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ABOUT THIS CLASS

GOAL To introduce Reproducing Kernel Hilbert Spaces
(RKHS) from different perspectives and to derive the
general solution of Tikhonov regularization in RKHS.
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FUNCTION APPROXIMATION FROM SAMPLES

Here is a graphical example for generalization: given a certain
number of samples...
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FUNCTION APPROXIMATION FROM SAMPLES (CONT.)

Suppose this is the “true” solution...
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THE PROBLEM IS ILL-POSED

... but suppose ERM gives this solution!
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REGULARIZATION

The basic idea of regularization (originally introduced independently
of the learning problem) is to restore well-posedness of ERM by
constraining the hypothesis space H.

REGULARIZATION

A possible way to do this is considering regularized empirical risk
minimization, that is we look for solutions minimizing a two term
functional

ERR(f )︸ ︷︷ ︸
empirical error

+λ R(f )︸︷︷︸
regularizer

the regularization parameter λ trade-offs the two terms.
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TIKHONOV REGULARIZATION

Tikhonov regularization amounts to minimize

1
n

n∑
i=1

V (f (xi ), yi ) + λR(f ) λ > 0 (1)

V (f (x), y) is the loss function, that is the price we pay when we
predict f (x) in place of y
R(f ) is a regularizer– often R(f ) = ‖ · ‖H, the norm in the
function space H

The regularizer should encode some notion of smoothness of f ,
choosing different loss functions V (f (x), y) we can recover different
algorithms.
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THE ”INGREDIENTS” OF TIKHONOV

REGULARIZATION

The scheme we just described is very general and by choosing
different loss functions V (f (x), y) we can recover different
algorithms
The main point we want to discuss is how to choose a norm
encoding some notion of smoothness/complexity of the solution
Reproducing Kernel Hilbert Spaces allow us to do this in a very
powerful way
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DIFFERENT VIEWS ON RKHS
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Part I: Evaluation Functionals
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SOME FUNCTIONAL ANALYSIS

A function space F is a space whose elements are functions f , for
example f : Rd → R.

A norm is a nonnegative function ‖ · ‖ such that ∀f ,g ∈ F and α ∈ R
1 ‖f‖ ≥ 0 and ‖f‖ = 0 iff f = 0;
2 ‖f + g‖ ≤ ‖f‖+ ‖g‖;
3 ‖αf‖ = |α| ‖f‖.

A norm can be defined via a inner product ‖f‖ =
√
〈f , f 〉.

A Hilbert space is a complete inner product space.
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SPACES OF FUNCTIONS: EXAMPLES

Continuous functions C[a,b] :
a norm can be established by defining

‖f‖ = max
a≤x≤b

|f (x)|

(not a Hilbert space!)

Square integrable functions L2[a,b]:
it is a Hilbert space where the norm is induced by the dot product

〈f ,g〉 =

∫ b

a
f (x)g(x)dx
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RKHS

An evaluation functional over the Hilbert space of functions H is a
linear functional Ft : H → R that evaluates each function in the space
at the point t , or

Ft [f ] = f (t).

DEFINITION

A Hilbert space H is a reproducing kernel Hilbert space (RKHS) if the
evaluation functionals are bounded and continuous, i.e. if there exists
a M s.t.

|Ft [f ]| = |f (t)| ≤ M‖f‖H ∀f ∈ H
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EVALUATION FUNCTIONALS

Evaluation functionals are not always bounded.
Consider L2[a,b]:

Each element of the space is an equivalence class of functions
with the same integral

∫
|f (x)|2dx .

An integral remains the same if we change the function in a
countable set of points.
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LINEAR RKHS

Our function space is 1-dimensional lines

f (x) = w x

where the RKHS norm is simply

‖f‖2
H = 〈f , f 〉H = w2

so that our measure of complexity is the slope of the line.
We want to separate two classes using lines and see how the
magnitude of the slope corresponds to a measure of complexity.
We will look at three examples and see that each example requires
more ”complicated functions, functions with greater slopes, to
separate the positive examples from negative examples.
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LINEAR CASE (CONT.)

here are three datasets: a linear function should be used to separate
the classes. Notice that as the class distinction becomes finer, a
larger slope is required to separate the classes.
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Part II: Kernels
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REPRODUCING KERNEL (RK)

If H is a RKHS, then for each t ∈ X there exists a function Kt in
H (called representer) with the reproducing property

Ft [f ] = 〈Kt , f 〉H = f (t).

Since Kt is a function in H, by the reproducing property, for each
x ∈ X

Kt (x) = 〈Kt ,Kx〉H

The reproducing kernel (rk) of H is

K (t , x) := Kt (x)
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POSITIVE DEFINITE KERNELS

Let X be some set, for example a subset of Rd or Rd itself. A kernel is
a symmetric function K : X × X → R.

DEFINITION

A kernel K (t , s) is positive definite (pd) if

n∑
i,j=1

cicjK (ti , tj ) ≥ 0

for any n ∈ N and choice of t1, ..., tn ∈ X and c1, ..., cn ∈ R.
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RKHS AND KERNELS

The following theorem relates pd kernels and RKHS

THEOREM

a) For every RKHS there exist an associated reproducing kernel
which is symmetric and positive definite

b) Conversely every symmetric, positive definite kernel K on
X × X defines a unique RKHS on X with K as its reproducing kernel
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SKETCH OF PROOF

a) We must prove that the rk K (t , x) = 〈Kt ,Kx〉H is symmetric and pd.
• Symmetry follows from the symmetry property of dot products

〈Kt ,Kx〉H = 〈Kx ,Kt〉H

• K is pd because

n∑
i,j=1

cicjK (ti , tj ) =
n∑

i,j=1

cicj〈Kti ,Ktj 〉H = ||
∑

cjKtj ||2H ≥ 0.
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SKETCH OF PROOF (CONT.)

b) Conversely, given K one can construct the RKHS H as the
completion of the space of functions spanned by the set {Kx |x ∈ X}
with a inner product defined as follows.
The dot product of two functions f and g in span{Kx |x ∈ X}

f (x) =
s∑

i=1

αiKxi (x)

g(x) =
s′∑

i=1

βiKx′i (x)

is by definition

〈f ,g〉H =
s∑

i=1

s′∑
j=1

αiβjK (xi , x ′j ).
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EXAMPLES OF PD KERNELS

Very common examples of symmetric pd kernels are
• Linear kernel

K (x , x ′) = x · x ′

• Gaussian kernel

K (x , x ′) = e−
‖x−x′‖2

σ2 , σ > 0

• Polynomial kernel

K (x , x ′) = (x · x ′ + 1)d , d ∈ N

For specific applications, designing an effective kernel is a
challenging problem.
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EXAMPLES OF PD KERNELS

Kernel are a very general concept. We can have kernel on
vectors, string, matrices, graphs, probabilities...
Combinations of Kernels allow to do integrate different kinds of
data.
Often times Kernel are views and designed to be similarity
measure (in this case it make sense to have normalized kernels)

d(x , x ′)2 = ‖Kx − K ′x‖
2

= 2(1− K (x , x ′)).
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Part III: Feature Map
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FEATURE MAPS AND KERNELS

Kernels can be seen as inner products.

Let Φ(x) = Kx . Then Φ : X → H.

Let Φ(x) = (ψj (x))j , where (ψj (x))j is an orthonormal basis of H.
Then Φ : X → `2.

Regularization Methods for High Dimensional Learning Different views on Reproducing Kernel Hilbert Spaces



FEATURE MAPS AND KERNELS

Kernels can be seen as inner products.

Let Φ(x) = Kx . Then Φ : X → H.
Let Φ(x) = (ψj (x))j , where (ψj (x))j is an orthonormal basis of H.
Then Φ : X → `2.

Regularization Methods for High Dimensional Learning Different views on Reproducing Kernel Hilbert Spaces



MERCER THEOREM AND FEATURE MAP

A well know example comes from a result due to Mercer.

MERCER THEOREM

The operator

LK f (x) =

∫
X

K (x , s)f (s)p(s)dx

is symmetric positive compact with eigenvalues/functions (σI , φ)i .
It can be shown that

K (x , s) =
∑
i≥1

σiφi (x)φi (s).

Then, let Φ(x) = (
√
σiφi (x))i , Φ : X → `2 so that by the above result

K (x , s) = 〈Φ(x),Φ(x)〉 .
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FEATURE MAP AND FEATURE SPACE

In general a feature map is a map Φ : X → F , where F is a Hilbert
space and is called Feature Space.
Every feature map defines a kernel via

K (x , s) = 〈Φ(x),Φ(x)〉 .
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KERNEL FROM FEATURE MAPS

Often times, feature map, and hence kernels, are defined through a
dictionary of features

D = {φj , i = 1, . . . ,p | φj : X → R, ∀j}

where p ≤ ∞.

We can interpret the above functions as (possibly non linear)
measurements on the inputs.
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FUNCTION AS HYPERPLANES IN THE FEATURE SPACE

The concept of feature map allows to give a new interpretation of
RKHS.

Functions can be seen as hyperplanes,

f (x) = 〈w ,Φ(x)〉 .

This can be seen for any of the previous examples.
Let Φ(x) = (

√
σjφj (x))j .

Let Φ(x) = Kx .
Let Φ(x) = (ψj (x))j .
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FEATURE MAPS ILLUSTRATED
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KERNEL ”TRICK” AND KERNELIZATION

Any algorithm which works in a euclidean space, hence requiring only
inner products in the computations, can be kernelized

K (x , s) = 〈Φ(x),Φ(x)〉 .

Kernel PCA.
Kernel ICA.
Kernel CCA.
Kernel LDA.
Kernel...
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Part IV: Regularization Networks and
Representer Theorem
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AGAIN TIKHONOV REGULARIZATION

The algorithms (Regularization Networks) that we want to study are
defined by an optimization problem over RKHS,

fλS = arg min
f∈H

1
n

n∑
i=1

V (f (xi ), yi ) + λ‖f‖2
H

where the regularization parameter λ is a positive number, H is the
RKHS as defined by the pd kernel K (·, ·), and V (·, ·) is a loss
function.
Note that H is possibly infinite dimensional!
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EXISTENCE AND UNIQUENESS OF MINIMUM

If the positive loss function V (·, ·) is convex with respect to its first
entry, the functional

Φ[f ] =
1
n

n∑
i=1

V (f (xi ), yi ) + λ‖f‖2
H

is strictly convex and coercive, hence it has exactly one local (global)
minimum.
Both the squared loss and the hinge loss are convex.
On the contrary the 0-1 loss

V = Θ(−f (x)y),

where Θ(·) is the Heaviside step function, is not convex.
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THE REPRESENTER THEOREM

AN IMPORTANT RESULT

The minimizer over the RKHS H, fS, of the regularized empirical
functional

IS[f ] + λ‖f‖2
H,

can be represented by the expression

fλS (x) =
n∑

i=1

ciK (xi , x),

for some n-tuple (c1, . . . , cn) ∈ Rn.
Hence, minimizing over the (possibly infinite dimensional) Hilbert
space, boils down to minimizing over Rn.
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SKETCH OF PROOF

Define the linear subspace of H,

H0 = span({Kxi}i=1,...,n)

Let H⊥0 be the linear subspace of H,

H⊥0 = {f ∈ H|f (xi ) = 0, i = 1, . . . ,n}.

From the reproducing property of H, ∀f ∈ H⊥0

〈f ,
∑

i

ciKxi 〉H =
∑

i

ci〈f ,Kxi 〉H =
∑

i

ci f (xi ) = 0.

H⊥0 is the orthogonal complement of H0.
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SKETCH OF PROOF (CONT.)

Every f ∈ H can be uniquely decomposed in components along and
perpendicular to H0: f = f0 + f⊥0 .
Since by orthogonality

‖f0 + f⊥0 ‖2 = ‖f0‖2 + ‖f⊥0 ‖2,

and by the reproducing property

IS[f0 + f⊥0 ] = IS[f0],

then
IS[f0] + λ‖f0‖2

H ≤ IS[f0 + f⊥0 ] + λ‖f0 + f⊥0 ‖2
H.

Hence the minimum fλS = f0 must belong to the linear space H0.

Regularization Methods for High Dimensional Learning Different views on Reproducing Kernel Hilbert Spaces



NORMS IN RKHS AND SMOOTHNESS

Choosing different kernels one can show that the norm in the
corresponding RKHS encodes different notions of smoothness.

Band limited functions. Consider the set of functions

H := {f ∈ L2(R) | F (ω) ∈ [−a,a],a <∞}

with the usual L2 inner product. the function at every point is
given by the convolution with a sinc function sin(ax)/ax .
The norm

‖f‖2
H =

∫
f (x)2dx =

∫ a

a
|F (ω)|2dω

Where F (ω) = F{f}(ω) =
∫∞
−∞ f (t)e−iωt dt is the Fourier tranform of

f .
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NORMS IN RKHS AND SMOOTHNESS

Sobolev Space: consider f : [0,1]→ R with f (0) = f (1) = 0. The
norm

‖f‖2
H =

∫
(f ′(x))2dx =

∫
ω2|F (ω)|2dω

Gaussian Space: the norm can be written as

‖f‖2
H =

1
2πd

∫
|F (ω)|2exp

σ2ω2
2 dω
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HISTORICAL REMARKS

RKHS were explicitly introduced in learning theory by Girosi
(1997).
Poggio and Girosi (1989) introduced Tikhonov regularization in
learning theory and worked with RKHS only implicitly, because
they dealt mainly with hypothesis spaces on unbounded
domains, which we will not discuss here.
RKHS were used much earlier in approximation theory (eg
Wahba, 1990...) and computer vision (eg Bertero, Torre, Poggio,
1988...).
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