernel function K :

linear: K (xi , xj) = xT
i xj

polynomial: K (xi , xj) = (xT
i xj + 1)d

gaussian: K (xi , xj) = exp

(
−
||xi − xj ||2

σ2

)

Define the kernel matrix K to satisfy Kij = K (xi , xj).
The kernel function with one argument fixed is
Kx = K (x , ·).
Given an arbitrary input x∗, Kx∗ is a vector whose i th entry
is K (xi , x∗).
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TIKHONOV REGULARIZATION

We are interested into studying Tikhonov Regularization

argmin
f∈H

{
n∑

i=1

V (yi , f (xi))2 + λ‖f‖2H}.
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REPRESENTER THEOREM

The representer theorem guarantees that the solution can be
written as

f =
n∑

j=1

cjKxj

for some c = (c1, . . . , cn) ∈ Rn.
So Kc is a vector whose i th element is f (xi):

f (xi) =
n∑

j=1

cjKxi (xj) =
n∑

j=1

cjKij

and ‖f‖2H = cT Kc.
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RKHS NORM AND REPRESENTER THEOREM

Since f =
∑n

j=1 cjKxj , then

‖f‖2H = 〈f , f 〉H

= 〈
n∑

i=1

ciKxi ,

n∑
j=1

cjKxj 〉H

=
n∑

i=1

n∑
j=1

cicj〈Kxi ,Kxj 〉H

=
n∑

i=1

n∑
j=1

cicjK (xi , xj) = ctKc
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PLAN

RLS
dual problem
regularization path
linear case

SVM
dual problem
linear case
historical derivation
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THE RLS PROBLEM

Goal: Find the function f ∈ H that minimizes the weighted sum
of the square loss and the RKHS norm

argmin
f∈H

{1
2

n∑
i=1

(f (xi)− yi)
2 +

λ

2
||f ||2H}.
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RLS AND REPRESENTER THEOREM

Using the representer theorem the RLS problem is:

argmin
f∈H

1
2
‖Y− Kc‖22 +

λ

2
cT Kc

The above functional is differentiable, we can find the minimum
setting the gradient w.r.t c to 0:

−K(Y− Kc) + λKc = 0
(K + λI)c = Y

c = (K + λI)−1Y

We find c by solving a system of linear equations.
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SOLVING RLS FOR FIXED PARAMETERS

(K + λI)c = Y.

The matrix K + λI is symmetric positive definite, so the
appropriate algorithm is Cholesky factorization.
In Matlab, the “slash” operator seems to be using Cholesky,
so you can just write c = (K + l ∗ I)\Y, but to be safe, (or in
octave), I suggest R = chol(K + l ∗ I); c = (R\(R’\Y));.

The above algorithm has complexity O(n3).
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THE RLS SOLUTION, COMMENTS

c = (K + λI)−1Y

The prediction at a new input x∗ is:

f (x∗) =
n∑

j=1

cjKxj (x∗)

= Kx∗c
= Kx∗G−1Y,

where G = K + λI.
Note that the above operation is O(n2).
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RLS REGULARIZATION PATH

Typically we have to choose λ and hence to compute the
solutions corresponding to different values of λ.

Is there a more efficent method than solving
c(λ) = (K + λI)−1Y anew for each λ?

Form the eigendecomposition K = QΛQT , where Λ is
diagonal with Λii ≥ 0 and QQT = I.
Then

G = K + λI
= QΛQT + λI
= Q(Λ + λI)QT ,

which implies that G−1 = Q(Λ + λI)−1QT .

Regularization Methods for High Dimensional Learning RLS and SVM



RLS REGULARIZATION PATH

Typically we have to choose λ and hence to compute the
solutions corresponding to different values of λ.

Is there a more efficent method than solving
c(λ) = (K + λI)−1Y anew for each λ?
Form the eigendecomposition K = QΛQT , where Λ is
diagonal with Λii ≥ 0 and QQT = I.
Then

G = K + λI
= QΛQT + λI
= Q(Λ + λI)QT ,

which implies that G−1 = Q(Λ + λI)−1QT .

Regularization Methods for High Dimensional Learning RLS and SVM



RLS REGULARIZATION PATH CONT’D

O(n3) time to solve one (dense) linear system, or to
compute the eigendecomposition (constant is maybe 4x
worse). Given Q and Λ, we can find c(λ) in O(n2) time:

c(λ) = Q(Λ + λI)−1QT Y,

noting that (Λ + λI) is diagonal.
Finding c(λ) for many λ’s is (essentially) free!
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PARAMETER CHOICE

idea: try different λ and see which one performs best
How to try them? A simple choice is to use a validation set
of data
If we have "enough" training data we may sample out a
training and a validation set.
Otherwise a common practice is K-fold Cross Validation
(KCV):

1 Divide data into K sets of equal size: S1, . . . ,Sk
2 For each i train on the other K − 1 sets and test on the i th

set

If K = n we get the leave-one-out strategy (LOO)
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PARAMETER CHOICE

Notice that some data should always be kept aside to be
used as test set, to test the generalization performance of
the system after parameter tuning took place

Entire set of data 

TRAINING TESTVALIDATION
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THE LINEAR CASE

The linear kernel is K (xi , xj) = xT
i xj .

The linear kernel offers many advantages for computation.
Key idea: we get a decomposition of the kernel matrix for
free: K = XXT

— where X = [x>1 , . . . , x
>
n ] is the data matrix n × d

In the linear case, we will see that we have two different
computation options.
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LINEAR KERNEL, LINEAR FUNCTION

With a linear kernel, the function we are learning is linear as
well:

f (x∗) = Kx∗c
= xT

∗ XT c
= xT

∗ w ,

where we define w to be XT c.

Regularization Methods for High Dimensional Learning RLS and SVM



LINEAR KERNEL CONT.

For the linear kernel,

min
c∈Rn

1
2
||Y− Kc||22 +

λ

2
cT Kc

= min
c∈Rn

1
2
||Y− XXT c||22 +

λ

2
cT XXT c

= min
w∈Rd

1
2
||Y− Xw ||22 +

λ

2
||w ||22.

Taking the gradient with respect to w and setting it to zero

XT Xw − XT Y + λw = 0

we get
w = (XT X + λI)−1XT Y.
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SOLUTION FOR FIXED PARAMETER

w = (XT X + λI)−1XT Y.

Choleski decomposition allows to solve the above problem in
O(d3) for any fixed λ.

We can work with the covariance matrix XT X ∈ Rd×d .
The algorithm is identical to solving a general RLS problem
replacing the kernel matrix by XT X and the labels vector by
XT y .

We can classify new points in O(d) time, using w , rather than
having to compute a weighted sum of n kernel products (which
will usually cost O(nd) time).
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REGULARIZATION PATH VIA SVD

To compute solutions corresponding to multiple values of λ we
can again consider an eigend-ecomposition/svd.

We need O(nd) memory to store the data in the first place.
The SVD also requires O(nd) memory, and O(nd2) time.

Compared to the nonlinear case, we have replaced an O(n)
with an O(d), in both time and memory. If n >> d , this can
represent a huge savings.
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SUMMARY SO FAR

When can we solve one RLS problem? (I.e. what are the
bottlenecks?)

We need to form K, which takes O(n2d) time and O(n2)
memory. We need to perform a Cholesky factorization or
an eigendecomposition of K, which takes O(n3) time.
In the linear case we have replaced an O(n) with an O(d),
in both time and memory. If n >> d , this can represent a
huge savings.
Usually, we run out of memory before we run out of
time.
The practical limit on today’s workstations is
(more-or-less) 10,000 points (using Matlab).
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PLAN

RLS
dual problem
regularization path
linear case

SVM
dual problem
linear case
historical derivation
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THE HINGE LOSS

The support vector machine (SVM) for classification arises
considering the hinge loss

V (f (x , y)) ≡ (1− yf (x))+,

where (s)+ ≡ max(s,0).
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SVM STANDARD NOTATION

With the hinge loss, our regularization problem becomes

argmin
f∈H

1
n

n∑
i=1

(1− yi f (xi))+ + λ‖f‖2H.

In most of the SVM literature, the problem is written as

argmin
f∈H

C
n∑

i=1

V (yi , f (xi)) +
1
2
‖f‖2H.

The formulations are equivalent setting C = 1
2λn .

This problem is non-differentiable (because of the “kink” in V ).
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SLACK VARIABLES FORMULATION

We rewrite the functional using slack variables ξi .

argmin
f∈H

C
∑n

i=1 ξi + 1
2‖f‖

2
H

subject to : ξi ≥ 1− yi f (xi) i = 1, . . . ,n
ξi ≥ 0 i = 1, . . . ,n

Applying the representer theorem we get a constrained
quadratic programming problem:

argmin
c∈Rn,ξ∈Rn

C
∑n

i=1 ξi + 1
2cT Kc

subject to : ξi ≥ 1− yi
∑n

j=1 cjK (xi , xj) i = 1, . . . ,n
ξi ≥ 0 i = 1, . . . ,n
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HOW TO SOLVE?

argmin
c∈Rn,ξ∈Rn

C
∑n

i=1 ξi + 1
2cT Kc

subject to : ξi ≥ 1− yi(
∑n

j=1 cjK (xi , xj)) i = 1, . . . ,n
ξi ≥ 0 i = 1, . . . ,n

This is a constrained optimization problem. The general
approach:

Form the primal problem – we did this.
Lagrangian from primal – just like Lagrange multipliers.
Dual – one dual variable associated to each primal
constraint in the Lagrangian.
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LAGRANGIAN AND DUAL

We derive the dual from the primal using the Lagrangian:

C
n∑

i=1

ξi +
1
2

cT Kc −
n∑

i=1

αi(yi{
n∑

j=1

cjK (xi , xj)} − 1 + ξi)−
n∑

i=1

ζiξi︸ ︷︷ ︸
L(c,ξ,α,ζ)

Dual problem is:
argmax
α,ζ≥0

inf
c,ξ

L(c, ξ, α, ζ)

First, minimize L w.r.t. (c, ξ):

(1) ∂L
∂c = 0 =⇒ ci = αiyi

(2) ∂L
∂ξi

= 0 =⇒ C − αi − ζi = 0
=⇒ 0 ≤ αi ≤ C
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TOWARDS THE DUAL I

From (2), plugging ζi = C − αi in the Lagrangian

C
n∑

i=1

ξi +
1
2

cT Kc −
n∑

i=1

αi(yi{
n∑

j=1

cjK (xi , xj)} − 1 + ξi)−
n∑

i=1

ζiξi︸ ︷︷ ︸
L(c,ξ,α,ζ)

we get

argmax
α≥0

inf
c

L(c, α) =
1
2

cT Kc +
n∑

i=1

αi

1− yi

n∑
j=1

K (xi , xj)cj
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TOWARDS THE DUAL II

argmax
α≥0

inf
c

L(c, α) =
1
2

cT Kc +
n∑

i=1

αi

1− yi

n∑
j=1

K (xi , xj)cj


Next plugging in (1), i.e. ci = αiyi , we get

argmax
α≥0

L(α) =
∑n

i=1 αi − 1
2
∑n

i,j=1 αiyiK (xi , xj)αjyj

=
∑n

i=1 αi − 1
2α

T (diagY)K(diagY)α
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THE PRIMAL AND DUAL PROBLEMS AGAIN

argmin
c∈Rn,ξ∈Rn

C
∑n

i=1 ξi + 1
2cT Kc

subject to : ξi ≥ 1− yi(
∑n

j=1 cjK (xi , xj)) i = 1, . . . ,n
ξi ≥ 0 i = 1, . . . ,n

max
α∈Rn

∑n
i=1 αi − 1

2α
T Qα

0 ≤ αi ≤ C i = 1, . . . ,n

The dual problem is easier to solve: simple box constraints.
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SUPPORT VECTORS

The input input points with non zero coefficients are called
support vectors.
We get a geometric interpretation using complementary
slackness, primal/dual constraints.
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OPTIMALITY CONDITIONS

All optimal solutions must satisfy:

n∑
j=1

cjK (xi , xj)−
n∑

j=1

yiαjK (xi , xj) = 0 i = 1, . . . ,n

C − αi − ζi = 0 i = 1, . . . ,n

yi(
n∑

j=1

yjαjK (xi , xj))− 1 + ξi ≥ 0 i = 1, . . . ,n

αi [yi(
n∑

j=1

yjαjK (xi , xj))− 1 + ξi ] = 0 i = 1, . . . ,n

ζiξi = 0 i = 1, . . . ,n
ξi , αi , ζi ≥ 0 i = 1, . . . ,n
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OPTIMALITY CONDITIONS

These optimality conditions are both necessary and sufficient
for optimality: (c, ξ, α, ζ) satisfy all of the conditions if and only if
they are optimal for both the primal and the dual. (Also known
as the Karush-Kuhn-Tucker (KKT) conditons.)

Regularization Methods for High Dimensional Learning RLS and SVM



INTERPRETING THE SOLUTION — SPARSITY

αi [yi(
n∑

j=1

yjαjK (xi , xj))− 1 + ξi ] = 0, i = 1, . . . ,n.

Remember we defined f (x) =
∑n

i=1 yiαiK (x , xi), so that

yi f (xi) > 1 ⇒ (1− yi f (xi)) < 0
⇒ ξi 6= (1− yi f (xi))

⇒ αi = 0
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INTERPRETING THE SOLUTION — SUPPORT VECTORS

Consider

C − αi − ζi = 0 i = 1, . . . ,n
ζiξi = 0 i = 1, . . . ,n

yi f (xi) < 1 ⇒ (1− yi f (xi)) > 0
⇒ ξi > 0
⇒ ζi = 0
⇒ αi = C
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INTERPRETING THE SOLUTION — SUPPORT VECTORS

So
yi f (xi) < 1⇒ αi = C.

Conversely, suppose αi = C. From

αi [yi(
n∑

j=1

yjαjK (xi , xj))− 1 + ξi ] = 0, i = 1, . . . ,n.

we have

αi = C =⇒ ξi = 1− yi f (xi)

=⇒ yi f (xi) ≤ 1
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INTERPRETING THE SOLUTION

Here are all of the derived conditions:

αi = 0 =⇒ yi f (xi) ≥ 1
0 < αi < C =⇒ yi f (xi) = 1

αi = C ⇐= yi f (xi) < 1

αi = 0 ⇐= yi f (xi) > 1
αi = C =⇒ yi f (xi) ≤ 1
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GEOMETRIC INTERPRETATION OF REDUCED

OPTIMALITY CONDITIONS
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THE GEOMETRIC APPROACH

The “traditional” approach to describe SVM is to start with the
concepts of separating hyperplanes and margin. The theory is
usually developed in a linear space, beginning with the idea of
a perceptron, a linear hyperplane that separates the positive
and the negative examples. Defining the margin as the
distance from the hyperplane to the nearest example, the basic
observation is that intuitively, we expect a hyperplane with
larger margin to generalize better than one with smaller margin.
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LARGE AND SMALL MARGIN HYPERPLANES

(a) (b)
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MAXIMAL MARGIN CLASSIFICATION

Classification function:

f (x) = sign (w · x). (1)

w is a normal vector to the hyperplane separating the classes.
We define the boundaries of the margin by 〈w , x〉 = ±1.

What happens as we change ‖w‖?

We push the margin in/out by rescaling w – the margin moves
out with 1

‖w‖ . So maximizing the margin corresponds to
minimizing ‖w‖.
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MAXIMAL MARGIN CLASSIFICATION, SEPARABLE CASE

Separable means ∃w s.t. all points are beyond the margin, i.e.

yi〈w , xi〉 ≥ 1 , ∀i .

So we solve:

argmin
w

‖w‖2

s.t. yi〈w , xi〉 ≥ 1 , ∀i
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MAXIMAL MARGIN CLASSIFICATION, NON-SEPARABLE

CASE

Non-separable means there are points on the wrong side of the
margin, i.e.

∃i s.t. yi〈w , xi〉 < 1 .

We add slack variables to account for the wrongness:

argmin
ξi ,w

∑n
i=1 ξi + ‖w‖2

s.t. yi〈w , xi〉 ≥ 1− ξi , ∀i
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HISTORICAL PERSPECTIVE

Historically, most developments begin with the geometric form,
derived a dual program which was identical to the dual we
derived above, and only then observed that the dual program
required only dot products and that these dot products could be
replaced with a kernel function.
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MORE HISTORICAL PERSPECTIVE

In the linearly separable case, we can also derive the
separating hyperplane as a vector parallel to the vector
connecting the closest two points in the positive and negative
classes, passing through the perpendicular bisector of this
vector. This was the “Method of Portraits”, derived by Vapnik in
the 1970’s, and recently rediscovered (with non-separable
extensions) by Keerthi.
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SUMMARY

The SVM is a Tikhonov regularization problem, with the
hinge loss.
Solving the SVM means solving a constrained quadratic
program, rouhgly O(n3)

It’s better to work with the dual program.

Solutions can be sparse – few non-zero coefficients, this
can have impact for memory and computational
requirements.
The non-zero coefficients correspond to points not
classified correctly enough – a.k.a. “support vectors.”
There is alternative, geometric interpretation of the SVM,
from the perspective of “maximizing the margin.”
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RLS AND SVM TOOLBOX

GURLS (Grand Unified Regularized Least Squares)
http://cbcl.mit.edu/gurls/

SVM Light: http://svmlight.joachims.org
libSVM:
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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